


 

Case Studies in  
Superconducting Magnets 
Design and Operational Issues 

Second Edition 



Cover Design The blue and red shades of the covers symbolize, respectively,

low- and high-temperature superconducting (LTS/HTS) magnets. The drawings

of two magnets, by Wooseok Kim (SNU), represent, left to right, a 1.1 GHz and

a 1.3GHz LTS/HTS NMR magnet, both to be sequentially completed in the

2010s at the M.I.T. Francis Bitter Magnet Laboratory under the sponsorship

of the National Institutes of Health. The magnet drawings, in-scale and in

proportion to each other, are based on designs of a 500MHz and a 700MHz

LTS magnet (both in mauve) by Masatoshi Yoshikawa (JASTEC) and that of a

600MHz HTS insert (in light pink) by Seungyong Hahn (FBML).

ISBN 978-0-387-09799-2



Yukikazu Iwasa 
 

 
 
 
Case Studies in  
Superconducting Magnets 
Design and Operational Issues 
Second Edition 
 

 
 
 
 
 
 

 



Yukikazu Iwasa 
Francis Bitter Magnet Laboratory 
Massachusetts Institute of Technology 
Cambridge, MA 
USA 
 

 

  

 

 
 
 

 
 

 
 
ISBN: 978-0-387-09799-2   e-ISBN: 978-0-387-09800-5 
DOI: 10.10
 
Library of Congress Control Number:  2009922081 
 
© Springer Science+Business Media, LLC 2009

Printed on acid-free paper. 
 
springer.com 

 

All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the 
publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY 10013, USA), except for brief 
excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and 
retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter 
developed is forbidden. 
The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified 
as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights. 

07/b112047



PREFACE TO THE SECOND EDITION

The Second Edition, as was the First Edition, is based on Superconducting Mag-
nets, a graduate course in the Department of Mechanical Engineering at the Mas-
sachusetts Institute of Technology that I started teaching in 1989, after the dis-
covery of high-temperature superconductors (HTS); in this book I’m classifying
MgB2, a superconductor with a critical temperature of 39 K, as an HTS. The book,
intended for graduate students and professional engineers, covers the basic design
and operational issues of superconducting magnet technology.

As prefaced in the 1st Edition, the student in the course was assigned many “tu-
torial” problems to review lecture materials, to discuss topics in more depth than
covered in the lecture, or to teach subjects not presented in the lecture at all.
Because the use of tutorial problems accompanied, a week later, by solutions has
been successful in the course, this format, adopted in the 1st Edition, is maintained
in the 2nd Edition. In the new edition, most problems in the 1st Edition have been
retained, either as PROBLEMS or converted to DISCUSSIONS, to which more topics
in the form of PROBLEMS &DISCUSSIONS have been added. Because the principal
magnet projects at the Francis Bitter National Magnet Laboratory (FBNML), un-
til 1995, and Francis Bitter Magnet Laboratory (FBML) thereafter, have chiefly
been high-field DC solenoidal magnets, problems directly related to other appli-
cations, with a few exceptions, are not represented. However, important topics
covered in this book, particularly on field distribution, magnets, force, thermal
stability, dissipation, and protection, are sufficiently basic and generic in concept
that solenoidal magnets are suitable examples.

The 2nd Edition is more than 200 pages longer than the 1st Edition for four reasons:
1) included now are topics that should have been covered but were omitted in the
1st Edition; 2) new materials, relevant and applicable chiefly to HTS magnets, are
added; 3) some concepts are given fuller explanations; and 4) more homework and
quiz problems, created since 1995, are incorporated. This time the presentation
should be significantly improved and afflicted with far fewer (but alas, not free
of) errors and typos than previously. Encountering the reader of the 1st Edition,
I often had to warn him/her of many errors, stating, though, that these errors
would in most part be obvious if the book was read with eyes wide open.

It took less than 18 months to complete the 1st Edition—the project began in May
of 1993, and the textbook came out in October 1994; by contrast, it has taken
more than 10 years to complete the 2nd Edition, starting in 1997 with the rewriting
and expansion of CHAPTER 3. In preparing both editions, I relied heavily on the
magnet projects with which I was personally involved, and am indebted to my
colleagues, the members of the Magnet Technology Division, past (FBNML) and
recent (FBML): the past members included John Williams, Mat Leupold, Emanuel
Bobrov, David Johnson, Vlad Stejskal, Andy Szczepanowski, Mel Vestal, Robert
Weggel, and Alex Zhukovsky; recent members include Juan Bascuñán, my friend
and colleague the late Emanuel Bobrov (1936–2008), David Johnson, Haigun Lee
(now at the Korea University, Seoul), Seungyong Hahn, and Weijun Yao.
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During the more than 10 years writing this new edition, many people helped me
to complete it. In our Division, I would particularly thank: Juan going through
the entire book more than once, checking carefully axial force equations involving
complete elliptic integrals, and providing many cryogenic data; Emanuel for his
suggestion that axial force formulas be included in the new edition and that they
are derivable from equations given in a paper by Milan Wayne Garrett; Haigun
for thoroughly going through and finding many errors in early drafts; Weijun for
key inputs in early chapters; and most of all Seungyong for his incisive critiques
on many key issues and helpful suggestions for improvement. Many recent visitors
and postdoctoral fellows made contributions to the new edition, particularly: Min
Cheol Ahn for many graphs and help in preparing the Index; Wooseok Kim (now
at Seoul National University) and Frederic Trillaud (now at Lawrence Berkeley
National Laboratory) for graphs; and Ryuya Ando (Hitachi Ltd.) for cryogenic
data. Also my former student Benjamin Haid (now at Lawrence Livermore Na-
tional Laboratory) contributed to this new edition. Robert Weggel went through
the entire text several times not only looking for typos and errors but also, more
importantly, making critical comments and suggestions, and checking several ver-
sions of the Index. To them, my deepest gratitude.

From members of the Plasma Science and Fusion Center, across the street from
the Magnet Lab, I received many valuable inputs: Joe Minervini (who taught the
course while it was also a graduate course in the Department of Nuclear Engi-
neering), Joel Schultz, Makoto Takayasu, Chen-Yu Gung, Brad Smith, and Alex
Zhukovsky. I thank them for their contributions.

From my colleagues and friends outside M.I.T. I also received valuable contri-
butions and I thank them: Dr. Luca Bottura of CERN for figures and data;
Dr. Masaki Suenaga of Brookhaven National Laboratory and Prof. Kazuo Funaki
of Kyushu University on AC losses; Drs. Hans Schneider-Muntau, Mark Bird, and
John Miller (then) of the National High Magnetic Field Laboratory (NHMFL)
on their water-cooled magnets and the 45-T hybrid magnet; Dr. Chris Rey of
Oak Ridge National Laboratory on magnetic separation; Prof. Hiroyuki Fujishiro
of Iwate University for electrical resistivity data for solder materials (CHAPTER 7);
Prof. Atsushi Ishiyama of Waseda University, Dr. Robert Duckworth of Oak Ridge
National Laboratory, and Dr. Xiaorong Wang of NHMFL for their experimental
results on normal zone propagation in HTS test samples used in CHAPTER 8.

I also thank the following friends for reviewing selected chapter drafts and making
valuable suggestions: Dr. Michael Gouge of Oak Ridge National Laboratory, Dr.
François-Paul Juster of the Commissariat à l’Energie Atomique (CEA), Saclay,
Prof. John Pfotenhauer of the University of Wisconsin, Dr. Soren Prestemon of
Lawrence Berkeley National Laboratory, and Dr. Martin Wilson.

Since 1995, our projects have focused principally on HTS magnets, their specific de-
sign and operation issues, e.g., protection, and their applications to advanced NMR
and MRI magnets. These magnet projects have been inspired by our Division’s
close association with Prof. Robert Griffin, Director of FBML and M.I.T. De-
partment of Chemistry; Prof. Gerhard Wagner of Harvard Medical School; and
Prof. David Cory of M.I.T. Department of Nuclear Science & Engineering.
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The protection projects were supported initially by the Department of Energy,
then until recently by the Air Force Office of Scientific Research. The NMR
and MRI magnet projects have been supported by two branches of the National
Institutes of Health, and recently the third branch as well. I am particularly
indebted to Dr. Abraham Levy of the National Center for Research Resources
(NCRR); Dr. Alan McLaughlin of the National Institute of Biomedical Imaging
and Bioengineering (NIBIB); and Dr. Janna Wehrle of the National Institute of
General Medical Sciences (NIGMS), all for their keen interest in and commitment
to our magnet programs.

A large portion of the writing project, including lectures based on draft chapters,
was done at the CEA Saclay, every year since 2001, in the Accelerator, Cryo-
genics and Magnetism Department (SACM). I thank not only the friendship of
my colleagues in the SACM, particularly Drs. François Kircher, Antoine Daël,
and Jean-Michel Rifflet, but also for this wonderful opportunity. In early 2000s I
used draft chapters for lectures at the Applied Superconductivity Laboratory of
the Institute of Electrical Engineering, Chinese Academy of Sciences, and I thank
Profs. Luguang Yan, Liangzhen Lin, Liye Xiao, and Qiuliang Wang for the op-
portunity. Beginning 2005 I also used draft chapters for three lecture series in
the Applied Superconductivity Laboratory of the Southwest Jiaotong University,
Chengdu, and I thank Profs. Jiasu Wang, Suyu Wang, and their students.

In this new edition, in addition to quotations, I inserted several “Passages” and
TRIVIAs to: 1) add another perspective to the subject matter under discussion;
and 2) fill out the bottom space in the page to begin fresh on the next page a
new subject or sub-subject. Two prominent sources are: 1) Francis Bitter, who
published in 1959 a small book on magnets primarily for high school students;
and 2) Isaac Asimov, arguably the most prolific writer of the 20th century on every
subject. Several anecdotal quotations in TRIVIAs come from Asimov’s writing.

Finally, I would express a word of appreciation to Kimiko, who has made it possible
for me to continue working on this project at home with minimum household chore
requests, enabling me to complete this new edition.

Yukikazu Iwasa
Weston, Massachusetts

January, 2009

“You know nothing till you prove it! FLY!” —Jonathan Livingston



To the Memory of My Parents,

Seizaburo and Shizuko Iwasa

and

To Future Generations, including

Erina, Alexa, Max,

Who Will Surely Benefit from More Things Superconducting

“Man plans, God laughs.” —Old proverb
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CHAPTER 1

SUPERCONDUCTING MAGNET TECHNOLOGY

1.1 Introductory Remarks

Superconducting magnet technology deals with the design, manufacture, and oper-
ation of superconducting magnets. A superconducting magnet is a highly stressed
device: it requires the best that engineering has to offer to ensure that it operates
successfully, is reliable, and at the same time is economically viable. A typical
10-tesla magnet is subjected to an equivalent magnetic pressure of 40 MPa (nearly
400 atm), whether it operates superconductively at 4.2 K (liquid helium) or 77 K
(liquid nitrogen), or resistively at room temperature. Superconducting magnet
technology is interdisciplinary in that it requires knowledge and training in many
fields of engineering—mechanical, electrical, cryogenic, and materials.

Table 1.1 lists “first” events relevant to superconducting magnet technology. Par-
ticularly noteworthy events since the discovery of superconductivity in 1911 by
Kamerlingh Onnes, who was also first to liquefy helium in 1908, are as follows:

1. Water-cooled 10-T electromagnets: Francis Bitter, the 1930s;

2. Large-scale helium liquefiers: Collins, the late 1940s;

3. Magnet-grade superconductors: Kunzler, et al., the early 1960s;

4. Cryostability of magnets: Stekly, the mid 1960s;

5. High-temperature superconductivity (HTS): Müller and Bednorz, 1986.

Although “Bitter” electromagnets, resistive and water-cooled, operate at room
temperature, we may safely state that Bitter initiated modern magnet technology.
Soon after the availability of Collins liquefiers, liquid helium—until then a highly
prized research commodity available only in a few research centers—became widely
available and helped to propel the rapidly growing field of low temperature physics.
Many important superconductors were discovered in the 1950s, leading to the
development in the 1960s of magnet-grade superconductors that continues today.

The formulation of design principles for cryostable magnets by Stekly and others
by the mid 1960s was perhaps the single most important step in the early stage
of superconducting magnet technology. It definitely helped transform supercon-
ductivity from a scientific curiosity to a realistic engineering option. Advances in
superconducting magnet technology since then have succeeded in developing “high-
performance” (“adiabatic,” i.e., non-cryostable) magnets that now dominate most
“marketplace” superconducting magnets.

The discovery of HTS lifted superconducting magnet technology from the depth of
a liquid helium well. Together with advances in cryocooler technology, it has ac-
celerated the development of “dry”(cryogen-free) superconducting magnets, HTS
as well as low-temperature superconductor (LTS), refrigerated by cryocoolers—
“cryocooled.” In this early part of the 21st century, it is believed firmly by some
and hoped fervently by many others that HTS will finally succeed in applications
that LTS was once expected to but did not.

© Springer Science + Business Media, LLC 2009
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Table 1.1: “First” Events Relevant To Superconducting Magnet Technology

Decade Event*

1930s Meissner effect

Type II low-temperature superconductors (LTS) identified

Phenomenological theories of superconductivity

Bitter electromagnets generating fields up to 10 tesla

1940s Marketing of Collins helium liquefiers

1950s Many more Type II LTS discovered

GLAG and BCS theories of superconductivity

Small superconducting magnets

1960s Magnet-grade superconductors, e.g., NbTi, Nb3Sn, developed

National Magnet Laboratory established

Bitter magnets generating fields up to 22T (25T with iron poles)

Flux jumps in LTS

LTS/normal metal composite superconductors

Formulation of cryostability criteria

Large cryostable LTS magnets (MHD and bubble chambers)

Superconducting electric generators

Magnets wound with internally-cooled LTS

Multifilamentary NbTi/Cu superconductors

1970s Multifilamentary Nb3Sn/Cu superconductors

Maglev test vehicles

Superconducting dipoles and quadrupoles for accelerators

Cable-in-conduit (CIC) conductors

Hybrid magnets generating 30T

Commercial NMR systems using LTS magnets

1980s Commercial MRI systems using LTS magnets

Multinational experiments on fusion LTS magnets=⇒ITER (2001)

Submicron superconductors for 60-Hz applications

Superconducting accelerators

Discovery of HTS

1990s BSCCO-2223/Ag composite tape; magnets (1–7T)

“Cryocooled” “dry” magnets, LTS and HTS

YBCO coated conductor

45-T hybrid magnet

2000– Discovery of MgB2 “metalloid” superconductor (Tc =39K)

HTS demonstration devices, e.g., cables; transformers; motors

High-resolution 900MHz–1GHz all-LTS NMR magnets

High-resolution LTS/HTS NMR magnets under development

High-field MRI magnets for cerebral imaging

Operation of Large Hadron Collider (LHC)

* Entries in each decade did not necessarily take place sequentially as listed. Acronyms are
described in the Glossary (Appendix VI).



SUPERCONDUCTINGMAGNETTECHNOLOGY 3

1.2 Superconductivity

The complete absence of electrical resistivity for the passage of direct current
below a certain “critical” temperature (usually designated with the symbol Tc) is
the basic premise of superconductivity. In addition to Tc, the critical field Hc and
critical current density Jc are two other parameters that define a critical surface
below which the superconducting phase can exist—see 1.2.4. Tc and Hc are
thermodynamic properties that for a given superconducting material are invariant
to metallurgical processing; Jc is not. Indeed the key contribution of Kunzler and
others in 1961 was to demonstrate that for certain superconductors it is possible
to enhance Jc dramatically by means of metallurgy alone. No formal theories
of superconductivity, phenomenological or microscopic, will be presented in this
book to explain relationships among Tc, Hc, or Jc; however, the magnetic behavior
of superconductivity, which plays a key role in superconducting magnets, will be
briefly reviewed by means of simple theoretical models.

1.2.1 Meissner Effect

Discovered by Meissner and Ochsenfeld in 1934, the Meissner effect describes the
absence of magnetic induction (B) within the bulk of a superconductor, i.e., B=0.
This complete diamagnetism of a superconductor is in fact more fundamental than
the complete absence of electrical resistivity (ρ), i.e., ρ = 0, to the extent that a
material’s perfect diamagnetism automatically requires it to be a perfect electrical
conductor. The Meissner effect, created by surface supercurrent, is observed in
both Type I and Type II superconductors—see 1.2.3. In Type I superconductors
the Meissner effect is present up to the bulk thermodynamic critical magnetic
field, Hc, while in Type II superconductors only up to the lower critical field,
Hc1, beyond which the field penetrates into the bulk, until the field penetration is
complete at the upper critical field, Hc2, at which point the Type II superconductor
is completely in the normal state.

Figure 1.1a (top) illustrates a phase diagram of field, H, and temperature, T , for
two spheres. The “critical temperature,” Tc, divides two regions for both spheres:
for T <Tc, one sphere, a superconductor (Sc), becomes superconducting (B =0),
while the other, a perfect conductor (Pc), becomes perfectly conducting (ρ = 0).
The properties of both spheres are independent of H.

Figure 1.1b illustrates the magnetic field profiles of the Sc sphere as its H-T phase
is changed A⇒B⇒C⇒D: the sphere satisfies its B =0 condition at C by inducing
a surface current—its distribution is studied in CHAPTER 2. With zero field in D
this current also becomes zero. Figure 1.1c illustrates the field profiles of the Pc
sphere for the same sequence of phase changes: the sphere maintains a constant
field profile during the sequence B⇒C⇒D, implying ∂B/∂ t = 0, the condition
consistent with ρ=0. Figure 1.1d illustrates another sequence for Sc or Pc. Here
the initial field condition at A and D of B=0 or ∂B/∂ t=0 is preserved at C by a
surface current of the same spatial distribution as that of the Sc sphere. Note that
the field profiles of the Sc sphere actually do not depend on the sphere’s initial
condition or sequence of phase changes, while those of the Pc sphere do, as seen
in those corresponding to C and D of Figs. 1.1c and 1.1d.
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H

C B

0 T
0 D Tc A

(a)

SUPERCONDUCTOR (Sc)

A =⇒ B =⇒ C =⇒ D

(b)

PERFECT CONDUCTOR (Pc)

A =⇒ B =⇒ C =⇒ D

(c)

SUPERCONDUCTOR (Sc) or PERFECT CONDUCTOR (Pc)

A =⇒ D =⇒ C =⇒ B

(d)

Fig. 1.1 (a): H-T phase diagram for two spheres, one a superconductor (Sc) and the
other a perfect conductor (Pc), respectively, when T < Tc. (b): field profile of the Sc
sphere for a sequence of H-T environments A⇒B⇒C⇒D. (c): field profiles of Pc for the
same sequence of environments. (d): field profiles of Sc or Pc for sequence A⇒D⇒C⇒B.
At points C (b) for the Sc sphere, D (c) for the Pc sphere, and C (d) for both the Sc and
Pc spheres, a surface current is induced in the sphere to meet either the requirement of
B=0 or ∂B/∂ t=0. The field profiles in (b)–(d) are schematic.
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1.2.2 London’s Theory of Superconductivity

Although a microscopic theory of superconductivity by Bardeen, Cooper, and
Schrieffer—known as the BCS theory—was not completed until 1957, development
of phenomenological theories of superconductivity began in the 1930s. Among
these is the electromagnetic theory of London (1935), in which the concept of pen-
etration depth was introduced to account for the Meissner effect. Simply stated,
a bulk superconductor is shielded completely from an external magnetic field by a
supercurrent that flows within the penetration depth (λ) at the surface. According
to London’s theory, λ is given by:

λ =
√

m

μ◦e2nse
(1.1)

where m and e are the electron mass (9.11×10−31 kg) and charge (1.60×10−19 C);
μ◦ is the permeability of free space (4π×10−7 H/m). Here, the density of super-
conducting electrons, nse, is different from that of the free electrons, nfe, being
all fully superconducting at T =0 and zero at Tc. For a qualitative estimation in
PROBLEM2.2 (CHAPTER 2 ) we may equate nse to nfe electrons, given by:

nse ≈ nfe =
�NA

WA
(1.2)

where � is the conductor’s mass density [g/cm3], NA is Avogadro’s number (6.023×
1023 (particle/mole), and WA is its atomic weight [g/mole]. The superconducting
current density, Js, is given by ensev ≈ enfev, where v is the drift velocity of
superconducting electrons. Approximate values of λ and Js for lead, a Type I
superconductor (see below), are computed in In PROBLEM2.2.

1.2.3 Type I and Type II Superconductors

Kamerlingh Onnes, in 1911, discovered superconductivity in pure mercury; subse-
quently other metals such as lead and indium were found to be superconductors.
These materials, now called Type I superconductors, are unsuitable as magnet con-
ductor materials because of their low Hc values: typically less than 105 A/m (or
∼0.1 T). Magnet-grade superconductors, described below (1.3), trace their origin
to the first Type II superconductor discovered by de Haas and Voogd in 1930 in
an alloy of lead and bismuth [1.1].

A Type II superconductor may be modeled as a finely divided mixture (“mixed
state”) of a Type I superconductor and normal conducting material. Indeed, in
the early 1960s there were two physical models for this mixed state: lamina and
island (vortex). In the lamina model, proposed by Goodman, a Type II super-
conductor consists of superconducting laminae separated by normal laminae. In
the vortex model, proposed by Abrikosov [1.2], and later experimentally verified
by Essmann and Träuble [1.3], the superconductor consists of many hexagonally-
arranged normal-state “islets” in a superconducting sea. For the Type II supercon-
ductor to retain its bulk superconductivity well beyond 0.1 T, the radius of each
normal-state islet must be smaller than λ. The islet’s radius is the coherence length
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(ξ), a spatial parameter, introduced by Pippard in 1953: it defines the distance
over which the superconducting-normal transition takes place. According to the
GLAG (after Ginsburg, Landau, Abrikosov, Gorkov) theory of superconductivity,
formulated to account for the magnetic behavior of Type II superconductors, a
superconductor is Type II if ξ <

√
2λ; it is Type I if ξ >

√
2λ. ξ decreases with al-

loying, which shortens the mean free path of the normal electrons and is inversely
proportional to the material’s normal-state electrical resistivity. The two magnet-
grade superconductors—alloys of niobium titanium (NbTi) and an intermetallic
compound of niobium and tin (Nb3Sn)—have normal-state resistivities that are
at least one order of magnitude greater than that of copper at room temperature.
It has been noted that every HTS has ξ much smaller than λ.

DC and AC Responses

Figure 1.2 shows schematic drawings of three superconducting rods—Type I (Fig.
1.2a) and Type II (Figs. 1.2b, 1.2c)—each carrying a transport current that is less
than its critical current. In the Type I rod (Fig. 1.2a), the current, DC or AC,
flows only at the surface (within the London penetration depth) and generates
no dissipation. In the Type II rod, DC current (Fig. 1.2b), though flowing over
the entire rod, also generates no dissipation despite the presence of many normal-
state (resistive) regions. We may picture “superconducting electrons” in the rod
gliding through the material, dodging the normal-state regions. In terms of a cir-
cuit model, we may picture these resistive islets to be electrically short-circuited
by the surrounding superconducting sea. With AC current through the Type II
rod (Fig. 1.2c), however, there is dissipation (heat generation); i.e., the “mixed-
state” rod is electrically resistive, though its effective resistivity is still orders of
magnitude less than those of highly conductive normal metals. Each normal-state
region contains flux bundles, the so-called fluxoids or vortices, and these flux bun-
dles “flow”under time-varying conditions of magnetic field, current, or both. This
dissipative flux flow is the major source of AC losses in Type II superconductors.

DC
AC Type I

DC Type II

AC Type II

Heat

(a)

(b)

(c)

Fig. 1.2 Superconducting rods carrying a transport current. (a) Type I rod, DC
or AC current—no Joule dissipation generated; (b) Type II rod, DC current—no
dissipation; (c) Type II rod, AC current—Joule dissipation generated.
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−M

Hc

0 H
0 Hc1 Hc Hc2

Mixed State

Fig. 1.3 Schematic −M vs. H plots for Type I (solid) and Type II (dashed) super-
conductors. Hc is the critical field for Type I; Hc1 and Hc2 are, respectively, the lower
and upper critical fields of Type II. The slant-lined area represents the mixed state.

Magnetic Behavior

Exposed to a magnetic field, a Type I superconductor is perfectly diamagnetic
up to the bulk thermodynamic critical field, Hc; above Hc, it behaves as a nor-
mal nonmagnetic material. The magnetic behavior of a Type II superconductor is
identical to that of Type I up to the lower critical field, Hc1; in the range between
Hc1 and Hc2, the upper critical field, the Type II is in the mixed state (p. 5). Fig-
ure 1.3 shows schematic (not in scale) plots of magnetization (M) vs. magnetic
field (H) of Type I (solid curve) and Type II (dashed). (Because the supercon-
ductor is fundamentally diamagnetic, its magnetization is negative, and thus both
curves are plotted as −M vs. H.) The slant-lined region in Fig. 1.3 represents the
mixed state of the Type II superconductor. Caveat: the magnetization curves of
all Type II magnet-grade-superconductors, as studied in CHAPTER 5, unlike that
shown in Fig. 1.3, are irreversible, resulting in hysteretic magnetization curves.
The hysteretic nature of magnetization is an important source of AC losses in
Type II superconductors (CHAPTER 7 ).

Examples of Superconductors

Table 1.2 shows selected superconductors, Type I and Type II, with their critical
temperatures in zero field, Tc, and critical magnetic inductions—μ◦Hc for Type I
and μ◦Hc2 for Type II. All Type I superconductors are metals, with low critical
fields. It is no wonder that Kamerlingh Onnes’ attempt, in 1913, to build the
first superconducting coil, wound with lead wire, failed. Exposed to the field of
its own coil (self field), lead could not remain superconducting. Even at that time
0.3 T was about the minimum field that an electromagnet needed to generate to
be considered useful. Table 1.2 clearly shows that a superconducting magnet must
employ Type II conductor. Unlike Type I, Type II comes in a variety of types:
alloys; metalloids; metallic compounds; and even oxides. Note that all the oxides
of Table 1.2 are HTS; MgB2, a metalloid, is considered HTS. Figure 1.4 shows
Tc vs. year data of selected LTS and HTS, together with boiling temperatures
(horizontal lines) of important cryogens. The solid lines connect oxide supercon-
ductors, while the dashed line, beginning and ending, respectively, with Hg and
MgB2, connects “metallic” superconductors over a ∼90-year span.
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Table 1.2: Critical Temperatures (Tc) and Fields (µ◦Hc) of
Selected Types I and II Superconductors

Type I Tc [K] µ◦Hc
∗ [T] Type II Tc [K] µ◦Hc2

∗ [T]

Ti (metals) 0.39 0.0100 Nb (metals) 9.5 0.2*

Zr 0.55 0.0047 NbTi (alloys) 9.8 10.5†
Zn 0.85 0.0054 NbN (metalloids) 16.8 15.3†
Al 1.18 0.0105 MgB2 39.0 35–60‡†
In 3.41 0.0281 Nb3Sn (compounds) 18.2 24.5†
Sn 3.72 0.0305 Nb3Al 18.7 31.0†
Hg 4.15 0.0411 Nb3Ge 23.2 35.0†
V 5.38 0.1403 YBa2Cu3O7−x (oxides) 93 150*

Pb 7.19 0.0803 Bi2Sr2Can−1CunO2n+4‡‡ 85–110 >100*

* 0 K, estimated.

† 4.2 K, measured.

‡ 4.2 K, estimated (35 T, ‖ field, 60T, ⊥ field).

‡‡ n=2, Bi2212; n=3, Bi2223.
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Fig. 1.4 Tc vs. Year data for selected superconductors, metallic (LTS) and oxide (HTS).
Solid lines and open circles: HTS; Dashed line and solid circles: LTS, except MgB2 (Tc =
39K; Year 2000), considered an HTS. Dotted horizontal lines: boiling temperatures of
cryogens, from bottom to top: He (4.22K); H2 (20.39K); Ne (27.09K); N2 (77.36K);
Ar (87.28K); CH4 (methane/111.6K); CF4 (Freon-14/145.4K); C2H6 (ethane/184.6 K).
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J

f1(J, H, T =0)

f2(J, T, H =0)

H

f3(H, T, J =0)

T

Fig. 1.5 Critical surface of a typical Type II superconductor.

1.2.4 Critical Surfaces of Type II Superconductor

Figure 1.5 shows the critical surface for a typical Type II superconductor usable for
magnets, i.e., magnet-grade superconductor (1.3). Superconductivity exists within
the phase volume bounded by the surfaces bordered by the functions, f1(J,H, T =
0); f2(J, T, H =0); and f3(H, T, J =0). During the early phase of the development
of a superconductor, f2(J, T, H =0) and f3(H, T, J =0) are measured. For magnet
engineers more useful is a general function f(J, T,H).

Critical Current Density, Jc

In a Type II superconductor, Jc may be enhanced dramatically by means of met-
allurgical processing. This enhanced Jc performance is generally attributed to the
creation of “pinning centers” that anchor the vortices against the �Jc× �B Lorentz
force acting on them. These pinning centers are created in crystal structures by
material impurities, metallurgical processes such as cold working to form dislo-
cations, or heat treatment to create precipitates and grain boundaries. Kim and
others obtained J(H, T =constant) given by [1.4]:

Jc � αc

H + H◦
(1.3)

where αc and H◦ are constants. Note that αc implies an asymptotic force density
that balances the Lorentz force density for H � H◦.

1.3 Magnet-Grade Superconductors

Magnet-grade superconductors are those conductors that meet rigorous magnet
specifications as well as being readily available commercially. What follows is a
brief comment on important differences between superconducting materials and
magnet-grade superconductors. As has been the case with every successful magnet-
grade superconductor so far developed, it is a long and laborious journey to trans-
form a material discovered in the laboratory into a magnet-grade superconductor.
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Table 1.3: Superconducting Materials vs. Conductors

Criterion Number Criterion Number

1. Superconducting? ∼10,000 3. Jc > 1GA/m2? ∼10

2. Tc >4.2K; μ◦Hc2 >10T? ∼100 4. Magnet-grade? <10

1.3.1 Materials vs. Magnet-Grade Superconductors

Table 1.3 gives an estimate of the number of materials meeting certain supercon-
ductivity criteria: as the criteria move towards those required of a magnet-grade
superconductor, the number decreases precipitously. Indeed, of nearly 10,000 su-
perconductors discovered to date, only a few of them are usable for magnets.
These include, LTS: NbTi and Nb3Sn; and HTS: Bi2212, Bi2223, coated YBCO
conductor, and MgB2. A drop of over three orders of magnitude attests to the ex-
cruciatingly difficult task material scientists and metallurgists face in transforming
a material into a magnet-grade superconductor.

1.3.2 Laboratory Superconductor to Magnet-Grade Superconductor

It is a long journey to transform a superconducting material, discovered in a lab-
oratory, into a magnet-grade superconductor. The journey consists of six stages:
1) discovery; 2) improvement in Jc performance; 3) co-processing with matrix
metal; 4) multifilament form; 5) Ic > 100 A in length > 1 km; and 6) other re-
quirements, e.g., strength and strain tolerance. Table 1.4 lists the six stages and
their approximate beginning periods for Nb3Sn and Bi2223. Note that Bi2223 was
co-processed from the very beginning with normal matrix metal (silver). Note also
that improvement in Jc (Stage 2) continues to this day, even for LTS and obviously
for HTS. As for coated YBCO conductor, it is in the late phase of Stage 3 and
about to enter Stage 4; small YBCO coils have been built and operated at 77 K.
MgB2, discovered in 2001, has already passed Stage 5, and “large” MgB2 magnets
have already been built and operated.

Despite more than a decade of intense R&D activities shortly after the development
of Nb3Sn conductors in 1961, Nb3Sn conductors are still custom-designed for most
magnet applications. Because of its brittleness and intolerance to strains above
∼0.3%, the material is inherently difficult to process and requires great care in
handling. The situation is quite similar with BSCCO, which also is brittle.

Table 1.4: Material-to-Conductor Development Stages for Nb3Sn and Bi2223

Stage Event Nb3Sn Bi2223

1 Discovery Early 1950s Late 1980s

2 Sufficient Jc in short samples Early 1960s* Early 1990s*

3 Co-processing with matrix metal Late 1960s Early 1990s†
4 Multifilament form Early 1970s Mid 1990s

5 Ic≥100A; length ≥1 km Mid 1970s Early 2000s*

6 Other magnet specifications Late 1970s Mid 2000s

* Improvement still continues.

† For Bi2223: Co-processed with silver from Stage 1.
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1.4 Magnet Design

In this section, important magnet design issues are briefly discussed.

1.4.1 Requirements and Key Issues

A magnet, whether it is experimental or a system component, must satisfy the
basic requirements of achieving the magnetic field, �H(x, y, z, t), which include
spatial distribution and temporal variation. Important parameters often given in
the field specifications are: 1) H◦, the field at the magnet center (x=0, y=0, z=0);
2) V◦, the volume within which �H(x, y, z) is specified; and 3) H(t), the field time
variation. CHAPTERS 2 and 3 discuss H◦ and �H(x, y, z) in some detail.

In addition to satisfying these basic field requirements, a magnet design must
address the following key issues:

• Mechanical integrity: The magnet must be structurally strong to withstand
large magnetic stresses, under both operating and fault conditions.CHAPTER 3
also deals with magnetic forces and stresses.

• Operational reliability: The magnet must be stable in order to reach and stay
at its operating point reliably. This reliability of a magnet is generally referred
to as magnet stability; the process of a magnet losing superconductivity in
operation is called a “quench.” CHAPTERS 5, 6, and 7 deal with this issue.

• Protection: In the event the magnet suffers an excursion into the normal
(resistive) state, it must remain undamaged and be capable of being energized
to its operating point repeatedly. CHAPTER 8 is devoted to this subject.

• Conductor: For magnets produced in large numbers, the overall cost of a
superconducting magnet system can be influenced to a large extent by the cost
of the superconductor. That is, in such superconducting magnets, conductor
cost may dominate the magnet cost. This book, however, rarely quantifies
the issue of conductor cost, e.g., the economic choice between NbTi operated
at 1.8 K and Nb3Sn at 4.2 K or between NbTi at 4.2 K and MgB2 at 15 K.
Selected properties of superconductors are given in APPENDIX V.

• Cryogenics: Because it requires power to create and maintain the cryogenic
environment for the operation of superconducting magnets, cryogenics is an
important issue for superconducting magnets. CHAPTER 4 is devoted to this
subject. Cryogenics is often overemphasized relative to its importance to the
overall system. It is worthwhile noting that even in many applications where
superconducting magnets are to play critical roles, the magnets are but one
component among many in the overall system, and consequently the cryogenics
is only a subcomponent. The power requirement for the cryogenic system is
generally a modest fraction of the total power associated with the overall
system, where in some instances ease and reliability of operation warrant the
price in capital and/or operating costs.

For a superconducting magnet to succeed in the marketplace—the ultimate goal
of most superconducting magnets—two more requirements should be added to the
above list: 1) price; and 2) ease of operation.
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Fig. 1.6 Effects of temperature on five key magnet issues.

1.4.2 Effect of Operating Temperature

The baseline temperature for LTS magnets is generally 4.2 K. Operation at a tem-
perature substantially higher than 4.2 K, which is possible only with HTS mag-
nets, impacts five key magnet issues differently. These key issues are mechanical
integrity, stability, protection, conductor, and cryogenics. Figure 1.6 shows quali-
tative trends of “difficulty or cost” vs. operating temperature, Top, for the five key
issues over the temperature span that covers both LTS and HTS magnets. For
LTS, the span is generally in the range 1.8–10 K; for HTS generally 20–80 K, but
in an LTS/HTS system that consists of LTS and HTS magnets, its Top is dictated
by the LTS magnet, i.e., ≤ 10 K. Although in Fig. 1.6 Protection and Conductor
are represented by a single curve, as are Stability and Cryogenics, actual curves
for each pair will not be identical.

Figure 1.6 indicates that difficulty in meeting mechanical integrity requirements
is essentially independent of operating temperature. This statement is true for
operating temperatures up to ∼100 K, over which differential thermal expansions
among most magnet materials are negligible. For a magnet of given field require-
ments, the necessary number of ampere-turns is independent of operating temper-
ature. Because critical current density decreases with increasing temperature uni-
versally among known superconductors, the conductor cost always increases with
operating temperature; the expected benefit of a decrease in the cost of cryogen-
ics with temperature must be compared with this expected increase in conductor
cost. Operating temperature has profound impacts on stability (easier at higher
temperatures) and protection (more difficult at higher temperatures), as discussed
in CHAPTERS 6 and 8. These chapters, through PROBLEMS &DISCUSSIONS, illu-
minate the positive and negative impacts of increasing the operating temperature.

TRIVIA 1.1 It is said that the most intense magnetic field is in a neutron star. Of the
large numbers below, which is closest to the ratio of its magnetic field to the earth’s?

i) 1023; ii) 1018; iii) 1013; iv) 108.
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1.5 Numerical Solutions

As stated at the outset of this chapter, superconducting magnet technology is inter-
disciplinary in that it requires expertise in engineering areas chiefly of mechanical,
electrical, cryogenic, and materials. It is thus impossible for a single individual to
obtain a trustworthy numerical solution to every design and operational parameter
for most real-world magnets. A team of specialists is required.

1.5.1 Ballpark Solutions

This does not mean that a cryogenic engineer, for example, should trust every
magnetic field computation to the field specialist. The cryogenic engineer should
be able to compute ballpark field figures even for a rather complex situation—an
objective of this book is to enable every member of a design team to compute
ballpark figures not only in each member’s speciality area but also outside his/her
areas of speciality. That is, the primary aim of this book is to enable the reader
to condense every magnet system, complex or simple, into a set of simple models,
each amenable to ballpark numerical solution. Indeed every new magnet system
should begin with this exercise of each design team member computing a ballpark
figure for every important design and operation parameter. Later, figures much
closer to true values required for construction and successful operation of such a
magnet system will diligently be computed by the design team specialists, each
using a computer code.

1.5.2 Code Solutions

For actual construction and subsequent operation of a magnet system, every design
and operation parameter must generally be computed with the aid of a code. Most
design teams have access to codes such as ANSYS, Vector Fields, COMSOL, all
of which are applicable for magnetic field, stress and strain, and thermal analyses.

Special codes, e.g., GANDALF and THEA, have been developed to tackle quench
initiation and propagation phenomena in cable-in-conduit conductors (DISCUSSION

6.6) used in “large” superconducting magnets, specifically for fusion magnets.
The phenomena encompass thermal, hydraulic and electrical transients, where the
changes of the cable and coolant temperatures are large and span a large range—
one to two orders of magnitude—in the thermophysical and electrical properties.
For this reason the analysis of a quench transient often, and sometimes solely,
relies on numerical simulations that can deal with non-linear heat generation and
thermal conduction in the cable coupled with heating-induced, compressible, vis-
cous flow along the cooling channels. Each code is the product of over 25-year’s
work by many specialists [1.5–1.24].

GANDALF and THEA are both commercially available codes. GANDALF [1.19],
was originally written to analyze thermo-hydraulic transients in the ITER (see
DISCUSSION 3.9) conductors. The main feature of THEA (Thermo-Hydraulic and
Electric Analysis) [1.20] is to extend the thermal and flow model to multiple parallel
paths, e.g., several strands with different temperature, or parallel flow paths in
the conductor, and to include nonuniform current distribution and transient re-
distribution in the cables.
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1.6 The Format of the Book

As stated in the Preface, the format adopted for this book is the use of tutorial
PROBLEMS accompanied by solutions. (In this 2nd Edition, principally to save
space, some PROBLEMS in the 1st Edition have been converted into DISCUSSIONS.)
Each problem requires many steps in its solution, and through these steps the
reader should gain deeper insight—some discussions also retain these steps. Be-
cause most of the problems are solvable analytically in closed form, they deal
chiefly with ideal cases; nevertheless, solutions to these problems are quite useful
for real-world problems with all the usual complexities. One needs the engineer’s
essential talent: the ability to approximate a complex problem by an ideal case
without losing any essentials. Each problem (or discussion) is intended to develop
the reader’s ability to quickly grasp the zeroth or first order solution to a real-
world situation of a similar nature, thus making it possible for the reader to retain
the essence of the problem even after it moves into a numerical-analysis phase. In
discussing design and operational issues, particularly field distribution, types of
magnets, forces, thermal stability, dissipation, and protection, we focus primarily
on solenoidal magnets. These issues are sufficiently basic and generic in concept
that solenoidal magnets are suitable examples.

In this 2nd Edition, each chapter begins with an introductory section, followed by
PROBLEMS &DISCUSSIONS. Although emphasis, particularly in CHAPTERS 4–9,
is on HTS, important issues may still be studied with LTS magnets. CHAPTER 1
has been expanded to include more materials on superconductivity; also, three
problems have been added, each dealing with a subject not directly addressed in
the remainder of this book but that the author hopes the reader is well prepared
to tackle—classical thermodynamics; elementary circuit analysis; and MRI spec-
troscopy. CHAPTER 2 has been expanded to include a more detailed discussion of
the Legendre polynomials required in CHAPTER 3. CHAPTER 3 introduces several
topics not covered in the 1st Edition. These, all based on analytical expressions
and chiefly for solenoidal magnets, include: 1) field analysis at the magnet center;
2) axial forces; 3) inductances; 4) maximum field; 5) load lines; 6) minimum-
volume; 7) superposition technique; and 8) magnet scaling. In CHAPTER 4 new
topics include “dry” (cryogen-free) magnets—cooled not by a liquid cryogen but
conduction-cooled by a cryocooler—and vapor-cooled current leads incorporating
HTS. Because magnetization and stability are not as pressing issues for HTS as
for LTS, both CHAPTERS 5 and 6 are down-sized. Similarly in CHAPTER 7, the
topic on mechanical disturbances is less emphasized in the new edition; instead
more emphasis is placed on AC losses. Because protection is more pressing for
HTS than for LTS, CHAPTER 8 has been expanded. The new CHAPTER 9 in-
cludes examples of solenoidal magnets, each accompanied by the study section,
QUESTIONS/ANSWERS (Q/A) that covers topics studied in CHAPTERS 2–8.

The main text includes physical and material property data relevant to partic-
ular PROBLEMS or DISCUSSIONS. Other data useful to magnet engineers are in
APPENDICES. A glossary describes acronyms and terms that are of general interest
in superconducting magnet technology and its areas of application but that are
discussed only briefly or not at all in the main text.
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PROBLEM 1.1: Thermodynamics of Type I superconductors

The specific heat per unit volume [J/m3 K] of Type I superconductors may be
approximated by [1.25]:

superconducting state Cs(T ) = aT 3 (1.4a)
normal state Cn(T ) = bT 3 + γT (1.4b)

where a, b, and γ are constants.

a) Show that the transition temperature in zero field is given by:

Tc =

√
3γ

a − b
(1.5)

Use the following steps: 1) obtain expressions of entropy, Sn(T ) and Ss(T )
from C(T )=T ∂S(T )/∂T ; and note that 2) Sn(Tc)−Ss(Tc)=0 at H =0.

b) Show that Hc◦ , the critical field at T =0 K, Hc◦ ≡Hc(0), is given by:

Hc◦ = Tc

√
γ

2μ◦
(1.6)

and that the critical magnetic field, Hc(T ), is a quadratic function of T :

Hc(T ) = Hc◦

[
1 −

(
T

Tc

)2
]

(1.7)

To derive Eq. 1.7, note that volumetric free energy at T in zero field in the
normal state, Gn(T ), and superconducting state, Gs(T ), are related by:

Gn(T ) − Gs(T ) = 1
2μ◦H

2
c (T ) (1.8)

From Eq. 1.8 and S(T )=−∂G(T )/∂T , Eq. 1.6 may be derived.

c) The difference between the internal energy densities, Un−Us, in zero field is
maximum at Tux. By noting that U(T )=

∫
C(T ) dT in zero field, show:

Tux =
Tc√
3

(1.9)

d) Suppose that a magnetic field is applied very slowly and adiabatically to the
superconductor initially at Ti, 0 < Ti < Tc. The field is applied to a level
just above the critical value; this transition to the normal state lowers the
superconductor’s temperature to Tf (< Ti). Derive an expression relating Tf

and Ti. Also, show the process in a thermodynamic phase diagram.

e) To the same superconductor initially at Ti, 0 < Ti < Tc, in zero field, a
magnetic field He is applied suddenly. If He exceeds a critical level, Hec, the
metal will be heated. Show that Hec, which depends on Ti, is given by:

Hec(Ti) = Hc(Ti)

√√√√√√√√
1 + 3

(
Ti

Tc

)2

1 −
(

Ti

Tc

)2 (1.10)
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Solution to PROBLEM 1.1

a) Because C(T )=TdS(T )/dT and S(T = 0)=0, we have:

S(T ) =
∫ T

0

C(T )
T

dT (S1.1)

Substituting Eqs. 1.4a and 1.4b into Eq. S1.1, we obtain:

Ss(T ) =
∫ T

0

Cs(T )
T

dT = 1
3aT 3 (S1.2a)

Sn(T ) =
∫ T

0

Cn(T )
T

dT = 1
3bT 3 + γT (S1.2b)

and therefore:
Sn(T ) − Ss(T ) = γT − 1

3 (a − b)T 3 (S1.3)

Because, as noted above, Sn(Tc)−Ss(Tc)=0 at H = 0, we have from Eq. S1.3:

γ = 1
3 (a − b)T 2

c (S1.4)

Solving Eq. S1.4 for Tc, we obtain:

Tc =

√
3γ

a − b
(1.5)

b) From Eq. 1.8 and S(T )=−∂G(T )/∂T , we have:

Sn(T ) − Ss(T ) = −μ◦Hc(T )
∂Hc(T )

∂T
(S1.5)

By combining Eqs. S1.3 and S1.4, rewritten as (a−b)/3=γ/T 2
c , we obtain:

Sn(T ) − Ss(T ) = γT

[
1 −

(
T

Tc

)2
]

(S1.6)

Equating Eqs. S1.5 and S1.6, and integrating each side with respect to T , we have:

− 1
2μ◦H

2
c (T ) = 1

2γT 2 − 1
4γT 2

c

(
T

Tc

)4

+ A (S1.7)

where A is a constant. With Hc(T =0)≡Hc◦ , we have: A=−μ◦H2
c◦/2.

At T =Tc, because Hc(Tc)=0, Eq. S1.7 becomes:

0 = 1
2γT 2

c − 1
4γT 2

c − 1
2μ◦H

2
c◦ (S1.8)

TRIVIA 1.2 Of the following early students of magnetism (born c. 640 B.C.–1777 A.D.)
below, who showed that garlic did not destroy magnetism?

i) Gilbert; ii) Oersted; iii) Peregrinus; iv) Thales.
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Solution to PROBLEM 1.1 (continuation)

Solving Eq. S1.8 for Hc◦ , we have:

Hc◦ = Tc

√
γ

2μ◦
(1.6)

From Eq. 1.6, we have:

γ =
2μ◦H2

c◦

T 2
c

(S1.9)

Combining Eq. S1.7 (with A=−μ◦H2
c◦/2) and Eq. S1.9, we have:

− 1
2μ◦H

2
c (T ) = μ◦H

2
c◦

(
T

Tc

)2

− 1
2μ◦H

2
c◦

(
T

Tc

)4

− 1
2μ◦H

2
c◦ (S1.10)

Equation S1.10 may be rewritten as:

H2
c (T ) = H2

c◦

[
1 − 2

(
T

Tc

)2

+
(

T

Tc

)4
]

= H2
c◦

[
1 −

(
T

Tc

)2
]2

(S1.11)

From Eq. S1.11, we have:

Hc(T ) = Hc◦

[
1 −

(
T

Tc

)2
]

(1.7)

Values of Hc◦: Equation 1.6 and Experimental
Using Eq. 1.6, we may predict Hc◦ for a Type I superconductor from its measured
values of γ and Tc. Table 1.5 gives values of μ◦Hc◦ , computed from Eq. 1.6 and
experimental, for the Type I superconductors given in Table 1.2. The table also
gives measured values of γ and Tc; density (�) and atomic weight (M) are also
given because γ usually is given in units of [J/g mole K2] [1.26]. Table 1.5 shows
that agreement between Eq. 1.6 and measured (Table 1.2) is good.

Table 1.5: Hc◦ : Equation 1.6 and Experimental (Table 1.2)

Type I �* M γ Tc μ◦Hc◦ [mT]

[g/cm3] [g/mole] [J/m3 K2] [K] Eq. 1.6 Table 1.2

Ti 4.53 47.88 316.8 0.39 5.6 10.0

Zr 6.49 91.22 199.2 0.55 6.1 4.7

Zn 7.14 65.38 69.8 0.85 5.6 5.4

Al 2.70 26.98 135.1 1.18 10.9 10.5

In 7.31 114.8 107.6 3.41 28.0 28.1

Sn 7.31 118.7 109.6 3.72 30.9 30.5

Hg 13.55 200.6 120.9 4.15 36.2 41.1

V 6.11 50.94 1111 5.38 142.7 140.3

Pb 11.35 207.2 163.2 7.19 72.8 80.3

* At 18–25 ◦C.
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Solution to PROBLEM 1.1 (continuation)

c) From dU(T )=C(T )dT in zero field, where U(T ) is free energy, we have:

U(T ) =
∫ T

0

C(T ) dT (S1.12)

Applying Eq. S1.12 to Eqs. 1.4a and 1.4b, we obtain:

Un(T ) =
∫ T

0

(bT 3 + γT )dT = 1
4bT 4 + 1

2γT 2 (S1.13a)

Us(T ) = 1
4aT 4 (S1.13b)

The difference between the two free energies is given by:

Un(T ) − Us(T ) = 1
4 (b − a)T 4 + 1

2γT 2

=
(

a − b

4

) [(
2γ

a − b

)
T 2 − T 4

]
(S1.14)

Differentiating Eq. S1.14 and equating it to zero at T = Tux, we obtain:

d(Un − Us)
dT

∣∣∣∣∣
Tux

=
(

a − b

4

) [(
4γ

a − b

)
Tux − 4T 3

ux

]
= 0 (S1.15)

Thus: (
4γ

a − b

)
Tux − 4T 3

ux = 0 (S1.16)

Solving S1.16 for Tux and using Eq. 1.5, we have:

Tux =
√

γ

a − b
=

Tc√
3

(1.9)

d) Since the process is adiabatic and reversible, Sn(T ) = Ss(T ) as the field is
applied slowly. Thus, from Eq. S1.2, we have:

Sn(Tf ) − Ss(Ti) = 1
3bT 3

f + γTf − 1
3a T 3

i (S1.17)

With Sn(Tf )−Ss(Ti)=0, we obtain an expression relating Tf and Ti:
1
3bT 3

f + γTf = 1
3aT 3

i (S1.18)

From Eq. 1.5, we have:

b = a − 3γ

T 2
c

(S1.19)

Combining Eqs. S1.18 and S1.19, we obtain:

1
3a(T 3

f − T 3
i ) = −γTf

[
1 −

(
Tf

Tc

)2
]

(S1.20)

Because Tf < Tc, the right-hand side of Eq. S1.20 is negative, and thus Tf < Ti.
Figure 1.7 shows schematic T -S plots for the superconducting (solid) and normal
(dashed) states. The Ti → Tf transition is indicated by the vertical solid line.
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Solution to PROBLEM 1.1 (continuation)

T

Tc

Ss(T ) Sn(T )

Ti

Tf

0 S
0 Ss(Ti)Sn(Tf ) Sn(Tc)

e)

d)

Fig. 1.7 Schematic T -S plots, superconducting (solid curve) and normal (dashed)
states. The solid vertical line corresponds to d); the dotted horizontal line to e).

e) To be heated the superconductor must first be driven to the normal state; a
magnetic energy of μ◦H2

c (Ti)/2 must be supplied by the external field. Because the
transition absorbs heat, Ti[Sn(Ti)− Ss(Ti)], Hec must also supply this absorption
energy. The transition is shown by the dotted horizontal line in Fig. 1.7. Thus:

1
2μ◦H2

ec(Ti) = 1
2μ◦H2

c (Ti) + Ti[Sn(Ti) − Ss(Ti)] (S1.21)

Combining Eq. S1.21 with Eq. S1.3, we have:
1
2μ◦H2

ec(Ti) = 1
2μ◦H2

c (Ti) + Ti

[
1
3 (b − a)T 3

i + γTi

]
(S1.22)

Inserting Eq. S1.9 into Eq. S1.22, and applying S1.19, we obtain:

1
2μ◦H

2
ec(Ti) = 1

2μ◦H
2
c (Ti) + 2μ◦H

2
c◦

(
Ti

Tc

)2
[
1 −

(
Ti

Tc

)2
]

(S1.23)

Combining Eqs. S1.23 and 1.7, we have:

H2
ec(Ti) = H2

c (Ti) + 4H2
c (Ti)

(
Ti

Tc

)2

1 −
(

Ti

Tc

)2 = H2
c (Ti)

1 + 3
(

Ti

Tc

)2

1 −
(

Ti

Tc

)2 (S1.24)

Hence:

Hec(Ti) = Hc(Ti)

√√√√√√√√
1 + 3

(
Ti

Tc

)2

1 −
(

Ti

Tc

)2 (1.10)

Note that Hec(Ti)≥Hc(Ti) and that Hec(Tc)=0 because Hc(Tc)=0.
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PROBLEM 1.2: A superconducting loop

CA

I(t) Is(t)

L Ls

M

R

Fig. 1.8 Circuit of a superconducting coil inductively coupled
to another loop that is connected to a current source.

This problem demonstrates that it is impossible to induce a “persistent” current
in a closed superconducting loop, coil, or disk by means of an external current
source. This may be obvious to some; it is proven here using a circuit model.
Figure 1.8 shows a superconducting loop coupled inductively to another loop that
is connected to a current source. The superconducting loop, with current Is(t), is
represented by an inductor of self inductance Ls. The loop with the current source
of I(t) is represented by an inductor of self inductance L and a resistor of resistance
R. The two circuits are coupled inductively through a mutual inductance M .

a) Write two circuit equations, relating voltage in each of the two circuits.

b) Solve the above voltage equations for Is(t) and show that it is not possible to
establish a current in a closed superconducting circuit with a current source
whose current I(t) is zero at the beginning and at the end, i.e., I(t = 0) =
I(t=∞)=0. The closed superconducting circuit may be a magnet with its
terminals joined by superconducting splices, a bulk disk or a stack of disks,
or a disk with a hole in the middle or a stack of such disks.

Answer to TRIVIA 1.1 iii). Neutron star: ∼109 T; earth: ∼10−4 T.
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Solution to PROBLEM 1.2

a) Two voltage equations are:

L
dI(t)
dt

+ M
dIs(t)

dt
+ RI = 0 (S2.1a)

M
dI(t)
dt

+ Ls
dIs(t)

dt
= 0 (S2.1b)

b) Solving for Is(t) from Eq. S2.1b, we obtain:

Is(t) = −M

Ls
I(t) + C (S2.2)

Because Is(t = 0) = 0, C = 0, and because I(t = 0) = I(t =∞) = 0, Is(t) = 0 only
when I(t) = 0. That is, a “virgin” closed superconducting circuit cannot remain
energized alone, with an external current source shut off.

This impossibility of current induction in a closed superconducting circuit poses
a practical problem in some applications, a few prominent examples of which are
“persistent-mode” superconducting magnets, bulk disks, and annuli. A persistent-
mode magnet must be energized by a current source through its terminals, as is
a “driven-mode” magnet; after the magnet is energized, its terminals are shunted
by the so-called “persistent current switch” (PCS), and the current source may
be shut off. Design issues for persistent-mode magnets are studied in CHAPTER 7
(DISCUSSION 7.8). A method to energize a magnet assembled from a stack of HTS
annuli—each annulus a circular disk with a center hole—is discussed in CHAPTER 9
(EXAMPLE 9.2D).

Answer to TRIVIA 1.2 i). The English physician and physicist William Gilbert
(1540–1603), a pioneer of experimentation, refuted many superstitions by direct
testing; his experiments on magnetism earned him the title “father of electricity.”
The Danish physicist Hans Christian Oersted (1777–1851) discovered in 1819 that
a compass needle aligned at right angles to a current-carrying conductor, thus
initiating the science of electromagnetism. The French crusader Petrus Peregrinus
(c. 1240–?), discoverer of magnetic poles, showed it is impossible to separate the
poles by breaking a magnet in two, and was first to describe in detail the pivoted
compass. The Greek philosopher Thales (640 B.C.–546 B.C.), considered the first to
study magnetism, is now known chiefly for having predicted an eclipse of the sun
that occurred in Asia Minor on May 28, 585 B.C.
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PROBLEM 1.3: Magnetic resonance imaging (MRI)

One of the most successful areas of commercial applications of superconducting
magnets is in medical diagnostic instrumentation, specifically, magnetic resonance
imaging (MRI). Here are a few basic questions for the magnet engineer.

a) In MRI why are nuclei of hydrogen-1, nitrogen-14, etc. detectable, while
nuclei of carbon-12, oxygen-16, etc. are not detectable?

b) If the frequency resolution is 10 Hz, what must be the minimum field homo-
geneity over a specified volume at the magnet center of a 1-T whole-body
MRI magnet? For a “whole-body” MRI magnet, with a room temperature
bore diameter of 80 cm, this uniform field region occupies typically a 25-cm
DSV (diameter spherical volume).

c) What role does the pulse gradient magnet in an MRI unit play?

d) For a 1-T unit, what is the typical dB/dz generated by the pulse magnet?

Solution to PROBLEM 1.3

a) Nuclei with odd numbers of protons or neutrons possess a net angular mo-
mentum. Exposed to a magnetic field, these nuclei will precess at a frequency
(Larmor) proportional to the field intensity—the Larmor frequency of hydrogen,
i.e., a proton, is 42.576 MHz in a field of 1 T. Table 1.6 lists selected elements and
their atomic details, identifying detectable ones.

b) Since 10 Hz is 0.23×10−6 of 42.576×106 Hz, the field must also be within
0.23×10−6 of 1 T, or about 0.002 gauss. Note that the earth field is ∼0.7 gauss.

c) By purposely introducing a spatial distribution in a magnetic field, one can
restrict resonance to selected subvolumes. This enables one to map (image) the
concentration of nuclei of a selected species.

d) The gradient amplitude is directly related to the spatial resolution of the
image. Higher gradient would allow proportionately finer resolution, but there
are limits to what the magnet and the patient can tolerate. Medical MRI has to
limit the gradient strength, or at least the gradient slew rate, to avoid nerve and
muscle stimulation. Medical MRI has a maximum gradient of 3–4 gauss/cm, and
a maximum slew rate around 12 (gauss/cm)/ms or 120 (T/m)/s.

Table 1.6: Atomic Details of Selected Elements

Atomic No. Element Atomic W Protons Neutrons Detectable?

1 Hydrogen 1 1* 0 yes

6 Carbon 12 6 6 no

13 6 7 yes

7 Nitrogen 14 7 7 yes

8 Oxygen 16 8 8 no

11 Sodium 23 11 12 yes

15 Phosphorous 31 15 16 yes

* Bold slanted numbers indicate detectability.
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Peter J. Lee, Editor, Engineering Superconductivity (John Wiley & Sons, Inc., New York,
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Terry P. Orlando and Kevin A. Delin, Foundations of Applied Superconductivity (Addison
-Wesley, 1991). Discussion of superconductivity basics for the engineer.
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Proceedings of the conferences listed below, not all-inclusive, contain the latest
information on superconductors and applications.

Applied Superconductivity Conference (ASC): Held in the U.S. in even-numbered years.
Three major topics: large-scale applications; materials; electronics.

Cryogenic Engineering Conference (CEC) and International Cryogenic Materials Con-
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“Why sir, there is a very good chance that you will soon be able to tax it.”

—Michael Faraday’s reputed reply to William Gladstone, the Prime
Minister, who, after being shown by Faraday a demonstration of
the first dynamo, asked “But, after all, what use is it?”



CHAPTER 2

ELECTROMAGNETIC FIELDS

2.1 Introduction

In this chapter we review electromagnetic theory by presenting Maxwell’s equa-
tions. This review is intended to refresh the reader’s understanding of electromag-
netic theory so as to allow the main subject matter of this book—superconducting
magnets—to be approached in a quantitative manner. After a presentation of
Maxwell’s equations and simple solutions that are not only tractable analytically
but also useful in most magnet applications, specific cases familiar to most magnet
engineers will be presented and studied.

2.2 Maxwell’s Equations

There are four basic Maxwell’s equations: 1) Gauss’ law; 2) Ampere’s law; 3)
Faraday’s law; and 4) the law of magnetic induction continuity. In addition to
these, we will make frequent use of the equations of charge conservation and other
constituent relationships. Each equation is briefly discussed below.

In this book SI units are used almost exclusively, particularly for electromagnetic
quantities, summarized in Table 2.1. There is a widespread practice in the magnet
community of interchanging magnetic field �H and magnetic induction (or magnetic
flux density) �B, expressing, for example, a magnetic field in the unit of tesla [T].
Although the practice is usually harmless and causes no confusion, care must be
exercised, for example, when computing energy from an M vs. H plot.

The magnetic permeability of free space, μ◦, is by definition 4π×10−7 H/m; the
electric permittivity of free space, ε◦(= 1/μ◦c2, where c is the speed of light), is
approximately 8.85×10−12 F/m. APPENDIX IA presents other physical constants
and selected conversion factors relating “common” non-SI units to SI units.

Current density is by far the dominant source of the �H fields associated with super-
conducting magnets. Thus, the relatively small time-varying �D field contribution
to the �H field is not included in our presentation of Maxwell’s equations.

Table 2.1: Electromagnetic Quantities

Symbol Name SI Unit

E Electric field volt/meter [V/m]

H Magnetic field ampere/meter [A/m]

B Magnetic induction tesla [T]

(or magnetic flux density)

J Current density ampere/meter2 [A/m2]

K Surface current density ampere/meter [A/m]

ρc Charge density coulomb/meter3 [C/m3]

σc Surface charge density coulomb/meter2 [C/m2]

ρe Electrical resistivity ohm meter [Ω m]

© Springer Science + Business Media, LLC 2009
DOI: 10.1007/b112047_2,
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2.2.1 Gauss’ Law

In integral form, Gauss’ law in free space is given by:∮
S
ε◦ �E · d �A =

∫
V
ρc dV (2.1)

The surface integral of the ε◦ �E field is equal to the total electric charge within the
volume V enclosed by the surface S. In Eq. 2.1, d �A = �ndS, where �n is the unit
vector normal (outward) to the surface element. In differential form, Eq. 2.1 is:

ε◦∇ · �E = ρc (2.2)

Boundary Condition: At a surface with charge density σc [C/m2], the discon-
tinuity in the normal component of the electric field, from Region 1 (�E1) to Region
2 ( �E2), is given by σc/ε◦:

�n12 · ( �E2 − �E1) =
σc

ε◦
(2.3)

Here, the unit vector �n12 points from Region 1 to Region 2.

2.2.2 Ampere’s Law

In integral form, Ampere’s law is given by:∮
C

�H · d�s =
∫
S

�Jf · d �A (2.4)

The equation states that the line integral of the �H field is equal to the total “free”
(subscript f) electric current, i.e., not including magnetization currents, within
the surface S enclosed by contour C. In differential form, Eq. 2.4 is:

∇× �H = �Jf (2.5)

Equations 2.4 and 2.5 omit ∂ �E/∂ t as a source of �H.

Boundary Condition: In the presence of a “free” surface current density �Kf

[A/m], there will be a discontinuity in the tangential component of the magnetic
field in passing through the surface from Region 1 ( �H1) to Region 2 ( �H2), given by:

�n12 × ( �H2 − �H1) = �Kf (2.6)

2.2.3 Faraday’s Law

In integral form, Faraday’s law is given by:∮
C

�E · d�s = − d

dt

∫
S

�B · d �A (2.7)

The equation states that the line integral of the �E field is equal to the negative of
the time rate of change of the total magnetic flux through surface S enclosed by
contour C. In differential form, Eq. 2.7 is:

∇× �E = −∂ �B

∂ t
(2.8)

Boundary Condition: The tangential component of the �E field is always con-
tinuous in passing through a surface from Region 1 ( �E1) to Region 2 ( �E2). Namely:

�n12 × ( �E2 − �E1) = 0 (2.9)
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2.2.4 Magnetic Induction Continuity

In integral form, magnetic induction continuity is given by:∮
S

�B · d �A = 0 (2.10)

Equation 2.10 states that the surface integral of the �B field over the surface S is
zero; i.e., there are no point sources of �B field. In differential form, Eq. 2.10 is:

∇ · �B = 0 (2.11)

Boundary Condition: The normal component of the �B field is always contin-
uous in passing through a surface from Region 1 ( �B1) to Region 2 ( �B2). Namely:

�n12 · ( �B2 − �B1) = 0 (2.12)

As discussed below in 2.2.6, in a magnetic medium �B is the sum of the magnetic
field �H and magnetization �M . It means that continuity of the normal component
of �B through two different magnetic media is preserved despite any difference in
magnetization from one medium to the other.

2.2.5 Charge Conservation

The “free” current density �Jf is related to the time rate of change of “free” (non-
dielectric) electric charge density, ρcf . In integral form, the relation is given by:∮

S
�Jf · d �A = − d

dt

∫
V
ρcf dV (2.13)

In differential form, Eq. 2.13 is:

∇ · �Jf = −∂ρcf

∂ t
(2.14)

2.2.6 Magnetization and Constituent Relations

Magnetic induction �B, magnetic field �H, and magnetization �M are related by:

�B = μ◦( �H + �M) (2.15)

In homogeneous, isotropic, linear media, which are generally assumed in this book,
�B = μ �H = μ◦(1+χ) �H, where permeability, μ, and susceptibility, χ, we generally
assume to be field-independent. χ can be as high as 106 for ferromagnets such as
“high-μ” shielding materials. For typical paramagnets, such as oxygen, χ is 10−6.
For diamagnets (monatomic gases such as helium, neon, and most liquids, e.g.,
water), χ is negative; for Type I superconductors, which are perfect diamagnets,
χ=−1; i.e., μ=0.

In conductive materials such as metals, the presence of an �E field induces a current
density �J in the metal. The constituent relation between �J and �E is:

�J =
�E

ρe
(2.16)

where ρe is the metal’s electrical resistivity [Ω m].
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2.3 Quasi-Static Case

The electric field �E and magnetic induction �B are coupled through Faraday’s law.
For free space, the following complete set of field equations must be solved:

∇ · ε◦ �E = ρc (2.17a)

∇× �E = −∂ �B

∂ t
(2.8)

∇× �H = �Jf + ε◦
∂ �E

∂ t
(2.17b)

∇ · �B = 0 (2.11)

∇ · �Jf = −∂ρc

∂ t
(2.17c)

The problem of solving the above equations for �E and �H can be greatly simplified
if �E and �H can be decoupled. Such a “quasi-static” analysis suffices for many
important practical applications. Simplest of all are those cases in which Eqs. 2.8,
2.11, and 2.17a–2.17c may be solved through static equations. Thus, in the 0th-
order approximation, we have:

∇ · ε◦ �E0 = ρc0 (2.18a)

∇× �E0 = 0 (2.18b)

∇× �H0 = �Jf0 (2.18c)

∇ · �B0 = 0 (2.18d)

∇ · �Jf0 = 0 (2.18e)

Then the 0th-order E-field, �E0, for example, can be solved independently of the
H-field. Next in order of complexity are cases in which the induced fields are
negligible compared with the original time-varying fields. For the quasi-static, 1st

order approximation, we have:

∇ · ε◦ �E1 = ρc1 (2.19a)

∇× �E1 = −∂ �B0

∂ t
(2.19b)

∇× �H1 = �Jf1 + ε◦
∂ �E0

∂ t
(2.19c)

∇ · �B1 = 0 (2.19d)

∇ · �Jf1 = −∂ρc0

∂ t
(2.19e)

Note that �E1 is still independent of �H1. In general, �Jf supplied by a source is
given by �Jf0 only, and in a metal, �Jf1 = �E1/ρe.

The approximation process can continue indefinitely, but for the “low-frequency”
cases of interest discussed in the PROBLEMS &DISCUSSIONS of this chapter, we
need to solve for only the 0th- and 1st-order fields.
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2.4 Poynting Vector

Poynting’s theorem may be expressed as:

−∇ · �S = p +
dw

dt
(2.20)

where �S [W/m2] is the Poynting vector given by �S = �E× �H, p is the power dissi-
pation density, and w is the energy density stored magnetically and electrically.

Equation 2.20 states that the negative of the divergence of the S-vector is equal
to the sum of p (the difference between dissipation and generation densities) and
dw/dt, the rate of change of energy storage density. If ∇ · �S = 0, then power is
balanced within the system: no power in or out; if ∇· �S < 0, then power flows into
the system to sustain dissipation or to store energy.

Sinusoidal Case

When dealing with a sinusoidally time-varying electric field �E of complex am-
plitude �E◦, i.e., �E = �E◦ejwt, and therefore �J = ( �E◦/ρe)ejwt, the time-averaged
dissipation power density <p> is expressed by:

<p>= 1
2

�E · �J∗ =
1

2ρe
|E|2 =

ρe

2
|J |2 (2.21)

where �J∗ is the complex conjugate of �J .

In the sinusoidal case, the S-vector is given by:

�S = 1
2

(
�E × �H∗

)
(2.22a)

−
∮
S

�S · d �A =<P > +j2ω(<Em > − <Ee >) (2.22b)

where < P > [W], < Em > [J], and < Ee > [J] are, respectively, the total power
dissipated, magnetic energy, and electric energy, each time-averaged and computed
over the system volume, V.

<P > =
1

2ρe

∫
V
|E|2 dV (2.23a)

<Em > =
μ◦
4

∫
V
|H|2 dV (2.23b)

<Ee > =
ε◦
4

∫
V
|E|2 dV (2.23c)

The complex Poynting vector, �S, expanded up to the 1st-order fields, is given by:

�S = 1
2

(
�E0 × �H∗

0 + �E0 × �H∗
1 + �E1 × �H∗

0

)
(2.24)

TRIVIA 2.1 Of the contemporary astronomers (born 1629–1656) below, who
measured the speed of light to within 25% of the accepted modern value?

i) Flamsteed; ii) Halley; iii) Huygens; iv) Roemer.



30 CHAPTER 2

2.5 Field Solutions from the Scalar Potentials

Any static electric field, because its curl is zero (∇× �E = 0), is a conservative field
and thus is the gradient of a scalar potential φ:

�E = −gradφ = −∇φ (2.25)

Thus, ∇ · �E may be given by:

∇ · �E = −∇ · ∇φ = −∇2φ (2.26)

In the absence of charge density (ρc = 0), Eq. 2.2 reduces to:

∇ · �E = 0 (2.27)

Combining Eqs. 2.26 and 2.27, we obtain:

∇2φ = 0 (2.28)

Equation 2.28, known as Laplace’s equation, expresses scalar potentials from which
physically realizable �E fields can be derived.

Similarly, in the absence of free current and under the DC condition, any magnetic
field �H, because ∇× �H = 0, is derivable from scalar potentials that satisfy the
Laplace’s equation; i.e., �H =−∇φ. Besides electromagnetic fields, there are other
well-known cases in engineering where Eq. 2.28 is applicable for time-independent
variables: temperature (T ) in a source-free, isotropic conductive medium; volume
expansion; the sum of linear strains in the x-, y-, and z-axes in a force- and
moment-free, isotropic elastic medium.

Selected solutions of Laplace’s equation in two-dimensional cylindrical coordinates
and three-dimensional spherical coordinates are presented below.

2.5.1 Two-Dimensional Cylindrical Coordinates

For a potential in two-dimensional cylindrical (r, θ) coordinates, ∇2φ is given by:

∇2φ =
1
r

∂

∂ r

(
r
∂φ

∂r

)
+

1
r2

∂ 2φ

∂θ2
= 0 (2.29)

The standard technique to solve Eq. 2.29 is to express φ as the product of two
functions, each a function of only one of the two coordinates:

φ = R(r) Θ(θ) (2.30)

The solutions to Eq. 2.29 have the following general forms:

for n = 0 φ0 = (A1 ln r + A2) (C1θ + C2) (2.31a)

for n>0 φn = (A1r
n + A2r

−n)(C1 sinnθ + C2 cos nθ) (2.31b)

where A1, A2, C1, and C2 are constants.
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Special Cases

n = 0: The simplest form of field derivable from φ under this condition is one
whose spatial dependence is 1/r. Examples are the electric field due to a line charge
(λ=2πε◦) and the magnetic field associated with a current filament (I =2π). Thus
with a potential [φ0]E =ln r, we have: �E =(1/r)�ır; with a potential [φ0]H =θ, we
have: �H =(1/r)�ıθ. Note that each field decays as 1/r from its source.

n = 1: Both φ1 = sin θ/r and φ1′ = cos θ/r are potentials associated with two-
dimensional electric or magnetic dipoles. Note that each form has a singularity
at the origin (r = 0); they are usually associated with dipole fields that do not
include the origin. The choice of sin θ or cos θ depends on field orientation in the
coordinate system. In addition, the potentials φ′

1 = r sinφ and φ′
1′ = r cos φ are

associated with uniform vector fields. Examples of 2-D dipole fields are studied in
the PROBLEMS of CHAPTERS 2 and 3.

n = 2: The potentials φ2 = cos 2θ/r2 and φ′
2 = r2 cos 2θ are associated with 2-D

quadrupole fields. The potential φ2 =cos 2θ/r2, because of the singularity at the
origin, is valid only for space that excludes the origin; φ′

2 =r2 cos 2θ, for space that
excludes infinity. An ideal quadrupole magnet is studied in CHAPTER 3.

2.5.2 Spherical Coordinates

For a potential in spherical coordinates (r, θ, ϕ):

div gradφ = ∇2φ =
1
r2

∂

∂r

(
r2 ∂φ

∂r

)
+

1
r2 sin θ

∂

∂θ

(
sin θ

∂φ

∂θ

)

+
1

r2 sin2 θ

∂ 2φ

∂ϕ2
(2.32)

The solutions for ∇2φ also can be expressed as the product of functions, each
involving only one of the three coordinates:

φ = R(r) Θ(θ) Φ(ϕ) (2.33a)

Functions R(r), Θ(θ), and Φ(ϕ) have the following solutions:

R(r) = A1r
n + A2r

−(n+1) (2.33b)

Θ(θ) = CPm
n (cos θ) (m ≤ n) (2.33c)

Φ(ϕ) = D1 sinmϕ + D2 cos mϕ (2.33d)

A1, A2, C, D1, and D2 are constants. P 0
n(cos θ), or simply Pn(cos θ), known as

Legendre Functions, are useful for designing a spatially uniform solenoid magnet,
which in the design phase may be assumed symmetric about the z-axis (θ = 0).
Pm

n (cos θ), known as Associated Legendre Functions, are useful for minimizing
“error” fields of a real solenoid. A magnetic field expression derived from Eq. 2.33
is discussed in more detail in CHAPTER 3. Formulas for Pn(cos θ) for n=0–8 and
Pm

n (cos θ) for n=1–4 (0<m≤n) are given in Table 2.2. Table 2.3 presents Pm
n (0)

for combinations of selected values of n and m. Table 2.4 presents solutions of
Eq. 2.33 in Cartesian coordinates; these expressions are of practical importance in
the design and analysis of uniform-field electromagnetic and ferromagnetic devices.
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Special Cases

n = m = 0: This case gives rise to the the simplest solution, φ0 ∝ 1/r. A well-
known solution is the electric field, �E =1/r2�ır valid for r>0, that emanates from
a point charge of magnitude 4πε◦.

n = 1, m = 0: There are two solutions, φ1 ∝ cos θ/r2 and φ′
1 ∝ r cos θ. φ1 results

in a dipole field outside of a sphere the surface of which is distributed with a
source that generates this dipole field, while φ′

1 results in a uniform field within
the sphere. The dipole field of a magnetic moment is also derivable from φ1.

2.5.3 Differential Operators in Orthogonal Coordinates

The four vector differential operators—grad (∇), div (∇·), curl (∇×), div grad
(∇2)—in three orthogonal sets of coordinates are given below.

Cartesian

The three orthogonal axes are: x, y, z.

gradU = ∇U =
∂U

∂x
�ıx +

∂U

∂y
�ıy +

∂U

∂z
�ız (2.34a)

div �A = ∇ · �A =
∂Ax

∂x
+

∂Ay

∂y
+

∂Az

∂z
(2.34b)

curl �A = ∇× �A =
(

∂Az

∂y
− ∂Ay

∂z

)
�ıx +

(
∂Ax

∂z
− ∂Az

∂x

)
�ıy

+
(

∂Ay

∂x
− ∂Ax

∂y

)
�ız (2.34c)

div gradU = ∇2U =
∂ 2U

∂x2
+

∂ 2U

∂y2
+

∂ 2U

∂z2
(2.34d)

Cylindrical

The three orthogonal axes are: r, θ, z.

gradU = ∇U =
∂U

∂r
�ır +

1
r

∂U

∂θ
�ıθ +

∂U

∂z
�ız (2.35a)

div �A = ∇ · �A =
1
r

∂ (rAr)
∂r

+
1
r

∂Aθ

∂θ
+

∂Az

∂z
(2.35b)

curl �A = ∇× �A =
(

1
r

∂Az

∂θ
− ∂Aθ

∂z

)
�ır +

(
∂Ar

∂z
− ∂Az

∂r

)
�ıθ

+
[
1
r

∂ (rAθ)
∂r

− 1
r

∂Ar

∂θ

]
�ız (2.35c)

div gradU = ∇2U =
1
r

∂

∂ r

(
r
∂U

∂r

)
+

1
r2

∂ 2U

∂θ2
+

∂ 2U

∂z2
(2.29)
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Spherical

The orthogonal axes are: r, θ, and ϕ.

gradU = ∇U =
∂U

∂r
�ır +

1
r

∂U

∂θ
�ıθ +

1
r sin θ

∂U

∂ϕ
�ıφ (2.36a)

div �A = ∇ · �A =
1
r2

∂ (r2Ar)
∂r

+
1

r sin θ

∂ (Aθ sin θ)
∂θ

+
1

r sin θ

∂Aϕ

∂ϕ
(2.36b)

curl �A = ∇× �A =
[

1
r sin θ

∂ (Aϕ sin θ)
∂θ

− 1
r sin θ

∂Aθ

∂ϕ

]
�ır

+
[

1
r sin θ

∂Ar

∂ϕ
− 1

r

∂ (rAϕ)
∂r

]
�ıθ

+
[
1
r

∂ (rAθ)
∂r

− 1
r

∂Ar

∂θ

]
�ıφ (2.36c)

div gradU = ∇2U =
1
r2

∂

∂r

(
r2 ∂U

∂r

)
+

1
r2 sin θ

∂

∂θ

(
sin θ

∂U

∂θ

)

+
1

r2 sin2 θ

∂ 2U

∂ϕ2
(2.32)

Adrien Marie Legendre (1752–1833)

—Passage from Dirk J. Struik’s A Concise History of Mathematics*

In his history of mathematics of the Nineteenth Century Felix Klein has invited
comparison between Gauss and the twenty-five year older French mathematician
Adrien Marie Legendre. It is perhaps not entirely fair to compare Gauss with any
mathematician except the very greatest; but this particular comparison shows how
Gauss’ ideas were “in the air,” since Legendre in his own independent way worked
on most subjects which occupied Gauss . . .

Like Gauss he did fundamental work on number theory where he gave a formula-
tion of the law of quadratic reciprocity. He also did important work on geodesy and
theoretical astronomy, was as assiduous a computer of tables as Gauss, formulated
in 1806 the method of least squares, and studied the attraction of ellipsoids—even
those which are not surfaces of revolution. He introduced the “Legendre” functions.
He also shared Gauss’ interest in elliptic and Eulerian integrals as well as in the
foundations and methods of Euclidean geometry.

. . .His comprehensive textbooks were for a long time authoritative, especially his
“Exercises du calcul intégral” (1811–19) and his “Traité des fonctions elliptiques
et des intégrales eulériennes” (1827–32), still a standard work . . . In his “Elements
de géométrie” (1794) he broke with the Platonic ideals of Euclid and presented a
textbook of elementary geometry based on the requirements of modern education.

* Dover Publications, Inc., New York, 1948. For many years until his retirement in 1960,
Dirk J. Struik (1894–2000) taught mathematics at M.I.T.
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2.5.4 Legendre Functions

For m=0 the Pm
n (cos θ) polynomials (Eq. 2.33c) are known as Legendre Functions

of order n; i.e., P 0
n(cos θ)≡Pn(cos θ)≡Pn(u), where u=cos θ. For 1≤m≤n, the

polynomials are known as Associated Legendre Functions. Pm
n (cos θ) ≡ Pm

n (u)
satisfies the following differential equation for v:

d

du

[
(1 − u2)

dv

du

]
+

[
n(n + 1) − m2

1 − u2

]
v = 0 (2.37)

As stated earlier, Pn(u), i.e., m=0, is of particular use in the solution of a magnetic
field with rotational symmetry such as that in an ideal solenoid; Pm

n (u) is useful
for field analysis of a real solenoid that, because of imperfections, lacks rotational
symmetry. Pn(u) and Pm

n (u) are given by:

Pn(u) =
(

1
2nn!

)
dn(u2 − 1)n

dun
(2.38a)

Pm
n (u) = (1 − u2)m/2 dmPn(u)

dum
(2.38b)

=
[
(1 − u2)m/2

2nn!

]
dm+n(u2 − 1)n

dum+n
(2.38c)

Some useful recurrence formulas for Legendre functions, Pn(u), and Associated
Legendre functions, Pm

n (u), are:

(n+1)Pn+1(u)−(2n+1)uPn(u)+nPn−1(u)=0 (2.39a)

(n+1−m)Pm
n+1(u)−(2n+1)uPm

n (u)+(n+m)Pm
n−1(u)=0 (2.39b)

Pm+2
n (u)− 2(m+1)u√

(1−u2)
Pm+1

n (u)+(n−m)(n+m−1)Pm
n (u)=0 (2.39c)

Table 2.2 lists Legendre functions, Pn(u), for n up to 8; and Associated Legendre
functions, Pm

n (u), for m (1 ≤ m ≤ n) up to 4. Table 2.3 presents Pm
n (0) for

combinations of n of 2, 4, 6, 8, 10 and m of 0, 2, 4, 6, 8, and 10. Table 2.4 presents
solutions of Eq. 2.32 in Cartesian coordinates.

Answer to TRIVIA 2.1 iv). The Danish astronomer Olaus Roemer (1644–1710)
used two reference objects, Jupiter and earth, to clock light at 2.27×108 m/s,
which is 76% of the modern accepted value: 2.99792458×108 m/s.
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Table 2.2: Legendre and Associated Legendre Functions

Legendre Functions (m = 0) [ Pn(0) = 0 for n odd]

n Pn(cos θ)≡Pn(u) Multiple-Angle Form

0 1 1

1 u cos θ

2 1
2
(3u2−1) 1

4
(3 cos 2θ+1)

3 1
2
(5u3−3u) 1

8
(5 cos 3θ+3 cos θ)

4 1
8
(35u4−30u2+3) 1

64
(35 cos 4θ+20 cos 2θ+9)

5 1
8
(63u5−70u3+15u) 1

128
(63 cos 5θ+35 cos 3θ+30 cos θ)

6 1
16

(231u6−315u4+105u2−5) 1
512

(231 cos 6θ+126 cos 4θ+105 cos 2θ+50)

7 1
16

(429u7−693u5+315u3 1
1024

(429 cos 7θ+231 cos 5θ+189 cos 3θ

−35u) +175 cos θ)

8 1
128

(6435u8−12012u6+6930u4 1
16384

(6435 cos 8θ+3432 cos 6θ+2772 cos 4θ

−1260u2+35) +2520 cos 2θ+1225)

Associated Legendre Functions (1 ≤ m ≤ n) [ P m
n (1) = 0 ]

m, n P m
n (cos θ)≡P m

n (u) Multiple-Angle Form

1, 1 (1−u2)1/2 sin θ

2 3u(1−u2)1/2 3
2

sin 2θ

3 3
2
(1−u2)1/2(5u2−1) 3

8
(sin θ+5 sin 3θ)

4 5
2
(1−u2)1/2(7u3−3u) 5

16
(2 sin 2θ+7 sin 4θ)

2, 2 3(1−u2) 3
2
(1−cos 2θ)

3 15(1−u2)u 15
4

(cos θ−cos 3θ)

4 15
2

(1−u2)(7u2−1) 15
16

(3+4 cos 2θ−7 cos 4θ)

3, 3 15(1−u2)3/2 15
4

(3 sin θ−sin 3θ)

4 105(1−u2)3/2u 105
8

(2 sin 2θ−sin 4θ)

4, 4 105(1−u2)2 105
8

(3 − 4 cos 2θ+cos 4θ)

Table 2.3: Values of P m
n (0) for m of 0, 2, 4, 6, 8, 10

m P m
n (0)

0 P2(0)=− 1
2
; P4(0)=

3
8
; P6(0)=− 5

16
; P8(0)=

35
128

; P10(0)=− 63
256

2 P 2
2 (0)=3; P 2

4 (0)=− 15
2

; P 2
6 (0)= 105

8
; P 2

8 (0)=− 315
16

; P 2
10(0)=

3465
128

4 P 4
4 (0)=3·5·7=105; P 4

6 (0)=− 945
2

; P 4
8 (0)= 10395

8
; P 4

10(0)=− 45045
16

6 P 6
6 (0)=3·5·7·9·11=10395; P 6

8 (0)=− 135135
2

; P 6
10(0)=

2027025
8

8 P 8
8 (0)=3·5·7·9·11·13·15=2027025; P 8

10(0)=− 3·5·7·9·11·13·15·17
2

=− 34459425
2

10 P 10
10 (0)=3·5·7·9·11·13·15·17·19=654729075

TRIVIA 2.2 Identify the location for which each of the elements below is named.

i) Copper; i) Lutetium; ii) Magnesium; iv) Yttrium.
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Table 2.4: Solutions of Equation 2.32 in Cartesian Coordinates

Legendre Functions (m = 0)

n rnPn(u)

0 1

1 z

2 z2− 1
2
(x2+y2)

3 z3− 3
2
(x2+y2)z

4 z4−3(x2+y2)[z2− 1
8
(x2+y2)]

5 z5−5(x2+y2)[z2− 3
8
(x2+y2)]z

6 z6− 5
2
(x2+y2)[3z4− 9

4
z2(x2+y2)+ 1

8
(x2+y2)2]

7 z7− 7
16

(x2+y2)[24z4−30z2(x2+y2)+5(x2+y2)2]z

8 z8− 7
128

(x2+y2)[256z6−480z4(x2+y2)+160z2(x2+y2)2−5(x2+y2)3]

Associated Legendre Functions (1 ≤ m ≤ n)

m, n rnP m
n (u) cos(mϕ) rnP m

n (u) sin(mϕ)

1, 1 x y

2 3zx 3zy

3 6x[z2− 1
4
(x2+y2)] 6y[z2− 1

4
(x2+y2)]

4 10zx[z2− 3
4
(x2+y2)] 10zy[z2− 3

4
(x2+y2)]

2, 2 3(x2−y2) 3(2xy)

3 15z(x2−y2) 15z(2xy)

4 45(x2−y2)[z2− 1
6
(x2+y2)] 45(2xy)[z2− 1

6
(x2+y2)]

3, 3 15x(x2−3y2) 15y(3x2−y2)

4 105zx(x2−3y2) 105zy(3x2−y2)

4, 4 105(x4−6x2y2+y4) 210(2xy)(x2−y2)

“It was absolutely marvelous working for Pauli. You could ask him anything.
There was no worry that he would think a particular question was stupid,
since he thought all questions were stupid.” —Victor F. Weisskopf
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PROBLEM 2.1: Magnetized sphere in a uniform field

This problem deals with a magnetic sphere exposed to a uniform external magnetic
field. Note that there is no net force acting on the sphere (because the background
field is uniform). The field expression inside the sphere may be used to estimate
the force on a ferromagnetic object placed in the fringing field generated by a
magnet nearby. This force on an iron object due to the fringing field of a magnet
is the subject of DISCUSSION 3.12 (p. 200) in CHAPTER 3.

Figure 2.1 shows a magnetic sphere of radius R and permeability μ in a uniform
external magnetic field given by:

�H∞ = H0(− cos θ�ır + sin θ�ıθ) (2.40)

a) Show that expressions for the magnetic inductions outside ( �B1) and inside
( �B2) the sphere are given by:

�B1 = μ◦H0(− cos θ�ır + sin θ�ıθ)

+ μ◦

(
μ◦ − μ

2μ◦ + μ

)
H0

(
R

r

)3

(2 cos θ�ır + sin θ�ıθ) (2.41a)

�B2 =
3μ◦μH0

2μ◦ + μ
(− cos θ�ır + sin θ�ıθ) (2.41b)

Considering the following three limiting cases, μ/μ◦ = 0, μ/μ◦ = 1, and
μ/μ◦ =∞, confirm that the resulting expressions for the field in the sphere
are physically plausible.

b) Picture, in your mind, �B distributions that would correspond to μ = 0.1μ◦
and μ=100μ◦. These distributions are shown in Fig. 2.2.

x

r

θ

z H0
R

μ
μ◦

Fig. 2.1 Magnetized sphere in a uniform magnetic field.
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Solution to PROBLEM 2.1

a) This problem is most easily solved using scalar potentials, as discussed in the
introductory section of this chapter. Namely, the magnetic potential φ is a scalar
field such that:

�H = −∇φ (S1.1)

In linear, isotropic media, magnetic field and magnetic induction are related by:

�B = μ �H (S1.2)

The problem is divided into two regions, Region 1 (r≥R) and Region 2 (r≤R).
Based on solutions of Eq. 2.33 and because H∞ = H0 at r =∞ and H �=±∞ at
r=0, the appropriate potential for each region is:

φ1 = H0r cos θ +
A

r2
cos θ (r ≥ R) (S1.3a)

φ2 = Cr cos θ (r ≤ R) (S1.3b)

Note that φ1→H0r cos θ for r→∞ (Eq. 2.40), and φ2 remains finite at r=0.

Using the ∇ operator in spherical coordinates (Eq. 2.36a), we have �H1 and �H2:

�H1 = − ∂

∂r

(
H0r cos θ +

A

r2
cos θ

)
�ır −

1
r

∂

∂θ

(
H0r cos θ +

A

r2
cos θ

)
�ıθ

= H0(− cos θ�ır + sin θ�ıθ) +
A

r3
(2 cos θ�ır + sin θ�ıθ) (S1.4a)

�H2 = − ∂

∂r
(Cr cos θ)�ır −

1
r

∂

∂θ
(Cr cos θ)�ıθ

= C(− cos θ�ır + sin θ�ıθ) (S1.4b)

Boundary Conditions

1) At r = R, the tangential component (�ıθ) of �H is continuous, since there is no
surface current. This is equivalent to equating the potentials at r=R (φ1 =φ2):

H0 +
A

R3
= C (S1.5)

2) At r=R, the normal component (�ır) of �B is continuous:

μ◦

(
−H0 + 2

A

R3

)
= −μC (S1.6)

From Eqs. S1.5 and S1.6, we can solve for the constants C and A:

C =
3H0μ◦
2μ◦ + μ

(S1.7)

A = (C − H0)R3 = H0

(
μ◦ − μ

2μ◦ + μ

)
R3 (S1.8)
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Solution to PROBLEM 2.1 (continuation)

�B1 and �B2 are thus:

�B1 = μ◦H0(− cos θ�ır + sin θ�ıθ)

+ μ◦

(
μ◦ − μ

2μ◦ + μ

)
H0

(
R

r

)3

(2 cos θ�ır + sin θ�ıθ) (2.41a)

�B2 =
3μ◦μH0

2μ◦ + μ
(− cos θ�ır + sin θ�ıθ) (2.41b)

Now, let us consider the three special cases of μ/μ◦.

Case 1: μ/μ◦=0
With μ=0 inserted into Eqs. 2.41a and 2.41b, we obtain:

�B1 = μ◦H0(− cos θ�ır + sin θ�ıθ) +
μ◦H0

2

(
R

r

)3

(2 cos θ�ır + sin θ�ıθ) (S1.9a)

�B2 = 0 (S1.9b)

The sphere is like a Type I superconductor; no magnetic flux density is allowed
inside the sphere—the Meissner effect. The profile is identical to the schematic
profile corresponding to point C for superconductor (Sc) shown in Fig. 1.1b. As
will be discussed in PROBLEM2.2, a discontinuity in the θ component of the �H
fields at r = R requires a surface current (confined within a thin layer). Because
this current, once set up, must flow persistently, it implies that the sphere has zero
resistivity to the flow of these currents. As discussed in CHAPTER 1, a material
that exhibits the Meissner effect must at the same time be a perfect conductor:
such a material is automatically a superconductor.

Case 2: μ/μ◦=1
The problem reduces to the trivial case, equivalent to the absence of the sphere.
Note that with μ=μ◦ into Eqs. 2.41a and 2.41b, the equations become identical.

Case 3: μ/μ◦=∞
This case is that of a perfectly ferromagnetic material; soft iron comes close. The
magnetic field is drawn into the sphere. With μ=∞ in Eqs. 2.41a and 2.41b:

�B1 = μ◦H0(− cos θ�ır + sin θ�ıθ) − μ◦H0

(
R

r

)3

(2 cos θ�ır + sin θ�ıθ) (S1.10a)

�B2 = 3μ◦H0(− cos θ�ır + sin θ�ıθ) (S1.10b)

The important point to note is that the �B field within the sphere of μ/μ◦ = ∞
is three times the applied �B field. Note that if the sphere’s magnetization is
saturated, μ no longer is ∞. The effects of field saturation, present in all magnetic
materials, will be discussed in PROBLEM 2.3.
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Solution to PROBLEM 2.1 (continuation)

b) Figure 2.2 shows field lines for two spheres of μ/μ◦=0.1 and μ/μ◦=100.

μ/μ◦ =0.1

μ/μ◦ =100

Fig. 2.2 Field lines inside and near spheres of μ/μ◦ =0.1 (top) and μ/μ◦ =100 (bottom).

For the top sphere, the line spacing at r = ∞ is ∼2.6(=
√

2.1/0.3) times denser than
that inside the sphere, while for the bottom sphere, the inside line spacing is ∼1.7(=√

300/101) times that at r =∞. These ratios are valid in both the plane of the paper
and that perpendicular to it. A cylinder of μ/μ◦ =100 would have a ratio of 200/101, but
only in the plane of the paper. Note that the field lines entering and leaving the sphere
are nearly perpendicular to the surface for μ/μ◦ =100—perpendicular for μ/μ◦ =∞.
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PROBLEM 2.2: Type I superconducting rod in a uniform field

This problem deals with a Type I superconductor (Meissner effect). The field
solution is interpreted in terms of the London theory of superconductivity.

Figure 2.3 shows an infinitely long lead (Pb) rod of circular cross section (radius
R) subjected to a uniform external magnetic field perpendicular to its axis.

�H∞ = H0(− cos θ�ır + sin θ�ıθ) (2.40)

where μ◦H0 = 0.08 T. Initially the rod is in the normal state. The field thus is
everywhere the same, including inside the rod. The rod is then gradually cooled
until it becomes superconducting.

a) Show that an expression for the field outside the superconducting rod, �H1,
after transient effects of the field change have subsided, is given by:

�H1 = H0(− cos θ�ır + sin θ�ıθ) + H0

(
R

r

)2

(cos θ�ır + sin θ�ıθ) (2.42)

(Note that Eq. 2.41a corresponds to �B1 for a magnetic sphere.)

b) Show that an expression for the surface current (free) density, �Kf [A/m],
flowing within a penetration depth λ�R, is given by:

�Kf = 2H0 sin θ�ız (2.43)

c) Convert the magnitude of the surface current density to that of current den-
sity, Jf [A/m2], and confirm that its value is consistent with that for lead
derivable from London’s theory of superconductivity.

y

r

θ

x H0
R

Fig. 2.3 Infinitely long, circular cross section superconducting
rod in a uniform magnetic field.
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Solution to PROBLEM 2.2

a) The problem is divided into two regions, Region 1 (r≥R) and Region 2 (r≤
R). Because we are dealing with a Type I superconductor, �B2 =0 (φ2 =0) when
the rod is superconducting. The field in Region 1 is derivable from a potential:

φ1 = H0r cos θ +
A

r
cos θ (S2.1)

Note that φ1→H0r cos θ for r→∞, as required by Eq. 2.40.

Using the ∇ operator in cylindrical coordinates (Eq. 2.35a), we can derive �H1:

�H1 = − ∂

∂r

(
H0r cos θ +

A

r
cos θ

)
�ır −

1
r

∂

∂θ

(
H0r cos θ +

A

r
cos θ

)
�ıθ (S2.2)

= −
(
H0 cos θ − A

r2
cos θ

)
�ır −

(
−H0 sin θ − A

r2
sin θ

)
�ıθ (S2.3)

Rearranging Eq. S2.3, we have:

�H1 = H0(− cos θ�ır + sin θ�ıθ) +
A

r2
(cos θ�ır + sin θ�ıθ) (S2.4)

The continuity of the normal component of B requires that the coefficient of �ır in
Eq. S2.3 be zero at r=R:

−H0 +
A

R2
= 0 (S2.5)

Solving Eq. S2.5 for A, we obtain:

A = R2H0 (S2.6)

The field outside the superconducting rod (Region 1) is thus given by:

�H1 = H0(− cos θ�ır + sin θ�ıθ) + H0

(
R

r

)2

(cos θ�ır + sin θ�ıθ) (2.42)

Note that at r = R, θ = 90◦, | �H1|= 2H0; the field amplitude is twice the far-field
amplitude. Physically, the field originally inside when the rod is in the normal
state is now pushed outside and compressed at and near θ=90◦.

b) Because of the discontinuity at r=R of 2H0 sin θ in the tangential (�ıθ) com-
ponent of �H, there must be a surface current density �Kf flowing in the rod, as
given by Eq. 2.6. We thus have:

�Kf =�ır × 2H0 sin θ�ıθ

= 2H0 sin θ�ız (2.43)

This “sine” (more commonly known as “cosine”) current distribution is the basis
for most of the dipole magnets in the so-called “atom smashers” used in high-
energy physics facilities. An “ideal” dipole magnet is studied in PROBLEM 3.8.



ELECTROMAGNETIC FIELDS—PROBLEMS & DISCUSSIONS 43

Solution to PROBLEM 2.2 (continuation)

c) According to the London theory of superconductivity (1.2.2 in CHAPTER 1),
the supercurrent density, Js, of Type I superconductors is given by Js = ensev,
where e is the electronic charge (1.6×10−19 C), nse is the superconducting electron
density, and v is the drift velocity of superconducting electrons. The supercon-
ducting electron density may be roughly equated to the density of free electrons,
nfe (Eq. 1.2):

nse ≈ nfe =
�NA

WA
(1.2)

With values for lead of �=11.4 g/cm3, NA =6.023×1023 particle/mole, and WA =
207.2 g/mole, we have:

nse ≈ (11.4 g/cm3)(6.023×1023 particle/mole)
207.2 g/mole

(S2.7)


 3.3×1022 particle/cm3 = 3.3×1028 electron/m3

With v∼200 m/s roughly equal to the drift velocity of superconducting electrons,
we obtain an order of magnitude for Js:

Js = ensev ∼ (1.6×10−19 C)(3.3×1028 m−3)(200 m/s)

∼ 1×1012 A/m2

The surface current density, Kf = Jfλ, required in this lead cylinder should be
such that Jf is roughly equal to Js, an order of magnitude of which is computed
above. The London theory gives an expression (Eq. 1.1) for the penetration depth,
λ, at the superconductor’s surface within which superconducting current flows.
Equation 1.1 is once again given below:

λ =
√

m

μ◦e2nse
(1.1)

With m=9.1×10−31 kg and nse from Eq. S2.7, Eq. 1.1 becomes:

λ =

√
(9.1×10−31 kg)

(4π×10−7 H/m)(1.6×10−19 C)2(3.3×1028 m−3)


 3×10−8 m

Because Kf =Jfλ:

Jf =
2H0

λ
=

2(μ◦H0)
μ◦λ

=
2(0.08 T)

(4π×10−7 H/m)(3×10−8 m)
(S2.9)


 4×1012 A/m2

That is, Js and Js are roughly equal.
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DISCUSSION 2.1:Perfect-Conductor Sphere in aUniformField

Here we derive quantitative field expressions for a perfectly conducting (ρ = 0)
sphere subjected to a field change, specifically the C⇒D change illustrated in
Fig. 1.1c (CHAPTER 1). At point C, the entire space, including that within the
sphere, is in a uniform external field given by Eq. 2.40 of PROBLEM 2.1. The
same spherical coordinates as those of Fig. 2.1 in PROBLEM 2.1 apply.

When the uniform external field is reduced to zero (point D in Fig. 1.1c), because
the magnetic induction cannot change within the sphere, its field, �H2, must remain
as the same:

�H2 = H0(− cos θ�ır + sin θ�ıθ) (r ≤ R) (2.44a)

Far away from center, r→∞, the field outside the sphere, �H1, is zero. Near the
sphere, the field is derivable from a scalar potential, i.e., φ1 =(A/r2) cos θ. The ∇
operation on φ1 leads to a dipole field in spherical coordinates of the form:

�H1 =
A

r3
(2 cos θ�ır + sin θ�ıθ) (r ≥ R) (2.44b)

At r=R, the normal component of B must be continuous. Because at θ=0 there
is only a normal component of field both inside and outside of the sphere:

−H0 = 2
A

R3

Therefore A=−H0R
3/2, and thus:

�H1 = −H0

(
R

r

)3

(cos θ�ır + 1
2 sin θ�ıθ) (2.44c)

Equation 2.44c is a quantitative expression of the field distribution, except that
in Fig. 1.1c the external field is from bottom to top, whereas in Fig. 2.1 the field
points from right to left.

The discontinuity in the tangential component of magnetic field at r=R is equal
to a surface current density, �Kf , flowing in the sphere at r=R. Applying Eq. 2.6
and combining Eqs. 2.44a and 2.44c, we obtain:

�Kf =�ır × [H0 sin θ�ıθ − (− 1
2H0 sin θ�ıθ)]

= 3
2H0 sin θ�ıϕ (2.45)

Note that the sin θ distribution could be approximated with a “thin” coil wound
on the surface of the sphere with a uniform turn density in the the z-axis direction.

Answer to TRIVIA 2.2 Cu: Latin cuprum, from Cyprus island; Lu: Lutetia,
ancient name of Paris; Mg: Magnesia, district in Thessaly, Greece; Y: Ytterby,
village in Sweden. Ytterby is also used for three other rare earth elements:
erbium (Er); terbium (Tb); and ytterbium (Yb).
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PROBLEM 2.3: Magnetic shielding with a spherical shell

This problem deals with passive magnetic shielding, an important subject for MRI,
Maglev, and other high-field systems where people and field-sensitive equipment
might be exposed to a fringing field. The U.S. Food and Drug Administration
limits the maximum fringing field in MRI systems to 5 gauss (0.5 mT).

Within a spherical region of space, a uniform magnetic field, �H∞, is to be shielded:
�H∞ = H0(− cos θ�ır + sin θ�ıθ) (2.40)

For shielding, a spherical shell of o.d. 2R and wall thickness d/R � 1 of highly
permeable material (μ/μ◦1) may be used, as shown schematically in Fig. 2.4.

a) Treating the problem as one of a magnetic spherical shell in a uniform exter-
nal field, show that an expression for Hss/H0, where Hss is the magnitude of
the magnetic field inside the spherical space (r≤R−d), is given by:

Hss

H0
=

9μμ◦

9μμ◦ + 2(μ − μ◦)2
[
1 −

(
1 − d

R

)3
] (2.46)

b) Show that in the limits of μ/μ◦1 and d/R�1, the ratio Hss/H0 given by
Eq. 2.46 reduces to:

Hss

H0

 3

2

(
μ◦
μ

)(
R

d

)
(2.47)

c) Next, obtain Eq. 2.47 through a perturbation approach. First, solve the field
in the shell (R − d≤r≤R) with μ=∞. Then, use a perturbation approach
for the case μ/μ◦1 and obtain Eq. 2.47.

d) In reality the magnetic flux in the shielding material must be kept below the
material’s saturation flux, μ◦Msa. Show that an expression for d/R to keep
the shell unsaturated is given by:

d

R
≥ 3H0

2Msa
(2.48)

e) Draw field lines for the case μ/μ◦1.

x
r

θ

z H0
R

d

Fig. 2.4 Spherical magnetic shell in a uniform magnetic field.
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Solution to PROBLEM 2.3

a) The problem is divided into three regions: Region 1 (r ≥R); Region 2 (the
shell); and Region 3 (r≤R−d). The appropriate potentials are given below:

φ1 = H0r cos θ +
A

r2
cos θ (S3.1a)

φ2 = Cr cos θ +
D

r2
cos θ (S3.1b)

φ3 = Hssr cos θ (S3.1c)

Note that φ1→H0r cos θ for r→∞ and that φ3 remains finite as r→0.

Using the ∇ operator in spherical coordinates, we obtain:

�H1 = H0(− cos θ�ır + sin θ�ıθ) +
A

r3
(2 cos θ�ır + sin θ�ıθ) (S3.2a)

�H2 = C(− cos θ�ır + sin θ�ıθ) +
D

r3
(2 cos θ�ır + sin θ�ıθ) (S3.2b)

�H3 = Hss(− cos θ�ır + sin θ�ıθ) (S3.2c)

Boundary Conditions

1) At r=R, the tangential (�ıθ) component of �H (Hθ) is continuous: φ1 =φ2.

2) Similarly, at r=R−d, Hθ is continuous: φ2 =φ3.

3) At r=R, the normal (�ır) component of �B (Br) is continuous.

4) Similarly, at r=R−d, Br is continuous.

The above boundary conditions give rise to the following four equations:

H0 +
A

R3
= C +

D

R3
(S3.3a)

C +
D

(R − d)3
= Hss (S3.3b)

μ◦

(
−H0 +

2A

R3

)
= μ

(
−C +

2D

R3

)
(S3.3c)

μ

[
−C +

2D

(R − d)3

]
= −μ◦Hss (S3.3d)

Combining Eqs. S3.3a and S3.3b and eliminating C, we have:

A

R3
+ D

[
1

(R − d)3
− 1

R3

]
− Hss = −H0 (S3.4)
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Solution to PROBLEM 2.3 (continuation)

From Eqs. S3.3b and S3.3d, we can obtain D in terms of Hss:

D =
μ − μ◦

3μ
(R − d)3Hss (S3.5)

Combining Eqs. S3.4 and S3.5, we have A/R3 in terms of Hss:

A

R3
= Hss

{
1 − μ − μ◦

3μ

[
1 −

(
1 − d

R

)3
]}

− H0 (S3.6)

From Eqs. S3.3c and S3.3d, we obtain:

2A

R3
+ 2

μ

μ◦
D

[
1

(R − d)3
− 1

R3

]
+ Hss = H0 (S3.7)

Combining Eqs. S3.4–S3.7 and expressing Hss in terms of H0, we obtain:

Hss

H0
=

9μμ◦

9μμ◦ + 2(μ − μ◦)2
[
1 −

(
1 − d

R

)3
] (2.46)

b) We may simplify Eq. 2.46 by dividing top and bottom by μ2
◦ and applying

the limits μ/μ◦1 and d/R�1:

Hss

H0

 9μ/μ◦

9
(

μ

μ◦

)
+ 2

(
μ

μ◦

)2 [
1 −

(
1 − 3

d

R

)] (S3.8)


 3

3 + 2
(

μ

μ◦

) (
d

R

) (S3.9)

In the special case μd/μ◦R1, Eq. S3.9 reduces to:

Hss

H0

 3

2

(
μ◦
μ

)(
R

d

)
(2.47)

c) The same result given by Eq. 2.47 for Hss/H0 can be obtained directly by a
perturbation approach for the case μ/μ◦1 and d/R�1.

We proceed by assuming that μ of the shell material is infinite. This requires that
the B lines be perpendicular to the shell at r = R. This is because �H1 has only
a radial (�ır) component at r = R, because �H = 0 in the shell and Hθ must be
continuous at r=R. (This can be seen quite readily by noting that when μ=∞,
C =D=0.) From Eq. S3.3a, A=−R3H0, and thus at r=R:

�H1 = −3H0 cos θ�ır (S3.10)
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Solution to PROBLEM 2.3 (continuation)

x

d

dθ

Rz

R
θ

Fig. 2.5 Flux entering into the spherical shell over the surface bounded by ±θ.

The B lines stay inside the shell without “spilling” into Region 3; that is, B inside
the shell has only an �ıθ component. Let us now apply magnetic flux continuity,
i.e., ∇ · �B =0, and solve for �B2 when μ=∞. Once �B2 is solved for this case, an
approximate expression for �H3 can be deduced for μ �=∞ but μ/μ◦1.

First, we calculate the total magnetic flux Φ entering into the shell over the surface
area bounded by ±θ (Fig. 2.5). This surface area, as indicated in the figure, is
given by a differential area (a ring of radius R sin θ times Rdθ) integrated from 0
to θ. Thus, we have:

Φ = μ◦

∫ θ

0

�H1 · d �A = μ◦

∫ θ

0

3H0 cos θ 2πR2 sin θ dθ

= 3πμ◦R
2H0 sin2 θ (S3.11)

This Φ must be equal to the total flux flowing in the θ-direction in the shell at θ.
Because the shell’s cross-sectional area, A2, at θ is given, for d�R, by the shell
thickness d times the circumference of a ring of radius R sin θ, we have:

A2 
 d2πR sin θ (S3.12)

We thus have:

Φ = 3πμ◦R
2H0 sin2 θ


 B2A2 = B2d2πR sin θ (S3.13)
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Solution to PROBLEM 2.3 (continuation)

Solving for B2 from Eq. S3.13, we obtain:

�B2 
 3
2μ◦

(
R

d

)
H0 sin θ�ıθ (S3.14)

Note that �B2 is for μ = ∞; we can now deduce an approximate solution for �H3

because the �ıθ-component of �H must be continuous at r=R−d. Thus:

Hθ3 
 Bθ2

μ
= 3

2

(
μ◦
μ

)(
R

d

)
H0 sin θ (S3.15)

Once Hθ3 is known, we have the complete expression for �H3:

�H3 
 3
2

(
μ◦
μ

)(
R

d

)
H0(− cos θ�ır + sin θ�ıθ) (S3.16a)

∣∣∣∣ �H3

H0

∣∣∣∣ 
 3
2

(
μ◦
μ

)(
R

d

)
(S3.16b)

The ratio | �H3/H0| given by Eq. S3.16b agrees with Hss/H0 given by Eq. 2.47.
Note that this perturbation approach requires the conditions μ =∞ and d�R,
but not the condition μd/μ◦R1 in the step from Eq. S3.9 to Eq. 2.47.

d) It is important to remember that d cannot be chosen arbitrarily small to
satisfy the condition d/R�1. The preceding analysis is valid, in fact, only when:

μ◦
μ

� d

R
�1 (S3.17)

In reality μ cannot be infinite and the shielding material will eventually saturate
as the external field increases. Hence, the maximum magnetic flux inside the shell,
which occurs at θ = 90◦, must be less than the saturation flux μ◦Msa of the shell
material. Thus:

3
2

(
R

d

)
μ◦H0 ≤ μ◦Msa (S3.18)

Solving Eq. S3.18 for d/R, we obtain:

d

R
≥ 3H0

2Msa
(2.48)

Table 2.5 presents approximate values of differential μ/μ◦, defined as (μ/μ◦)dif ≡
ΔM/ΔH0|μ◦H0 and μ◦M(H◦) in the μ◦H0 range 1–1000 gauss (0.1–100 mT), as
well as μ◦Msa for annealed ingot iron, as-cast steel, and vanadium permendur
(50%Co, 2%V). These materials are useful for magnetic shielding in external in-
ductions up to ∼100 gauss. The materials have μ◦Msa values, respectively, of
roughly 2.1 T, 2.0 T, and 2.2 T.

TRIVIA 2.3 The permanent magnet is ubiquitous in daily life (DISCUSSION 2.3 ).
From the figures below, choose the one that is closest to the number of permanent
magnets in a modern passenger car.

i) 20; ii) 100; iii) 500; iv) 2,500.
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Solution to PROBLEM 2.3 (continuation)

Table 2.5: Values of (μ/μ◦)dif ; μ◦M(H◦); and μ◦Msa for Iron Alloys

μ◦H0 Annealed Ingot Iron As-Cast Steel Vanadium Permendur

[gauss] (μ/μ◦)
∗
dif μ◦M [T] (μ/μ◦)

∗
dif μ◦M [T] (μ/μ◦)

∗
dif μ◦M [T]

1 7710 0.375 n.a. n.a. n.a. n.a.

3 3850 0.91 1660 0.25 4845 0.65

5 500 1.42 1155 0.51 1875 1.25

10 115 1.54 565 0.93 545 1.67

20 47 1.60 180 1.25 170 1.96

50 23.5 1.70 50 1.52 17 2.10

100 17.5 1.81 25 1.70 4.8 2.15

200 8.25 1.93 10 1.85 1.3 2.17

500 2.0 2.05 1.0 1.92 0.26 2.18

1000 0.4 2.11 0.45 2.01 0.07 2.19

μ◦Msa 2.13T 2.03T 2.20T

* Derived from M(H) plots in Permanent Magnet Manual (General Electric Company, 1963).

e) Field lines for the case μ/μ◦ = 100 are shown below in Fig. 2.6.

Fig. 2.6 Field distribution with a spherical shell of μ/μ◦ =100 in a uniform field. Note
that the field lines entering and leaving the shell are nearly perpendicular to the shell.
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DISCUSSION 2.2: Shielding with a Cylindrical Shell*

We use a perturbation technique similar to that used in PROBLEM 2.3 to derive
an expression for Hcs/H0, where Hcs is the magnitude of the magnetic field inside
the cylindrical space (r ≤ R−d) surrounded by a shell of o.d. 2R and wall thickness
d/R�1 of highly permeable material (μ/μ◦1) in a uniform external magnetic
field, �H∞, of magnitude H0. In 2-D cylindrical coordinates �H∞ is given by:

�H∞ = H0(− cos θ�ır + sin θ�ıθ) (2.40)

θ is defined in Fig. 2.3.

We proceed by assuming that μ of the cylinder material is infinite. We then find
that, as in PROBLEM2.3, the B lines must be normal to the cylinder at r = R.
Thus at r=R we have:

�H1 = −2H0 cos θ�ır

B in the shell, however, is θ-directed. For d/R�1, the flux continuity requirement
for B may be expressed by:

B2d =
∫ θ

0

2μ◦H0R cos θ dθ = 2μ◦RH0 sin θ

Thus:
�B2 = 2μ◦

(
R

d

)
H0 sin θ�ıθ

Once �B2 is known for μ = ∞, we know �H2 for μ/μ◦1:

�H2 =
�B2

μ

 2

(
μ◦
μ

)(
R

d

)
H0 sin θ�ıθ

Because Hθ is continuous in the absence of surface current, the same Hθ must
exist in Regions 2 and 3: Hθ2 =Hθ3. Thus, at r=R−d:

Hθ3 = Hθ2 
 2
(

μ◦
μ

)(
R

d

)
H0 sin θ

From the above expression, it follows that:

�H3 
 2
(

μ◦
μ

)(
R

d

)
H0(− cos θ�ır + sin θ�ıθ)

∣∣∣∣ �H3

H0

∣∣∣∣ ≡ Hcs

H0

 2

(
μ◦
μ

)(
R

d

)
(2.49)

As in the spherical shell studied in PROBLEM 2.3, the cylindrical shell cannot be
arbitrarily thin; it must be thick enough to keep it from saturating:

μHcs = 2μ◦H0
R

d
≤ μ◦Msa

From the above, we obtain:
d

R
≥ 2H0

Msa
(2.50)

* Problem2.4 in the 1st Edition (Plenum, 1994).
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PROBLEM 2.4: The field far from a cluster of four dipoles*

This problem considers the field far from a cluster of four ideal dipoles, 1–4, ar-
ranged as shown in Fig. 2.7, in which the direction of each dipole is indicated by
the arrow within a circle. The center-to-center distance between two opposing
dipoles is 2δd. The field of each jth dipole of zero winding thickness, diameter
2rd, and overall length �d in the y-direction, at a radial location (rj) far from the
dipole (rj �d) may be modeled as a spherical dipole field, �Bj :

�Bj =
r2
d �dB◦
2r3

j

(cos ϑj�ırj + 1
2 sinϑj�ıθj ) (2.51)

where rj is measured from the center of each dipole and ϑj in each dipole is defined
such that the field inside the winding points in the rj-direction when ϑj =0◦. Figure
2.7 indicates the direction of the field inside each dipole. Also defined in Fig. 2.7
are r-θ coordinates and z-x coordinates common to all the dipoles. Note that for
rδd, we have ϑ1 =θ+180◦, ϑ2 =θ−90◦, ϑ3 =θ, and ϑ4 =θ+90◦.

Show that an approximate expression for the far field ( �B for r/δd  1) of the
combined system is given by:

�B 
 3r2
d �dB◦δd

r4
(− sin 2θ�ır + 1

2 cos 2θ�ıθ) (2.52)

Neglect end effects of each dipole, i.e., consider only the plane y=0.

x

r

1

θ

2δd 2rd z

2 4

3

Fig. 2.7 Cross-sectional view of a four-dipole arrangement. The arrow
in each dipole indicates the field direction inside the winding.

* Problem2.5 in the 1st Edition (Plenum, 1994).
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Solution to PROBLEM 2.4

For r  δd, rj of each dipole may be given in terms of r and θ:

r1 
 r − δd sin θ (S4.1a)

r2 
 r + δd cos θ (S4.1b)

r3 
 r + δd sin θ (S4.1c)

r4 
 r − δd cos θ (S4.1d)

With Eq. S4.1 into Eq. 2.51 for each dipole and ϑj expressed in terms of θ:

�B1 
 r2
d �dB◦

2(r − δd sin θ)3
(− cos θ�ır − 1

2 sin θ�ıθ) (S4.2a)

�B2 
 r2
d �dB◦

2(r + δd cos θ)3
(sin θ�ır − 1

2 cos θ�ıθ) (S4.2b)

�B3 
 r2
d �dB◦

2(r + δd sin θ)3
(cos θ�ır + 1

2 sin θ�ıθ) (S4.2c)

�B4 
 r2
d �dB◦

2(r − δd cos θ)3
(− sin θ�ır + 1

2 cos θ�ıθ) (S4.2d)

For r  δd the denominator of each term may be expanded; to 1st order in δd/r
Eq. S4.2 becomes:

�B1 
 r2
d �dB◦
2r3

[
1 + 3

(
δd

r

)
sin θ

]
(− cos θ�ır − 1

2 sin θ�ıθ) (S4.3a)

�B2 
 r2
d �dB◦
2r3

[
1 − 3

(
δd

r

)
cos θ

]
(sin θ�ır − 1

2 cos θ�ıθ) (S4.3b)

�B3 
 r2
d �dB◦
2r3

[
1 − 3

(
δd

r

)
sin θ

]
(cos θ�ır + 1

2 sin θ�ıθ) (S4.3c)

�B4 
 r2
d �dB◦
2r3

[
1 + 3

(
δd

r

)
cos θ

]
(− sin θ�ır + 1

2 cos θ�ıθ) (S4.3d)

Combining each field given by Eq. S4.3, we obtain:

�B = �B1 + �B2 + �B3 + �B4 
 3r2
d �dB◦δd

r4
(− sin 2θ�ır + 1

2 cos 2θ�ıθ) (2.52)

Note that | �B| decreases ∝ 1/r4 rather than ∝ 1/r3, as would a single dipole.

Answer to TRIVIA 2.3 ii). A modern military aircraft, however, may contain
up to ∼2,000 pieces of permanent magnet—J.D. Livingstone, Driving Force:
The Natural Magic of Magnets (Harvard University Press, 1996).
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PROBLEM 2.5: Iron electromagnet pole shape

Figure 2.8 shows the active section of an iron electromagnet, with two conically
tapered cylindrical poles of ferromagnetic material—the shaded area of each pole
indicates the material removed from the original cylindrical pole. When the wind-
ings (not shown in the figure) of the magnet are energized, a relatively uniform
field is generated in the gap between the poles. The central field has no theo-
retical upper limit, because it increases ∝ ln(R2/R1), where 2R2 and 2R1 are,
respectively, the diameters of the base and tip of each cone. There is, however, a
practical field limit of ∼7 T (in magnets at Bellevue, Paris and Uppsala University,
Sweden) because as R2 is increased, the magnet mass becomes prohibitively large.
The tapering enhances the center field, because the field by each magnetic moment
located in this section contributes a negative axial (z) field at the center.

Show that θtp =54◦44′ is the optimal angle for this simple pole geometry if the iron
is magnetized parallel to the axis of the system. Assume that the center field is the
sum of the field generated by each magnetic moment distributed uniformly over
the pole pieces. (As indicated in the figure, the four dotted lines, each projected
from one of the four lines defining θtp =54◦44′, meet at the center. Note that if the
gap is large enough, tapering will not be beneficial.) Each moment, mA [A m2],
magnetized in the z-direction, generates a dipole field, �HmA(r, θ):

�HmA(r, θ) =
mA

r3

(
cos θ�ır + 1

2 sin θ�ıθ
)

(2.53)

From symmetry �HmA(r, θ) is axisymmetric with respect to the z-axis and it is
derivable from a scalar potential cos θ/r2. This derivation has been used in
PROBLEMS 2.1, 2.3, and 2.4, and DISCUSSION 2.1.

Hint Solve the z-axis center field due to a single magnetic dipole moment, mA↑,
located on the pole perimeter at the boundary between the tapered and untapered
pole, as indicated by • in Fig. 2.8.

z
r

θ

θtp

2R1

mA

2R2

Fig. 2.8 Pair of pole pieces, each tapered at an angle of θtp.
• denotes the location of a magnetic dipole moment mA↑.
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Solution to PROBLEM 2.5

The z-component of the field at the center, HmAz, due to moment mA is given by:

HmAz =
mA

r3
A

(cos2 θ − 1
2 sin2 θ) (S5.1)

where rA is the distance from mA to the center. At θ=θtp, the right-hand side of
Eq. S5.1 is zero. Thus:

cos2 θtp − 1
2 sin2 θtp = 0 (S5.2)

From Eq. S5.2, cos θtp =1/
√

3 (or tan θtp =
√

2 ) and we find: θtp
54.736◦
54◦44′.

Note that moments located in the shaded area above the perimeter are at θtp >
54◦44′. Because cos θ decreases with θ, while sin θ increases, HmAz is negative
for θtp > 54◦44′. Tapering the pole piece at this angle eliminates this negative
contribution, thus maximizing the center field.

Remarkably, 54◦44′ is identical to the magic angle used in NMR spectroscopy.
Often an NMR sample is oriented at this magic angle with respect to the principal
axial field and spun to average out anisotropic interactions.

DISCUSSION 2.3: Permanent Magnets

The permanent magnet is a vital component in many devices used in daily life—
cars (see Trivia 2.3 ), TV’s, computers, telephones, refrigerators, to name only a
few. Indeed without permanent magnets modern life as we know it today would
cease to function. They also compete with superconducting magnets for MRI
in the low field range (<1 T). MRI magnets composed of permanent magnets are
popular because they are not only free of cryogenics but also relatively inexpensive.

Table 2.6 shows developments of permanent magnets and superconductors over the
past nine decades, from the 1910s to the 1990s, expressed in terms of maximum
magnetic energy, BH|mx, for permanent magnets and maximum critical temper-
ature, Tc|mx, for superconductors. The increase during this period by a factor of
∼30 in BH|mx is as remarkable as that by a factor of ∼20 in Tc|mx.

If this pace of the development in permanent magnets continues, within the not-
too-distant future MRI magnets based on permanent magnets should reach ∼1 T,
the level above which superconducting counterparts dominate.

Table 2.6: Development of Permanent Magnets and Superconductors

Decade(s) Permanent Magnet BH|mx [kJ/m3] Superconductor Tc|mx [K]

1910 Special steel 11 Pb 7.2

1920–1940 Alnico* 1–4 15 NbN 16

1950 Alnico 5 35 Nb3Sn 18

1960 Alnico 8, 9 55 Nb12Al3Ge 19

1970 SmCo5 140 Nb3Ge 23

1980 Sm(CoCuFeZr) 240 Bi2Sr2Ca2Cu3Ox 118

1990 Nd2Fe14B 350 (Hg,Pb)Sr2Ca2Cu3Ox 133

* Iron alloys principally of Al, Ni, and Co.
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PROBLEM 2.6: Quasi-static field in a cylinder

A long thin cylinder of radius R is made of a sheet that is perfectly conducting
(σ =∞) but not superconducting and has a narrow slot of gap δ (Fig. 2.9). The
cylinder is placed in a sinusoidally time-varying magnetic field, which is, to 0th-
order, uniform and z-directed (normal to the paper). Namely:

�H∞(t) = Re[H◦e
jωt]�ız (2.54)

where H◦ is a complex amplitude. End effects may be neglected.

a) Neglecting terms of order δ/R, show that the 1st-order complex voltage am-
plitude across the slot along the shortest path, V1|0≡V1|θ=0◦ , is given by:

V1|0 ≡ V1|θ=0◦ = −jωπR2μ◦H◦ (2.55)

b) Suppose now that a normal metal sheet of resistivity ρ [Ω m] is placed in the
gap to connect the lips of the cylinder. Derive an expression for the 1st-order
complex current density (per unit axial length) amplitude, J1 [A/m], through
the sheet. Assume that the driving frequency (ω/2π) is low enough that the
magnetic field retains the quasi-static form given by Eq. 2.54 and that the
current flows uniformly over the sheet cross section.

c) In the absence of the resistive sheet (or ρs =∞), draw neatly six lines of the
1st-order complex electric field ( �E1) vector within the space enclosed by the
cylinder, clearly showing important features.

d) In the absence of the resistive sheet, derive an expression for the line integral
of the 1st-order voltage, V1|+π/2

−π/2, across the voltage taps attached, one at
θ=+π/2 and the other at θ=−π/2.

�H∞(t)
y

R
θ

x δ

Fig. 2.9 Axial view of a long thin cylinder of radius R of perfect conductor
with a narrow gap of δ at θ = 0 exposed to a sinusoidally time-varying
magnetic field in the z-direction.
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Solution to PROBLEM 2.6

a) Using Faraday’s integral law for the 1st-order electric field, �E1(t), we have:

V1(t) ≡
∫

C

�E1(t) · d�s = −πR2μ◦
dH◦(t)

dt
(S6.1)

The line integral is taken around the cylinder, including the gap, in the counter-
clockwise direction. The right-hand side of Eq. S6.1 covers the entire area defined
by the cylinder (πR2). Because the cylinder is a perfect conductor, �E1(t) = 0
within the material. The only nonzero contribution to the line integral comes
from the gap, which is equal to V1(t). In terms of complex amplitudes, we have:

V1|0 = −jωπR2μ◦H◦ (2.55)

b) Using Ohm’s law, we have for J1 (per unit length):

J1 =
V1|0
ρs

(S6.2)

c) Because the cylinder is a perfect conductor, the tangential component of �E1

at the cylinder must be zero: �E1 leaves or enters the cylinder at a right angle. As
the line integral across the cylinder moves to the left of the gap, the integral area
decreases, making |E1| smaller. Figure 2.10 shows six lines of �E1.

d) This is a special case of c), where from symmetry it is possible to compute
the line integral exactly: the integral area is equal to πR2/2. Thus:

V1|+π/2
−π/2 = − 1

2jωπR2μ◦H◦ (S6.3)

Equations 2.55 and S6.3 demonstrate that voltages across the cylinder at the
same axial location depend on azimuthal locations of the voltage taps. This is an
important point to be remembered when measuring voltage in the presence of a
time-varying magnetic field, applied externally as in the present case or generated
by a current flowing in the system. Electrical measurement of AC losses in a
superconductor is a good example where one must be careful.

�H∞(t)

�E1
�E1

�E1
�E1

−R x=0 R

Fig. 2.10 Lines of �E1 normal to the perfectly conducting cylinder.
Note that the |E1| decreases as the line is moved from x=R to x=−R.
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PROBLEM 2.7: Induction heating of a cylindrical shell*

This problem deals with induction heating of a metallic (nonsuperconducting)
cylindrical shell. It is a good example of a case involving sinusoidal electromagnetic
fields, power flow (Poynting vector), and power dissipation. This and the next
problem are the first examples of an AC loss, specifically an eddy-current loss, to
be discussed further in CHAPTER 7. Induction heating is widely used in electric
furnaces to achieve high temperatures in conducting materials; it also is sometimes
used as a research tool in the study of the thermal behavior of superconducting
windings. In superconducting magnet technology research, induction heating is
most often used in the form of pulsed fields to simulate transient disturbances
that create small normal regions in otherwise superconducting windings.

Figure 2.11 shows a “long” metallic cylindrical shell of resistivity ρe, of o.d. 2R,
and of thickness d�R, in a sinusoidally time-varying magnetic field, which within
0th order is uniform and z-directed (along the cylinder axis). Namely:

�H∞(t) = Re( �H0e
jωt) = Re(H0e

jωt)�ız (2.54)

where H0 is a complex field amplitude.

We shall approach this problem first (Part 1) by solving for the appropriate fields
by two methods and then (Part 2) solving for power dissipation in the cylinder by
two methods.

y

r
H0

θ

x
R

H0 d

Fig. 2.11 Cylindrical metallic shell in a uniform sinusoidally
time-varying magnetic field.

* Problem2.6 in the 1st Edition (Plenum, 1994).
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PROBLEM 2.7: Induction heating—Part 1 (Field)

First, we shall solve for appropriate fields using two methods, described below.

Method 1

a) Using the integral form of Maxwell’s equations and neglecting end effects,
show that expressions for the 1st-order electric field, �E1, in the region r ≤ R
and the 1st-order current density, �J1, in the shell (r � R) are given by:

�E1 = −jωμ◦rH0

2
�ıθ (2.56)

�J1 � −jωμ◦RH0

2ρe
�ıθ (2.57)

b) Show that the resulting 1st-order magnetic field, �H1, in the region r ≤ R− d
can be expressed by:

�H1 = −jωμ◦RdH0

2ρe
�ız (2.58)

c) Equations 2.56–2.58, derived using the quasi-static approximation, are valid
only in the “low” frequency limit, or frequencies much less than the “skin-
depth” frequency, fsk. Show that fsk is given by:

fsk =
ρe

πμ◦Rd
(2.59)

Method 2
�E1, �J1, and �H1, derived by Method 1, each increasing with ω, are valid only for
frequencies well below fsk. We now demonstrate a new technique that enables us
to derive the total field, �HT = ( �H0 + �HR), in the bore, valid for the entire range
of frequencies. �HT is the total net field, �H0 is the original field, and �HR is the
reaction field of the system in the bore. In this approach, first find the reaction
field �HR in the bore by treating �HT = ( �H0 + �HR) as a 0th-order field and solve for
�HR as the usual 1st-order magnetic field response.

d) Show that expressions for �HR, �HT , and �J in the shell valid for d � R are:

�HR = − jωμ◦RdH0

2ρe + jωμ◦Rd
�ız (2.60)

�HT =
2ρeH0

2ρe + jωμ◦Rd
�ız (2.61)

�J = − jωμ◦RH0

2ρe + jωμ◦Rd
�ıθ (2.62)

TRIVIA 2.4: Which is responsible for the “humming” of a power transformer?

i) E field; ii) J×B force; iii) ρJ2 heating; iv) H field.
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Solution to PROBLEM 2.7—Part 1

a) From symmetry in the θ-direction, �E1 and �J1 are constant in the θ-direction;
both are θ-directed and depend only on r. Thus the Faraday’s induction law may
be applied along contour C at r enclosing surface S:∮

C
�E1· d�s = −jωμ◦

∫
S

�H0· d �A

∫ 2π

0

rE1θ dθ = −jωμ◦

∫ r

0

2πrH0 dr

E1θ

∫ 2π

0

r dθ = −jωμ◦H0

∫ r

0

2πr dr (S7.1)

For r ≤ R,

E1θ2πr = −jωμ◦H0πr2 (S7.2)

Dividing each side of Eq. S7.2 by 2πr, we obtain:

E1θ = −jωμ◦rH0

2
(S7.3)

Thus:
�E1 = −jωμ◦rH0

2
�ıθ (2.56)

The 1st-order current flows only in the shell (r�R):

�J1 �
�E1(r � R)

ρe
= −jωμ◦RH0

2ρe
�ıθ (2.57)

For d�R, we may treat the current as a 1st-order surface current, �K1, by multi-
plying �J1 by d:

�K1 = −jωμ◦RdH0

2ρe
�ıθ (S7.4)

b) For r>R, �H1 =0; using Eq. 2.6, we can equate �K1 to the discontinuity in �H

at r=R: �H0+ �H1 at the inner wall of the shell, and �H0 outside. Thus:

�K1 =�ır×[ �H0 − ( �H0 + �H1)] = −jωμ◦RdH0

2ρe
�ıθ

=�ır×− �H1 = −jωμ◦RdH0

2ρe
�ıθ (S7.5)

Solving Eq. S7.5 for �H1 (r ≤ R − d) with d � R, we have:

�H1 = −jωμ◦RdH0

2ρe
�ız (2.58)
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Solution to PROBLEM 2.7—Part 1 (continuation)

c) Equations 2.57, S7.4, and 2.58 predict that the magnitudes of �J1, �K1, and
�H1 all increase monotonically with frequency; this cannot be valid for the entire
range of ω. These solutions are valid only in the “low” frequency limit, which is
the applicable range of the quasi-static approximation. More specifically, �H1 given
by Eq. 2.58 is valid only when | �H1|�| �H0|:

| �H1| =
ωμ◦Rd|H0|

2ρe
� | �H0| (S7.6)

From Eq. S7.6, we can obtain the frequency limit, often called the skin-depth
frequency, fsk, below which the quasi-static approximation is valid:

fsk =
ρe

πμ◦Rd
(2.59)

Note that fsk depends not only on the metal’s electrical resistivity but also on the
size of the object in the sinusoidally time-varying applied magnetic field.

d) In the second approach for computing the shell’s reaction field, we set �H1 ≡
�HR, and substitute �H0+ �HR for �H0 in the expression for �H1 given in Eq. 2.58:

�HR = −jωμ◦Rd( �H0 + �HR)
2ρe

(S7.7)

Solving Eq. S7.7 for �HR, we obtain:

�HR = − jωμ◦RdH0

2ρe + jωμ◦Rd
�ız (2.60)

Combining Eq. 2.60 and �HT = �H0+ �HR, we have:

�HT = �H0 + �HR = H0

(
1 − jωμ◦Rd

2ρe + jωμ◦Rd

)
�ız

=
2ρeH0

2ρe + jωμ◦Rd
�ız (2.61)

�J and �HR are related by ∇× �H = �J , which, for �K = �Jd, reduces to:

�J =
1
d
HR�ıθ (S7.8)

= − jωμ◦RH0

2ρe + jωμ◦Rd
�ıθ (2.62)

Note that in the low frequency limit, �HR given by Eq. 2.60 reduces, as expected,
to �H1 given by Eq. 2.58. In the high frequency limit, �HR reduces, also as expected,
to − �H0 and �HT becomes 0. Similar observations apply to �J .
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PROBLEM 2.7: Induction heating—Part 2 (Power Dissipation)

Now, we can solve for power dissipation in the cylinder; two methods are used.

Method 1

e) We may calculate the resistive power dissipated in the cylindrical shell by
directly computing < p >= �E · �J∗/2 = ρe|J |2/2 (Eq. 2.21), where �J is given
by Eq. 2.62. Show that an expression for the time-averaged total dissipation
power (per unit length) in the shell, <P >, for d�R is given by:

<P > = 2πRd <p>

=
πρeω

2μ2
◦R

3d

4ρ2
e + ω2μ2

◦R
2d2

|H0|2 (2.63)

Method 2

The same complex power supplied to the cylinder may also be viewed as a flow of
Poynting power flux entering the cylinder at r=R from a source located at r > R.

f) Show that the surface integral (per unit cylinder length) of the 1st-order
complex Poynting vector �S1 entering into the cylinder at r=R is given by:

−
∮
S

�S1 · dA = 1
2 (2πR)E1θH

∗
0

=
jπρeωμ◦R2

2ρe + jωμ◦Rd
|H0|2 (2.64)

Note that E1θ =ρeJθ, where Jθ is given by Eq. 2.62.

g) Take the real part of the right-hand side of Eq. 2.64 and show that it is
identical to the expression for <P > given by Eq. 2.63.

h) Plot <P > as a function of ρe. Because both a perfect conductor (ρe =0) and
a perfect insulator (ρe = ∞) obviously do not dissipate power, your < P >
vs. ρe plot should start with <P >= 0 and return asymptotically to zero as
ρe → ∞. Note that <P > given by Eq. 2.63 indeed indicates this behavior.

i) A consequence of this <P > vs. ρe behavior is that there is a critical resis-
tivity, ρec

, at which <P > is maximum. Show that ρec
is given by:

ρec =
ωμ◦Rd

2
(2.65)

From Eq. 2.65, we note that for a given combination of resistivity (ρec
) and

sample size (R, d), there exists an optimal frequency that maximizes the
heating: this is equal to the “skin depth” frequency, fsk, given by Eq. 2.59.

j) Compute fsk for a copper tube of 10-mm radius (R), 0.5-mm wall thickness
(d), and ρe = 2×10−10 Ω m (roughly the electrical resistivity of copper at
liquid helium temperatures).
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Solution to PROBLEM 2.7—Part 2

e) In the sinusoidal case, the time-averaged dissipation power (per unit length),
< p >, is given by �E · �J∗/2 = ρe|J |2/2, where �J is the complex current density
(Eq. 2.62). We thus have:

<p>=
ρe

2
|Jθ|2 =

ρe

2

(
ω2μ2

◦R
2

4ρ2
e + ω2μ2

◦R
2d2

)
|H0|2 (S7.9)

The time-averaged total dissipation power (per unit length) in the shell, <P >, is
obtained by multiplying <p> by the cross sectional area of the shell:

<P > = 2πRd <p>

=
πρeω

2μ2
◦R

3d

4ρ2
e + ω2μ2

◦R
2d2

|H0|2 (2.63)

We now examine two limits of ρe:

ρe � ωμ◦Rd : <P > � πρeR

d
|H0|2 ∝ ρe (excellent conductor) (S7.10a)

ρe 
 ωμ◦Rd : <P > � πω2μ2
◦R

3d

4ρe
|H0|2 ∝ 1

ρe
(poor conductor) (S7.10b)

Note that in both limits, <P >→0, as expected.

f) The complex Poynting vector, �S, expanded to 1st-order, is:

�S1 = 1
2

(
�E0× �H∗

0 + �E0× �H∗
1 + �E1× �H∗

0

)
(S7.11)

Note that in computing the 1st-order Poynting vector, �S1, the sum of the E-field
subscript and H-field subscript must not exceed 1. In this particular case, we have
�E0 = 0; thus Eq. S7.11 simplifies to:

�S1 = 1
2

(
�E1× �H∗

0

)
(S7.12)

where from Eq. 2.62, �E1 is given by:

�E1 = ρe
�J = − jρeωμ◦RH0

2ρe + jωμ◦Rd
�ıθ (S7.13)

We thus have:

−
∮
S

�S1 · dA = 1
2 (2πR)E1θH

∗
0

=
jπρeωμ◦R2

2ρe + jωμ◦Rd
|H0|2 (2.64)
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Solution to PROBLEM 2.7—Part 2 (continuation)

g) The real part of Eq. 2.64 is given by:

<P >=
(πρeωμ◦R2)(ωμ◦Rd)

4ρ2
e + ω2μ2

◦R
2d2

|H0|2 =
πρeω

2μ2
◦R

3d

4ρ2
e + ω2μ2

◦R
2d2

|H0|2 (S7.14)

Note that Eq. S7.14 (Method 2) is identical to Eq. 2.63 (Method 1).

h) Figure 2.12 shows a plot of <P > vs. ρe.

i) We differentiate <P > with respect to ρe and equate it to 0 at ρec
:

d <P >

dρe

∣∣∣∣
ρec

=
[

πω2μ2
◦R

3d

4ρ2
ec

+ ω2μ2
◦R

2d2
− 8πρ2

ec
ω2μ2

◦R
3d

(4ρ2
ec

+ ω2μ2
◦R

2d2)2

]
= 0 (S7.15)

Solving Eq. S7.15 for ρec , we have:

ρec =
ωμ◦Rd

2
(2.65)

Equation 2.65 is important in induction heating, in which a uniform, sinusoidally
time-varying magnetic field is applied to a conducting sample. The sample is
heated by the eddy currents induced in the sample. At the skin-depth frequency,
fsk, given by Eq. 2.59, the induction heating is maximum.

j) For a copper cylinder of R = 1 cm, d = 0.5 mm, ρe = 2×10−10 Ω m (corre-
sponding to copper’s resistivity at ∼4 K), we obtain, from Eq. 2.59:

fsk =
ρec

πμ◦Rd
(2.59)

=
2×10−10 Ω m

π(4π×10−7 H/m)(0.010 m)(0.0005 m)
� 10 Hz

<P >

∝ ρe ∝ 1

ρe

ρe

0 ρec

Fig. 2.12 Power dissipation vs. resistivity for induction-heated cylindrical shell.

Microwave Oven Cooking Cooking in a microwave oven involves induction
heating, but it is different from the type studied here. In a microwave oven the
frequency is set to the dominant vibration frequency of water molecules, enabling
the water in the food to absorb the electromagnetic energy and be heated.
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PROBLEM 2.8: Eddy-current loss in a metallic strip*

In this problem an expression for eddy-current loss in a metallic strip subjected
to a time-varying magnetic field is derived. It is useful in computing eddy-current
heating in copper-matrix superconductor strips. (When induced-current heating
is beneficial, it is usually called induction heating; when it is detrimental, it is
often called eddy-current loss.)

Figure 2.13 shows a “long” (in the x-direction) metallic strip of electrical resistivity
ρe, width b (in the y-direction), and thickness a (in the z-direction) placed in a
time-varying external magnetic induction, dB0/dt = Ḃ0, which is, within zeroth
order, uniform and z-directed.

a) Show that the 1st-order electric field, �E1, can be expressed by:

E1x = yḂ0 (2.66)

b) Show that the spatially-averaged power dissipation density p̃ (over the unit
strip volume) can be expressed by:

p̃ =
(bḂ0)2

12ρe
(2.67)

c) When the external magnetic induction is sinusoidally varying in time with
angular frequency ω, B(t) = B0 sinωt, show that an expression for the time-
averaged p̃, <p̃>, is given by:

<p̃>=
(b ωḂ0)2

24ρe
(2.68)

y

Ḃ0b
2

x

− b
2

↑

→

Fig. 2.13 Metallic strip of width b in a time-varying magnetic field, Ḃ0.

Answer to TRIVIA 2.4: iv). The “magnetostriction” effect of a magnetic field on iron
causes cyclic changes in the iron sheet dimensions, creating hum of frequency twice
that of the current. For 60-Hz current the hum is about an octave below middle C.

* Problem2.7 in the 1st Edition (Plenum, 1994).
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Solution to PROBLEM 2.8

a) Because �B0 is uniform and the system is independent of x, �E1 points only in
the x-direction and depends only on y. That is, ∇× �E1 = −∂ �B0/∂ t reduces to:

−dE1x

dy
= −dB0

dt
= −Ḃ0 (S8.1)

From symmetry, E1x(y = 0) = 0, and we have from Eq. S8.1:

E1x = yḂ0 (2.66)

b) The local power density dissipated in the strip, p(y), is given by �E1 · �J1. The
total power dissipation (per unit strip length), P , is thus given by:

P = a

∫ b/2

−b/2

p(y) dy =
2a(Ḃ0)2

ρe

∫ b/2

0

y2dy =
ab(bḂ0)2

12ρe
(S8.2)

Equation S8.2 is valid for “reasonably” slow variation of B0 and “reasonably”
resistive materials. That is, it is valid only when the induced (1st-order) magnetic
induction generated by �J1 is small compared to B0.

The spatially-averaged dissipation density, p̃, is P divided by the strip cross section:

p̃ =
P

ab
=

(bḂ0)2

12ρe
(2.67)

c) Under sinusoidal excitations the time-averaged total power dissipation density,
<p>, is given by:

<p>= 1
2E1xJ∗

1x (S8.3)

With E1x = jωyB0, J1x = E1x/ρe and <p> averaged over the strip volume is:

<p̃>=
2a(ωB0)2

2ρe(ab)

∫ b/2

0

y2dy =
(b ωB0)2

24ρe
(2.68)

Note that p̃ and <p̃> are proportional, respectively, to (bḂ0)2 and (b ωB0)2; i.e.,
both depend not only on the square of time rate of change of magnetic induction
but also on the square of conductor width.

Discussion 2.4: Lamination to Reduce Eddy-Current Loss

Suppose the strip is cut into two strips, each having a total width of b/2. From
Eqs. 2.67 and 2.68 both p̃ and the total power dissipation (over the two narrow
strips) will be 1/4 the original values. Thus, it is possible to reduce eddy-current
power dissipation to an arbitrarily small value by subdividing the strip. This
lamination technique is used widely in power transformers where iron yokes are
of iron sheets. Similarly, as we shall see in CHAPTERS 5 and 7, superconductors
also benefit from subdivision, leading to the universal choice of multifilamentary
conductors for magnets.
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PROBLEM 2.9: Rogowski coil

A Rogowski coil is an ammeter for time-varying current. It is a toroidal magnetic
pickup coil with its integrated output voltage proportional to the total current
that passes through the cross sectional area encircled by the Rogowski coil. Figure
2.14a shows a Rogowski coil placed to encircle a current, I(t), to be measured. As
indicated in Fig. 2.14a, a Rogowski coil is comprised of N small circular loops
connected in series. The center of each loop of radius c is located radially R from
the current center, which in this drawing points out of the paper. Figure 2.14b
defines the x-y coordinates of one loop.

a) Show that for the case in which c�R, the total flux linkage, Φ(t)=NΦ1(t),
to a Rogowski coil containing N circular loops is given by:

Φ(t) � μ◦Nc2

2R
I(t) (2.69)

where Φ1(t) is the total flux linked to one loop.

b) Show that an exact expression for Φ(t) is given by:

Φ(t) = μ◦N
(
R −

√
R2 − c2

)
I(t) (2.70)

Place one of the N loops centered on the x-y coordinates to compute Φ(t).

c) Show that in the limit (c/R)4� 1, Eq. 2.70 reduces to Eq. 2.69.

d) Show that Φ(t) given by Eq. 2.70 is valid even if the Rogowski coil’s axis is
off-center of the current axis.

e) For a Rogowski coil with N = 3600; c = 3 mm; R = 0.5 m, compute the
volt-seconds generated across its terminal for ΔI(t)=1 MA.

N loops

y

R
c

I(t) x

(a) (b)

Fig. 2.14 (a) Rogowski coil comprised of N circular loops, each of diam-
eter 2c, encircling a time-varying current, I(t), to be measured; (b) Cross-
sectional view of one loop (radius c), centered on the x-y coordinates, with
the loop center located radially R from the center of the current.
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Solution to PROBLEM 2.9

a) The magnetic field Hφ(t) generated by the current I(t) is directed azimuthally
relative to the current. Hφ(t) at R in the radial direction from the center of the
current is given by:

Hφ(t) =
I(t)
2πR

(S9.1)

For c�R, Hφ(t) given by Eq. S9.1 is nearly valid over each loop’s cross sectional
area, πc2. Because there are N such loops in a Rogowski coil, we have:

Φ(t) � μ◦Nc2

2R
I(t) (2.69)

The Rogowski coil output voltage, V (t), is thus given by:

V (t) =
dΦ(t)

dt
=

μ◦Nc2

2R

dI(t)
dt

(S9.2)

b) Because Hφ(t) is not really constant over each loop, the total flux enclosed by
one loop, Φ1(t), should be integrated over the area encircled by the loop. Noting
that x2+y2 =c2, with the loop’s center at (0,0), Φ1(t) is given by:

Φ(t) =
μ◦I(t)

2π

∫ c

−c

∫ √
c2−y2

−
√

c2−y2

1
R + y

dx dy

=
μ◦I(t)

π

∫ c

−c

√
c2 − y2

R + y
dy (S9.3)

Equation S9.3 may be solved in a closed form with a new variable, ξ≡R+y (note
that dξ=dy). Thus, we have:

Φ1(t) =
μ◦I(t)

π

∫ R+c

R−c

√
c2 − R2 + 2Rξ − ξ2

ξ
dξ

= μ◦
(
R −

√
R2 − c2

)
I(t) (S9.4)

The total flux linked to a Rogowski coil having N loops is given by Φ(t)=NΦ1(t):

Φ(t) = μ◦N
(
R −

√
R2 − c2

)
I(t) (2.70)

c) Equation 2.70 may be expressed as:

Φ(t) = μ◦NI(t)

(
R − R

√
1 − c2

R2

)
(S9.5)

Because for x�1,
√

1−x � 1−(1/2)x+(1/8)x2−· · ·, Eq. S9.5 may be given by:

Φ(t) � μ◦N

[
R − R

(
1 − 1

2

c2

R2
+ 1

8

c4

R4
− · · ·

)]
I(t) (S9.6)

Φ(t) � μ◦Nc2

2R
I(t) (2.69)



ELECTROMAGNETIC FIELDS—PROBLEMS & DISCUSSIONS 69

Solution to PROBLEM 2.9 (continuation)

d) Figure 2.15 shows a cross sectional view in the plane normal (x-y) to the
current direction of a current/Rogowski coil set, in which the Rogowski coil is at
the center (x=0, y=0) and the current center is off downward by distance δi.

Key parameters are defined by Fig. 2.15: r, the radial distance from the Rogowski
coil center (0,0) to Point A in one circular loop; θ, the angle between the y-axis
and r; s, the radial distance from the current center to Point A; and ε is the angle
formed between r and s. From geometry, s2 is given by:

s2 = (r cos θ + δi)2 + r2 sin2 θ = r2 + δ2
i + 2rδi cos θ (S9.7)

Forming a right triangle (not indicated in Fig. 2.15) by extending r by a length
δi cos θ, we have:

cos ε =
r + δi cos θ

s
(S9.8)

The magnetic field HA(t) at Point A is given by HA(t) = I(t)/2πs; its normal
component on the Rogowski coil loop at Point A, HA⊥(t), is given by:

HA⊥(t) =
I(t)
2πs

cos ε =
I(t)
2πs

(
r + δi cos θ

s

)
(S9.9)

Combining Eqs. S9.7 and S9.9, we obtain:

HA⊥(t) =
I(t)
2π

(
r + δi cos θ

r2 + δ2
i + 2rδi cos θ

)
(S9.10)

y

2c

R εr
θ

x
s

δi

Current

←− Point A

(0. 0)

Fig. 2.15 Cross sectional view in the plane normal (x, y) to the azimuthal
(current) direction of a current/Rogowski coil set with the Rogowski coil at the
center (0, 0) of the plane and the current center off downward by distance δi.
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Solution to PROBLEM 2.9 (continuation)

To compute Φ(t), Eq. S9.10, multiplied by (N/2π)2
√

c2−(r−R)2, must be inte-
grated twice: once with respect to θ from 0 to 2π, at constant radial distance r,
to account for N loops, and then with respect to r, from R−c to R+c. Note that
2
√

c2−(r−R)2 is the total segment distance (in the z-direction) of each loop of
diameter c at r, which is located at distance r−R from the center of the loop:

Φ(t) =
NI(t)
2π2

∫ R+c

R−c

∫ 2π

0

[
(r + δi cos θ)

√
c2 − (r − R)2

r2 + δ2
i + 2rδi cos θ

]
dθ dr (S9.11a)

=
NI(t)

π

∫ R+c

R−c

[
0 +

√
c2 − (r − R)2

r

]
dr (S9.11b)

Note that the integration remarkably eliminates δi. Now, Eq. S9.11b is integrated
over the radial extent of one loop, from r=R−c to r=R+c, resulting in:

Φ(t) =
NI(t)

π

[
π(R −

√
R2 − c2)

]
(S9.11c)

Thus, a Rogowski coil measures I(t) accurately regardless of its concentricity to
the current that the coil encircles.

e) For N = 3600, c = 3 mm; R = 0.5 m; and ΔI = 1 MA, Eq. 2.69 is applicable
because (c/R)4 = 1.3×10−9 � 1. Thus, from Eq. S9.2:∫

V (t) dt =
μ◦Nc2ΔI

2R

=
(4π×10−7 H/m)(3600)(3×10−3 m)2(1×106 A)

2(0.5 m)

� 41 mV s

In a noisy environment such as the one typical in an experimental fusion machine,
a signal level of 40-mV s is not easy, but not overwhelmingly difficult, to detect.

“ . . .as we know, there are known knowns; these are things we know we
know. We also know there are known unknowns; that is to say we know there
are some things we do not know. But there are also unknown unknowns—
the ones we don’t know we don’t know.” —Donald Rumsfeld (2002)

“ . . .the answer, my friend, is blowin’ in the wind, . . .” —Bob Dylan (1962)



CHAPTER 3

MAGNETS, FIELDS, AND FORCES

3.1 Introduction

In this chapter we study key topics related to magnets, fields, and forces. Mag-
nets treated include: 1) solenoids, single and multiple, e.g., comprised of nested
coils; 2) Helmholtz coils and high-homogeneity magnets; 3) ideal dipoles; 4) ideal
quadrupoles; 5) racetracks; and 6) ideal toroids. Two important solenoidal mag-
nets for the generation of high magnetic fields, “Bitter” and “hybrid,” are also
discussed. Other issues such as “load lines,” minimum volume magnets, superpo-
sition techniques, not included in the 1st Edition, are discussed in the PROBLEMS

&DISCUSSIONS that follow this introductory section.

At the present time, field and force computations are generally performed with
computer codes that for a given magnet configuration give accurate numerical so-
lutions at any location. These codes can also compute the self and mutual induc-
tances of coils comprising the magnet and Lorentz forces acting on the coils [3.1].
Analytical expressions derived in this chapter give field values only at specialized
locations such as the magnet center; however, they illustrate subtle relationships
among fields, forces, and magnet parameters.

In this introductory section, we first study the law of Biot-Savart that is basic to
computation of a magnetic field generated by a current-carrying element in the
absence of magnetic materials. Also presented in this section are rather extensive
treatments of: 1) field analysis; 2) axial forces for “rings” and “thin” solenoids; 3)
stresses and strains in solenoids; and 4) self and mutual inductances.

3.2 Law of Biot-Savart

The differential magnetic field d �H produced at point P by a differential current
element I d�s located at point O, a distance r away from P , is given by:

d �H =
(I d�s × �r )

4πr3
(3.1)

Equation 3.1 is known as the law of Biot-Savart (also known as 1st Law of Laplace).
It indicates that the magnitude of d �H at any location decreases inversely as the
square of the distance from the differential current element: |d �H| ∝ 1/r2. At a
fixed radius, |d �H| varies as sin θ, where θ is the angle between the �s and �r vectors.
We apply Eq. 3.1 to derive an expression for the field along the axis (z) of a loop
of radius a located at z=0 and carrying current I, as illustrated in Fig. 3.1. The
loop’s axis defines the z axis; θ, measured from the z = 0 plane, is defined in
Fig. 3.1; ϕ (not indicated in the figure) is measured in the azimuthal direction.

As seen from Fig. 3.1, the r-component of �H, Hr, at each axial (z) location
cancels, leaving only the z-component, dHz = |d �H| cos θ. For this particular case,
the (I d�s × �r ) term in Eq. 3.1 simplifies to (I d�s × �r )z =Iar cos θ dϕ, leading to:

Hz =
∫ 2π

0

Iar cos θ

4πr3
dϕ =

Ia cos θ

2r2
(3.2)
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z

�H �H

Hz

Hr

r

θ

×ρ z = 0

a

Fig. 3.1 Loop of radius a carrying current I.

With cos θ=a/r and r2 =a2+z2, Hz(z, ρ) on the z-axis (ρ=0), Hz(z, 0), becomes:

Hz(z, 0) =
a2I

2r3
=

a2I

2(a2 + z2)3/2
(3.3a)

In terms of the center (z=0, ρ=0) field, Hz(0, 0), Hz(z, 0) may be given by:

Hz(z, 0) =
Hz(0, 0)

[1 + (z/a)2]3/2
(3.3b)

Equation 3.3a may be used to derive an expression for the field along the axis of a
solenoid of arbitrary winding cross section having any current distribution that is
invariant in the ϕ-direction. PROBLEM 3.1 and DISCUSSION 3.1 are good exam-
ples. From Eq. 3.3b, we note that for z�a or far from the center, the axial field
of a “ring” coil decreases as 1/(z/a)3—this is further studied in PROBLEM 3.11.

3.3 Lorentz Force and Magnetic Pressure

In the presence of magnetic induction �B, an electric charge q in motion with
velocity �v experiences a force �FL, called the Lorentz force: �FL = q�v × �B. For a
conductor element carrying current density �J in the presence of �B, the Lorentz
force density, �fL, is given by:

�fL = �J × �B (3.4)
Equation 3.4 is the basic expression for magnetic forces and stresses in magnets.
As stated at the beginning of CHAPTER 1, whether superconducting and operating
at a temperature in the range 1.8–80 K, or resistive and operating at room tem-
perature, magnets producing the same field must deal with essentially the same
stress level. A magnet’s ultimate field is limited by the strength of its structural
elements, including the current-carrying conductor. Thus, a 50-T superconduct-
ing magnet—if it ever becomes feasible—and a 50-T resistive magnet must both
withstand tremendous Lorentz stresses. As illustrated below, a 50-T magnetic
induction corresponds to an equivalent magnetic pressure of ∼1 GPa (10,000 atm).

Consider an infinitely long, “thin-walled” solenoid (thickness δ) of average diame-
ter 2a carrying a uniformly distributed current, which for the sake of computation
is lumped into a surface current density Kθ [A/m]. The Bz-component of magnetic
induction at (0,0) is given by integration of Eq. 3.3a with respect to z:
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Bz =
μ◦a2Kθ

2

∫ ∞

−∞

dz

(a2 + z2)3/2
= μ◦Kθ ≡ B◦ (3.5)

The integration is taken over the entire range of z because the current “rings”
extend from z = −∞ to z = ∞. The application of Ampere’s law gives that,
for this infinitely long solenoid, �B outside the solenoid (r > a) is zero and that
within the solenoid bore (r < a) is B◦, uniform in both z- and r-directions. (From
symmetry of the current distribution, the field is also independent of θ. Also note
that Eq. 3.3a is valid only for such cases.) That is, the magnetic induction within
the bore of an infinitely long solenoid is completely uniform and directed only in
the z-direction. A more detailed discussion of axial field analysis is given next.

The Bz field just inside the winding is B◦ and that just outside the winding is zero,
decreasing linearly with r over the winding thickness δ. The average induction,
B̃z, to which the current element in the winding is exposed, is thus B◦/2, resulting
in an r-directed average Lorentz force density fLr�ır acting on the winding:

fLr�ır =
Kθ

δ
B̃z�ır =

KθB◦
2δ

�ır (3.6)

An r-directed Lorentz force, FLr�ır acting on the winding volume element, defined
in Fig. 3.2, is equivalent to a magnetic pressure, pm�ır, acting on the winding
surface element, also defined in Fig. 3.2. Thus:

FLr�ır = fLr [(aΔθ)δΔz]�ır = pm[(aΔθ)Δz]�ır (3.7)

Combining Eqs. 3.5–3.7 and solving for pm, we obtain:

pm =
B2

◦
2μ◦

(3.8)

That is, the magnetic pressure is equal to the magnetic energy density. For B◦
equal to 1 T, Eq. 3.8 gives a magnetic pressure of 3.98×105 Pa or ∼4 atm, from
which it follows that for B◦ = 50 T, a magnetic pressure of ∼1 GPa is reached.

a

Δθ

pm
�fLr

δ

Fig. 3.2 Axial view of a differential element for a “thin-walled” solenoid (thickness δ)
of average diameter 2a. The element is Δz high in the z-direction (out of the paper).
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3.4 Field Analysis of Solenoidal Coil

Here, we derive closed-form field expressions useful for analyzing high spatial-field-
homogeneity MRI and NMR solenoidal magnets. Also derived are expressions for
simple (“long” and “thin”) coils; these expressions may be used to “get a feel” for
the field homogeneity of a solenoidal coil during the early design stage.

Figure 3.3 shows a cross sectional view of a solenoidal coil of winding i.d., o.d.,
length (width), respectively, of 2a1, 2a2, and 2b. Field lines are drawn to indicate
that the magnetic field generated by the coil is chiefly axial in the coil bore,
diverging, except along the coil’s axis and at the axial midplane, to the radial
direction, particularly outside the bore. Two dimensionless parameters used in
field analysis of a solenoidal coil are: α≡ 2a2/2a1 =a2/a1 and β≡ 2b/2a1 = b/a1,
respectively, the winding o.d. and length, normalized to the winding i.d.

In spherical coordinates (r, θ, ϕ) as indicated in Fig. 3.4, where θ is polar angle
and ϕ is azimuthal angle, the magnetic field in the z-direction, Hz(r, θ, ϕ), in any
source-free space generated by any system of currents and/or magnetized material
may be expressed by:

Hz(r, θ, ϕ) =
∞∑

n=0

n∑
m=0

rn(n + m + 1)Pm
n (u)(Am

n cos mϕ + Bm
n sinmϕ) (3.9)

As discussed in CHAPTER 2, Pm
n (u) is the set of Legendre polynomials (for m=0)

and associated Legendre functions (for m>0) with u = cos θ.

Am
n and Bm

n are constants. Typically all but A0
0 and B0

0 are to be minimized,
because they contribute to field nonuniformity. Am

n and Bm
n may be minimized by

adjusting the parameters of each coil in the magnet. These parameters, for each
coil, may include winding i.d. (2a1), winding o.d. (2a2), winding length (2b), coil
midplane location relative to the magnet center, and “overall”current density. As
will become clear shortly here, all parameters related to spatial field distribution
are functions only of α and β, the two dimensionless parameters defined above.

Fig. 3.3 Cross sectional view of a solenoidal coil of winding i.d., o.d., and length
(width), respectively, of 2a1, 2a2, and 2b. Field lines are drawn to indicate that
the magnetic field generated by the coil is chiefly axial in the coil bore, diverging,
except along the axial midplane, to the radial direction outside the bore.

2a2

2a1

2b
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z

θ
r

y

ϕ

x

Fig. 3.4 Spherical coordinates.

For solenoidal systems for which all current densities are invariant in ϕ, i.e., sym-
metric with respect to the axis, only the m = 0 terms remain. Along the z-axis
(r=z, θ=0), we may simplify Eq. 3.9 for Hz(z) to:

Hz(z) =
∞∑

n=0

zn(n + 1)A0
n (3.10a)

Along the x- (or y-) axis (x, θ=90◦), at midplane, Eq. 3.9 for solenoids becomes:

Hz(x) =
∞∑

n=0

n∑
m=0

xn(n + m + 1)Pm
n (0)Am

n (3.10b)

Equation 3.10a has no Legendre functions because P 0
n(1)=Pn(1)=1. For Eq. 3.10b

note that Pm
n (0)=0 when n is even and m is odd. Table 2.3 in CHAPTER 2 gives

values of Pm
n (0) for even numbers of m up to m=10. Using values of Pm

n (0) for n
and m=0, 2, and 4, we may express Hz(z) and Hz(x) in Cartesian coordinates:

Hz(z) = A0
0 + 3A0

2z
2 + 5A0

4z
4 + · · · (3.11a)

Hz(x) = A0
0 − ( 3

2A0
2 − 15A2

2)x
2 + ( 15

8 A0
4 − 105

2 A2
4 + 945A4

4)x
4 + · · · (3.11b)

A0
0 is the field at the magnet center (0,0,0): A0

0 ≡ H0. For an “ideal” solenoidal
coil, coefficients are zero for m>0: Am

n =0 for m>0. Coefficients for n>0, m=0,
A0

n, are functions of coil parameters—specifically, α and β. Introducing hz(ζ) ≡
Hz(z)/H0, where ζ ≡ z/a1, and hz(ξ) ≡ Hz(x)/H0, where ξ ≡ x/a1, we obtain:

hz(ζ) = 1 + E2(α, β)ζ2 + E4(α, β)ζ4

+ E6(α, β)ζ6 + E8(α, β)ζ8 + E10(α, β)ζ10 + · · · (3.12a)

hz(ξ) = 1 − 1
2E2(α, β)ξ2 + 3

8E4(α, β)ξ4

− 5
16E6(α, β)ξ6 + 35

128E8(α, β)ξ8 − 63
256E10(α, β)ξ10 + · · · (3.12b)
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Note that the ξ2 term coefficient is only half (and of opposite sign) of the ζ2

coefficient, and the ξ4 term is 3/8 of the ζ4 term and of the same sign. Indeed,
every coefficient in the plane direction is numerically smaller than that in the z-
direction, so that field inhomogeneity tends to be smaller in the x- and y-directions
than that in the z-direction.

The center field H0 (≡ A0
0) is given by:

H0 = λJa1F (α, β) = λJa1β ln

[
α+

√
α2+β2

1+
√

1+β2

]
(3.13a)

From Eq. 3.13a, we note that:

F (α, β) = β ln

[
α+

√
α2+β2

1+
√

1+β2

]
(3.13b)

F (α, β) is the “field factor” for a uniform-current-density coil [3.2]. Derivation of
Eq. 3.13 is left to PROBLEM 3.1. Expressions of En(α, β) in Eq. 3.12 for n=2, 4,
6, 8, and 10 are given below as the product of F (α, β) and En(α, β) [3.3].

F (α, β)E2(α, β)=
1
2β

[
1

(1+β2)1.5
− α3

(α2+β2)1.5

]
(3.14a)

F (α, β)E4(α, β)=
1

24β3

[
2+7β2+20β4

(1+β2)3.5
− 2α7+7α5β2+20α3β4

(α2+β2)3.5

]
(3.14b1)

Equation 3.14b1 may be given more concisely as:

F (α, β)E4(α, β)=− r3

24β3

[
2r4+7r2β2+20β4

(r2+β2)3.5

]∣∣∣∣
r=α

r=1

(3.14b2)

This concise format is used below for terms of the 6th, 8th, and 10th order:

F (α, β)E6(α, β)=− r3

240β5

[
8r8+44r6β2+99r4β4+28r2β6+280β8

(r2+β2)5.5

]∣∣∣∣
r=α

r=1

(3.14c)

F (α, β)E8(α, β)=− r3

896β7

⎡
⎣ 16r12+120r10β2+390r8β4+715r6β6

+1080r4β8−1008r2β10+1344β12

(r2+β2)7.5

⎤
⎦
∣∣∣∣∣∣
r=α

r=1

(3.14d)

F (α, β)E10(α, β)=

− r3

11520β9

⎡
⎣ 128r16+1216r14β2+5168r12β4+12920r10β6+20995r8β8

+19976r6β10+49632r4β12−46464r2β14+21120β16

(r2+β2)9.5

⎤
⎦
∣∣∣∣∣∣
r=α

r=1

(3.14e)
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F (α, β)En(α, β) is a recurrence formula; the nth term may be derived from:

F (α, β)En(α, β) =
1
n

∂

∂β

[
F (α=1, β)En−1(α=1, β) − F (α, β)En−1(α, β)

]
(3.15a)

F (α, β)En(α, β) may also be expressed as:

F (α, β)En(α, β) =
1

Mnβn−1

[
fn(α=1, β)
(1+β2)n−0.5

− α3fn(α, β)
(α2+β2)n−0.5

]
(3.15b)

where Mn is a constant. From Eqs. 3.14a, 3.14b1, and 3.15b, for example, we find:
f2(α, β) = 1 and M2 = 2; and f4(α, β) = 2α4+7α2β2+20β4 and M4 = 24. Values
of Mn and expressions of fn(α, β) for n = 2, 3, 4, . . . , 18, 19, and 20 are given in
APPENDIX IB. In PROBLEM 3.4, fn(α, β)s for even numbers of n up to 20 are
used to solve a field problem.

Henceforth we consider only the z-axis, because, as discussed above (Eqs. 3.12a
and 3.12b), field inhomogeneity of Hz(z), though not always (as in some nested-
coil magnets), is greater than those in the plane normal to the z-axis, i.e., Hz(x)
and Hz(y). From Eq. 3.12a, we obtain:

∂2hz(ζ)
∂ζ2

= [2E2(α, β) + (4)(3)E4(α, β)ζ2 + · · ·]

=
∞∑

n=1

(2n)(2n−1)E2n(α, β)ζ2(n−1) (3.16a)

In general:

∂2khz(ζ)
∂ζ2k

=
∞∑

n=k

(2n)(2n−1)(· · ·)(2n−2k+1)E2n(α, β)ζ2(n−k) (3.16b)

At the origin, ζ = 0, Eqs. 3.16a and 3.16b reduce to simpler expressions because
only the first term is nonzero. Thus:

∂2hz(ζ)
∂ζ2

∣∣∣∣
0

= 2E2(α, β) (3.17a)

∂2khz(ζ)
∂ζ2k

∣∣∣∣
0

= (2k)!E2k(α, β) (3.17b)

Nested-Coil Magnet

For a magnet comprised of  nested (coaxial and concentric) coils, each of λJ , a1,
α, β, Eq. 3.12a, given only up to the ζ2 term, is generalized:

hz(ζ)=1 +

∑�
j=1(λJ)j a1j

F (αj , βj)E2(αj , βj)∑�
j=1(λJ)j a1j

F (αj , βj)
ζ2 + · · · (3.18)

Before discussing in 3.4.2 errors arising in a two-coil nested magnet, we shall first
consider a few special cases for single solenoidal coils.
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3.4.1 Simple Coils

Here, we derive for “simple” coils expressions of En(α, β), and hence hz(ζ), up to
the 10th order. Each expression of hz(ζ) should give the designer, without relying
on a field analysis specialist, a “feel” for how the field homogeneity of the coil
under consideration is affected by its geometric shape, i.e., α and β.

“Short” Coil

For a short coil (β → 0), such as a pancake, F (α, β) may be simplified as:

F (α, β→0)=β lnα (3.19)

Although extremely tedious, expressions for E2(α, 0), . . . , E10(α, 0) may be derived
from Eq. 3.14. In the limit β → 0, the denominator of each term in fn(α, β), e.g.,
(1+β2)n−0.5, may be expanded in a power series of β2k up to the βn term, where
the integer k runs from 1 to n/2.

1
(1+β2)n−0.5

=1−(n−0.5)β2+(n−0.5)(n+0.5)
β4

2!

−(n−0.5)(n+0.5)(n+1.5)
β6

3!
+ · · ·

(−1)k(n−0.5)(n+0.5)(n+1.5) · · · (n+k−1.5)
β2k

k!
(3.20)

In the limit of β → 0, the terms higher than βn in the right-hand side of Eq. 3.20
become negligible compared with βn. Also, remarkably, all the terms below βn

cancel out, leaving only the βn term in the numerator within the brackets of the
right-hand side of Eq. 3.14 with a numerical coefficient, e.g., −3/4 for n=2.

En(α, 0) terms, derivable from Eqs. 3.14 and 3.19, may be given by:

E2(α, 0) = − 3
22

· (α
2 − 1)

α2 lnα
= −3(α2 − 1)

4α2 lnα
(3.21a)

E4(α, 0) =
3·5
25

· (α
4 − 1)

α4 lnα
=

15(α4 − 1)
32α4 lnα

(3.21b)

E6(α, 0) = − 5·7
25 ·3 ·

(α6 − 1)
α6 lnα

= −35(α6 − 1)
96α6 lnα

(3.21c)

E8(α, 0) =
5·7·9
210

· (α
8 − 1)

α8 lnα
=

315(α8 − 1)
1024α8 lnα

(3.21d)

E10(α, 0) = −7·9·11
29 ·5 · (α

10 − 1)
α10 lnα

= −693(α10 − 1)
2560α10 lnα

(3.21e)

Thus, Eq. 3.12a becomes:

hz(ζ) = 1 − 3(α2−1)
4α2 lnα

ζ2 +
15(α4−1)
32α4 lnα

ζ4 − 35(α6−1)
96α6 lnα

ζ6

+
315(α8−1)
1024α8 lnα

ζ8 − 693(α10−1)
2560α10 lnα

ζ10 + · · · (3.22)
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“Thin-Walled” Coil

For a “thin-walled” coil (α=1), F (α, β) becomes:

lim
α→1

F (α, β) = β
ε√

1 + β2
(3.23a)

=
β(α − 1)√

1 + β2
(3.23b)

Combining Eqs. 3.14 and 3.23, we may obtain expressions for En(1, β):

E2(1, β) = − 3
2(1+β2)2

(3.24a)

E4(1, β) =
5(3−4β2)
23(1+β2)4

(3.24b)

E6(1, β) = −7(5−20β2+8β4)
24(1+β2)6

(3.24c)

E8(1, β) =
9(35−280β2+336β4−64β6)

27(1+β2)8
(3.24d)

E10(1, β) = −11(63−840β2+2016β4−1152β6+128β8)
28(1+β2)10

(3.24e)

Thus for a “thin-walled” coil (α=1, β), we have:

hz(ζ) = 1 − 3
2(1+β2)2

ζ2 +
5(3−4β2)
8(1+β2)4

ζ4 − 7(5−20β2+8β4)
16(1+β2)6

ζ6

+
9(35−280β2+336β4−64β6)

128(1+β2)8
ζ8

− 11(63−840β2+2016β4−1152β6+128β8)
256(1+β2)10

ζ10 (3.25)

“Thin-Walled & Long” Coil

For a “thin-walled & long” coil (α=1 and β→∞), Eq. 3.25 simplifies to:

hz(ζ) = 1 − 1.5
β4

ζ2 − 2.5
β6

ζ4 − 3.5
β8

ζ6 − 4.5
β10

ζ8 − 5.5
β12

ζ10 − · · · − n + 1
2βn+2

ζn (3.26)

As may be inferred from Eq. 3.26, note that in the limiting case of β → ∞,
En(1, β)=−(n+1)/2β(n+2). As expected, homogeneity improves with coil length.
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“Ring” Coil

For a “ring” coil (α=1, β =0), En(α, β) is derivable from Eq. 3.21 in the limit of
α=1, or from Eq. 3.25 in the limit β=0. In Eq. 3.21,

lim
α→1

αn−1
αn lnα

= n (3.27)

Thus, we may derive the same expressions by combining Eqs. 3.21 and 3.27 or
simply inserting β=0 in each expression of Eq. 3.24. Either way, we obtain:

E2(1, 0) = −3
2

= −1.5 (3.28a)

E4(1, 0) =
3·5
23

=
3·5
2·4 = 1.875 (3.28b)

E6(1, 0) = −5·7
24

= −3·5·7
2·4·6 � −2.188 (3.28c)

E8(1, 0) =
5·7·9
27

=
3·5·7·9
2·4·6·8 � 2.461 (3.28d)

E10(1, 0) = −7·9·11
28

= −3·5·7·9·11
2·4·6·8·10

� −2.707 (3.28e)

Thus, for a “ring” coil, hz(ζ) is given by:

hz(ζ) = 1 − 3
2ζ2 + 15

8 ζ4 − 35
16ζ6 + 315

128ζ8 − 693
256ζ10 + · · · (3.29)

Values of E12(1, 0), E14(1, 0), E16(1, 0), E18(1, 0), and E20(1, 0) are given, respec-
tively, by Eqs. 3.124a, 3.124b, 3.124c, 3.124d, and 3.124e in PROBLEM 3.4 (p. 140).

Stronger Magnets (Part 1 of 2 Parts)

—Passage from Francis Bitter’s Magnets: The Education of a Physicist [3.4]

The strength of a magnetic field may be expressed in a unit called a gauss,
which, like many quantities in physics, is named after a distinguished scientist.
Karl Friedrich Gauss, 1777–1855, who devoted himself particularly to mathematics,
astronomy, and magnetism, gave his name to this one. For an idea of what this unit
means, we might say that a rather weak magnetic field—for example, that existing at
the surface of the earth—is somewhat less than a gauss. The field between the poles
of little toy horseshoe magnets may be as high as hundreds of gauss, or in really
strong ones, such as are used in commercial apparatus, a thousand gauss or so.
Between the pole pieces of a big electromagnet, like the one I used for my thesis,
one might make fields of the order of 20,000 to 30,000 gauss. Fields somewhat
higher than this can be produced by an iron electromagnet, but they are not very
useful because they are confined to the very small volumes between the pointed pole
pieces of the magnet.
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3.4.2 Harmonic Errors—In a Nested Two-Coil Magnet

Equations 3.12a and 3.12b indicate that both hz(ζ) and hz(ξ), where hz ≡Hz/H0,
ζ≡z/a1, and ξ≡x/a1, vary only as even-numbered powers of either ζ or ξ. That
is, both equations express the spatial variations of the axial field for an “ideal”
solenoid or an “ideal” nested set of such solenoids. Here the word “ideal” implies
spatial symmetry, uniformity, and invariance in the current density.

Even for a single solenoid, reality is quite different: imperfections in the coil form;
conductor dimensions and shape; placement of conductor, for example, result in
terms other than those even-numbered. If a magnet consists of nested coils, the
number of imperfections multiplies, and many “unwanted” terms will arise. Below,
we illustrate the origin of harmonic errors with a two-coil nested magnet.

Consider a two-coil nested magnet of solenoidal Coil 1 of [2a1]1, α1, β1, and [λJ ]1
in the bore of solenoidal Coil 2 of [2a1]2, α2, β2, and [λJ ]2. If the two coils are
aligned axially and radially, then

Hz(z) = [Hz(z)]1 + [Hz(z)]2 (3.30)

where [Hz(z)]1 and [Hz(z)]2 may be given, from Eq. 3.11a:

[Hz(z)]1 = [A0
0]1 + 3[A0

2]1z
2 + 5[A0

4]1z
4 + · · · (3.31a)

[Hz(z)]2 = [A0
0]2 + 3[A0

2]2z
2 + 5[A0

4]2z
4 + · · · (3.31b)

Note that the total axial field at the center: Hz(0)=[A0
0]1 + [A0

0]2≡H0.

Coils Misaligned Axially

If Coils 1 and 2 are radially aligned, i.e., coaxial, but their midplanes are misaligned
and are, respectively, at z=0 and z=δz, then Hz(z) of Eq. 3.31 becomes:

Hz(z) = H0+3{[A0
2]1z

2+[A0
2]2(z−δz)2}+5{[A0

4]1z
4+[A0

4]2(z−δz)4}+· · · (3.32a)

Expansion of the power terms in Eq. 3.32a results in:

Hz(z) = {H0 + 3[A0
2]2δ

2
z + 5[A0

4]2δ
4
z + · · ·}

− {6[A0
2]2δz + 20[A0

4]2δ
3
z + · · ·}z

+ {3[A0
2]1 + 3[A0

2]2 + 30[A0
4]2δ

2
z + · · ·}z2

− {20[A0
4]2δz + · · ·}z3

+ {5[A0
4]1 + 5[A0

4]2 · · ·}z4 (3.32b)

As may be observed from Eq. 3.32b an axial misalignment of Coils 1 and 2 by δz not
only perturbs the coefficient of each even-numbered z-term but, more importantly,
gives rise to odd-numbered z-terms which make Hz(z) axially asymmetric.
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In a real NMR magnet consisting of many nested coils an axial misalignment is
inevitable. The z-term, for example, either results in the broadening of the NMR
spectral lines or creates “dips” at each peak in the spectrum. The z3-term also
broadens the spectrum, chiefly at frequencies away from the central frequency.

Axial Shim Coils

These unwanted terms are minimized by “shim” coils that are added to the su-
perconducting magnet, located outside of its “correction” coils; further shimming
is achieved by room-temperature shim coils located in the radial gap between the
probe and the cryostat room-temperature bore.

A shim coil that minimizes an even-numbered z-term is essentially a “Helmholtz”
coil, the basic principle of which is studied in PROBLEM 3.3; a shim coil that
minimizes an odd-numbered z-term is also of Helmholtz type but with one of its
coils of opposite polarity, to generate an axially antisymmetric field.

Coils Misaligned Radially

To study the spatial variation of a two-coil nested magnet misaligned radially,
we first express Hz(x, y, z) of a single solenoid in Cartesian coordinates. From
Eq. 3.11 and Table 2.4 for Legendre functions of n=0, n=2, and n=4, we have:

Hz(x, y, z) = A0
0 + 3A0

2

[
z2 − 1

2 (x2 + y2)
]

+ 5A0
4

{
z4 − 3(x2 + y2)

[
z2 − 1

8 (x2 + y2)
] }

(3.33a)

When Coil 2 is misaligned radially with respect to Coil 1, in the x-direction by δx

and in the y-direction by δy, we substitute x−δx for x and y−δy for y in Eq. 3.33a:

Hz(x, y, z)=H0+3
(
[A0

2]1[z
2− 1

2 (x2+y2)]+[A0
2]2

{
z2− 1

2 [(x−δx)2+(y−δy)2]
})

+5[A0
4]1

{
z4−3(x2+y2)[z2− 1

8 (x2+y2)]
}

+[A0
4]2

(
z4−3

[
(x−δx)2 + (y−δy)2

]{
z2− 1

8

[
(x−δx)2+(y−δy)2

] })
(3.33b)

Expansion of Eq. 3.33b results in many terms, including x, x2, x3, x4, y, y2, y3,
y4, xy, xy2, x2+y2, (x2+y2)2, z2, z2x, z2y, and z2(x2+y2).

An x-shim coil consists often of a pair of flat (one or a few conductors thick),
rectangular-shaped coils, “saddled” to conform to the magnet’s outer cylindrical
surface, with the axis along the ϕ = 0 (x) direction. It generates a z-directed
field that increases with x, being zero at the z-axis (x=0). Similarly, y-shim and
xy-shim coil pairs are placed, respectively, along the ϕ=90◦ (y) and ϕ=45◦ axes.
Each coil generates a z-directed field that increases away from the z-axis.

Coils Misaligned Axially & Radially

When nested coils are misaligned both axially and radially—an inevitable conse-
quence in a real NMR— xz, yz, xyz, and many more error harmonics can result.
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3.5 Axial Forces

We present here useful analytical expressions for axial forces, Fz, among coaxially
aligned “ring” coils and “thin-walled” solenoids, all derived from the original ex-
pressions given by Garrett [3.5]. Approximate expressions for limiting cases, e.g.,
coils far apart, are useful to make quick numerical checks; others may be used as
the building blocks to create one’s own computer code. In all cases, current flows
in the same direction; reversing either current reverses the force.

3.5.1 Axial Force between Two “Ring” Coils

Figure 3.5 shows two “ring” coils (α = 1, β = 0) coaxially (�ız) separated by a
distance ρ. Coils A and B are, respectively, of diameters 2aA and 2aB and total
ampere turns of NAIA and NBIB. The axial (�ız) field generated by each coil points
in the same direction. The axial force, FzA(ρ) on Coil A due to Coil B is given by:

FzA(ρ) =
μ◦
2

(NAIA)(NBIB)
ρ
√

(aA + aB)2 + ρ2

(aA − aB)2 + ρ2

×
{

k2K(k) + (k2 − 2)[K(k) − E(k)]
}

(3.34)

FzA(ρ) is +z-directed or towards Coil B; i.e., FzA(ρ) is attractive. If the two cur-
rents flow in opposite directions, the sign changes to minus, and FzA(ρ) becomes
repulsive. In Eq. 3.34, K(k) and E(k) are the complete elliptic integrals, respec-
tively, of the first and second kinds, defined below.

K(k) =
∫ π/2

0

dθ√
1 − k2 sin2 θ

(3.35a)

E(k) =
∫ π/2

0

√
1 − k2 sin2 θ dθ (3.35b)

The modulus, k, of the elliptic integrals for this system is given by:

k2 =
4aAaB

(aA + aB)2 + ρ2
(3.36)

2aA 2aB
z

ρ

Fig. 3.5 “Ring” coils A and B coaxially aligned and separated by a distance ρ.
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Table 3.1: Complete Elliptic Integrals of the First and Second Kinds:

K(k) and E(k) for Selected Values of k2 and k

k2 k K(k) E(k) k2 k K(k) E(k)

0 0 π/2 π/2 0.7 0.8367 2.0754 1.2417

0.1 0.3162 1.6124 1.5308 0.8 0.8944 2.2572 1.1785

0.2 0.4472 1.6596 1.4890 0.90 0.9487 2.5781 1.1048

0.3 0.5477 1.7139 1.4454 0.95 0.9747 2.9083 1.0605

0.4 0.6325 1.7775 1.3994 0.98 0.9899 3.3541 1.0286

0.5 0.7071 1.8541 1.3506 0.99 0.9950 3.6956 1.0160

0.6 0.7746 1.9496 1.2984 1 1 ∞ 1

Table 3.1 gives K(k) and E(k) for selected values of k2 and k. Note that K(0)=
E(0) = π/2; also obvious are K(1)=∞ and E(1)=1, i.e., K(k) increases with k,
whereas E(k) decreases with k. For example, if k2 =0.5, K(k=0.7071)=1.8541.

K(k) and E(k) may be expressed by power series in k2:

K(k) =
π

2

[
1+

(
1
2

)2

k2+
(

1·3
2·4

)2

k4+
(

1·3·5
2·4·6

)2

k6+
(

1·3·5·7
2·4·6·8

)2

k8+· · ·
]

(3.37a)

E(k) =
π

2

[
1−

(
1
2

)2

k2−
(

1·3
2·4

)2
k4

3
−

(
1·3·5
2·4·6

)2
k6

5
−

(
1·3·5·7
2·4·6·8

)2
k8

7
−· · ·

]
(3.37b)

For k2�1, the two integrals and their difference may be approximated by:

K(k) � π

2
(
1 + 1

4k2 + 9
64k4 + 25

256k6 + 1225
16384k8

)
(3.38a)

E(k) � π

2
(
1 − 1

4k2 − 3
64k4 − 5

256k6 − 175
16384k8

)
(3.38b)

K(k) − E(k) � π

4
(
k2 + 3

8k4 + 15
64k6 + 175

1024k8
)

(3.38c)

Stronger Magnets (Part 2 of 2 Parts)

—Passage from Francis Bitter’s Magnets: The Education of a Physicist

The reason for this limitation is not hard to find. An electromagnet consists of
an iron core surrounded by coils of wire. The current in the wire magnetizes the
iron and the magnetized iron produces a field at the gap between the poles. In the
last chapter we discussed magnetic saturation—the condition achieved when all the
little ferromagnetic domains are pointing in the same direction. In iron at room
temperature this is in the vicinity of 20,000 gauss, and it is roughly the maximum
field that you can produce with iron core magnets. The slight increase to 30,000
gauss or so is due to an effect that we already have mentioned. There is a tendency
for a magnetic field to be concentrated near corners or points. By having pointed
pole pieces rather than flat ones larger fields may be obtained. (See PROBLEM 2.7).
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Special Case 1: Two Ring Coils Far Apart

When two ring coils are far apart, i.e., ρ2 	 (aA +aB)2, then k2 � 1 and approxi-
mations of Eqs. 3.38a and 3.38c may be used to simplify Eq. 3.34. Equation 3.34
may first be simplified to:

FzA(ρ) � μ◦
2

(NAIA)(NBIB)
{

k2K(k) + (k2 − 2)[K(k) − E(k)]
}

(3.39a)

Now, in applying Eqs. 3.38a and 3.38c, although k2 � 1, we must include terms
up to k4 when expanding the K(k)−E(k) term because it is multiplied not only
by k2 but also by −2.

FzA(ρ) � μ◦
2

(NAIA)(NBIB)

×
[
k2

(π

2
+

π

8
k2

)
+ (k2 − 2)

(
π

4
k2 +

3π

32
k4

)]

� μ◦
2

(NAIA)(NBIB)
(

3π

16
k4

)
(3.39b)

In the second approximation step, the k6 term is neglected. Finally, we have a
simple expression in the limit ρ2	(aA+aB)2:

FzA(ρ) =
3μ◦
2π

(
πa2

A NAIA

ρ2

)(
πa2

B NBIB

ρ2

)
(3.39c)

Equation 3.39c states that this axial force is proportional to the product of two
“magnetic moments,” i.e., πa2

A NAIA and πa2
B NBIB, each reduced by ρ2. In Discus-

sion 3.17 (p. 213), Eq. 3.39c is derived from an expression of mutual inductance.

Special Case 2: Two Adjacent Ring Coils of the Same Diameter

When two ring coils have the same diameter aA =aB =a and are very close to each
other, i.e., ρ�2a, hence k2→1 and K(k)→∞ and E(k)→1, then Eq. 3.34 may
be transformed to an expression much simpler than Eq. 3.34:

FzA(ρ) � μ◦(NAIA)(NBIB)
(

a

ρ

)
(3.39d)

We may derive Eq. 3.39d as the product of Ring A circumference (2πa), Ring A
total current (NAIA), and the radial field (Br) on Ring A, generated by Ring B
axially ρ from Ring A, given approximately by μ◦NBIB/(2πρ) for ρ�a—note that
two rings ρ�a apart may be modeled as two straight lines ρ apart. Thus:

FzA(ρ) � (2πa)×(NAIA)×
(

μ◦NBIB

2πρ

)

= μ◦(NAIA)(NBIB)
(

a

ρ

)
(3.39d)

TRIVIA 3.1 A legend has it that one of the mathematicians below advanced
his argument for the existence of God by using an irrelevant algebraic equation:
“Sir, (a+b)n/n=x; hence God exists, answer please!” Who (and to whom)?

i) Euler; ii) Gauss; iii) Laplace; iv) Legendre.
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3.5.2 Axial Force Within a “Thin-Walled” Solenoid

Consider a thin-walled (α=1) solenoid of 2a diameter and 2b length with a uniform
surface current density of NI/2b with its midplane at z=0. For this solenoid the
axial force at a location z≥0 from the midplane, Fz(z), may be given by:

Fz(z) = −μ◦
2

(
NI

2b

)2 {
(b − z)

√
4a2 + (b − z)2

[
K(kb−) − E(kb−)

]
+ (b + z)

√
4a2 + (b + z)2

[
K(kb+) − E(kb+)

]
− 2b

√
4a2 + 4b2

[
K(k2b) − E(k2b)

]}
(3.40)

The elliptic integral moduli, kb− , kb+ , and k2b, are given by:

k2
b− =

4a2

4a2 + (b − z)2
; k2

b+ =
4a2

4a2 + (b + z)2
; k2

2b =
4a2

4a2 + 4b2

Special Case 3: End Force

At z=b, because kb+ =k2b, we have, from Eq. 3.40, Fz(b)=0. That is, as expected,
the axial force at each end of an isolated solenoid is zero.

Special Case 4: Midplane Force

By inserting z=0 into Eq. 3.40, we obtain an expression for the axial force at the
midplane (z=0), Fz(0).

Fz(0)=−μ◦
2

(
NI

2b

)2{
2b

√
4a2+b2 [K(kb)−E(kb)]

−2b
√

4a2+4b2
[
K(k2b)−E(k2b)

]}
(3.41a)

where the modulus k2b is the same as given above and kb is given by:

k2
b =

4a2

4a2 + b2

The axial compressive force at z in an isolated solenoid increases from 0 at z = b
to the maximum at the midplane, Fz(0), given by Eq. 3.41a.

Special Case 5: Midplane Force for a “Long” Thin-Walled Solenoid

For a “long” (β	1 or k2 �1) thin-walled solenoid, Eq. 3.41a, with the approxi-
mation of Eq. 3.38c, reduces to a simple expression for Fz(0).

Fz(0) � −μ◦
2

(
NI

2b

)2

πa2 (3.41b)

Equation 3.41b states that Fz(0) is independent of coil length for a constant value
of surface current density NI/2b. Because for a long solenoid, NI/2b=Hz(0, 0),
the axial center field (see PROBLEM 3.1), we have:

Fz(0) � − 1
2μ◦H

2
z (0, 0)×πa2 (3.41c)

Fz(0) is thus equal to the magnetic pressure times the area of the coil bore. Indeed,
it will be seen below that every expression of the axial force derived here begins
with this magnetic pressure term, i.e., μ◦(NI/2b)2 or its equivalent form.
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3.5.3 Axial Force Between a Thin-Walled Solenoid and Ring Coil

Figure 3.6 shows a thin-walled solenoid (2as, 2bs, NSIS/2bS) coaxial with a ring coil
(2aR and NRIR). The right-hand end of the solenoid is at distance ρ left of the ring
coil. The axial field generated by each coil points in the same direction. The axial
force on the solenoid, FzS(ρ), is given by:

FzS(ρ) = −μ◦
2

(NRIR)
(

NSIS

2bS

)
×

(√
(aR+aS)2+(ρ + 2bS)2

{
2
[
K(kS) − E(kS)

]
− k2

S K(kS)
}

−
√

(aR+aS)2+ρ2
{

2
[
K(kR)−E(kR)

]
−k2

R K(kR)
})

(3.42)

The moduli kS and kR are given by:

k2
S =

4aSaR

(aS + aR)2 + (2bS + ρ)2
; k2

R =
4aSaR

(aS + aR)2 + ρ2

In the right-hand side of Eq. 3.42 the second term is greater than the third term,
so FzS(ρ) is positive; i.e., the axial interaction force is attractive.

Special Case 6: Thin-Walled Solenoid and Ring Coil Far Apart

When these two coils are far apart such that k2
S �1 and k2

R �1, we obtain:

FzS(ρ) � μ◦
2π

(πa2
R NRIR)

(
πa2

S NSIS

2bs

) [
1
ρ3

− 1
(ρ + 2bS)3

]
(3.43a)

Again as with the two ring coils treated above, FzS(ρ), +z-directed (towards the
ring), is proportional to the product of two “magnetic moments.”

Special Case 7: Thin-Walled Solenoid and Ring Coil Farther Apart

When these two coils are so far apart that ρ 	 2bs, the second term within the
brackets in Eq. 3.43a may be expanded, and we obtain:

FzS(ρ) � μ◦
2π

(πa2
R NRIR)

(
πa2

S NSIS

2bS

)
6bS

ρ4
(3.43b)

Note that, as expected, Eq. 3.43b is equivalent to Eq. 3.39c.

NRIRNSIS

2aR
2aS z

2bS
ρ

Fig. 3.6 “Thin-walled” solenoid and a ring coil coaxially aligned and separated by ρ.
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3.5.4 Axial Force between Two Thin-Walled Solenoids

Here, we derive an equation for the axial force between two thin-walled solenoids;
it is based on, but expanded considerably from, the original formulation by Gar-
rett [3.5]. The equation becomes the basis for the axial forces between solenoids
that are generally not thin-walled, presented next in 3.5.5.

Consider two coaxial thin-walled solenoids, A (2aA; 2bA; NAIA/2bA) and B (2aB; 2bB;
NBIB/2bB). As shown in Fig. 3.7, the right-hand end of Solenoid A is at distance ρ
left of the left-hand end of Solenoid B. The axial field generated by each solenoid
points in the same direction.

Axial Force on Solenoid A by Solenoid B

For Solenoid A, the axial force due to Solenoid B, FzAB, may be given by:

FzAB(ρ) =
μ◦
2

(
NAIA

2bA

)(
NBIB

2bB

)
×

(
2bA+ρ√

a2
T +(2bA+ρ)2

{
[a2

T +(2bA+ρ)2]
[
K(kA)−E(kA)

]
−Υ(c2, kA)

}

+
2bB+ρ√

a2
T +(2bB+ρ)2

{
[a2

T +(2bB+ρ)2]
[
K(kB)−E(kB)

]
−Υ(c2, kB)

}

− 2bT+ρ√
a2

T +(2bT+ρ)2

{
[a2

T +(2bT+ρ)2]
[
K(kT)−E(kT)

]
−Υ(c2, kT)

}

− ρ√
a2

T +ρ2

{
(a2

T +ρ2)
[
K(kρ)−E(kρ)

]
−Υ(c2, kρ)

})
(3.44)

where aT =aA+aB and bT =bA+bB. The moduli, kA, kB, kT, and kρ, are given by:

k2
A =

4aAaB

a2
T + (2bA+ρ)2

; k2
B =

4aAaB

a2
T +(2bB + ρ)2

k2
T =

4aAaB

a2
T +(2bT + ρ)2

; k2
ρ =

4aAaB

a2
T + ρ2

NBIB

NAIA

2aA 2aB

2bB
2bA ρ

Fig. 3.7 Thin-walled Solenoids, A and B, with the two nearest ends separated by ρ.
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In Eq. 3.44, Υ(c2, k) is defined by:

Υ(c2, k) ≡ (aA − aB)2[Π(c2, k) − K(k)] (3.45)

Π(c2, k) is the complete elliptic integral of the third kind, defined by:

Π(c2, k) =
∫ π/2

0

dθ

(1 − c2 sin2 θ)
√

1 − k2 sin2 θ
(3.46)

As evident from Eq. 3.46, Π(c2, k) has two moduli, c2≤1 and k≤1. The modulus
c2 in the cases considered here is given by:

c2 =
4aAaB

a2
T

=
4aAaB

(aA + aB)2
(3.47)

Π(0, k) = K(k) and Π(1, k)=∞. Π(c2, k) may be expressed in a power series in c2

and k2:

Π(c2, k) =
π

2

∞∑
m=0

m∑
j=0

(2m)! (2j)! k2j c2(m−j)

4m 4j (m!)2 (j!)2
(3.48)

Low-order terms are:

Π(c2, k) =
π

2

(
1+ 1

2c2+ 1
4k2+ 3

8c4+ 3
16c2k2+ 9

64k4+

+ 5
16c6+ 5

32c4k2+ 15
128c2k4+ 25

256k6+· · ·
)

(3.49a)

Π(c2, 0) =
π

2

(
1+ 1

2c2+ 3
23 c4+ 5

24 c6+ 5·7
27 c8+ 7·9

28 c10+ 3·7·11
210 c12

+ 3·11·13
211 c14+ 5·9·11·13

215 c16+ 5·11·13·17
216 c18+ 11·13·17·19

218 c20+· · ·
)

(3.49b)

Note that when c2 =0, Eq. 3.49a becomes identical to Eq. 3.38a, because as noted
above, Π(0, k) = K(k). However, for most problems of interest c2 is generally
close to 1, in which case neither expansion of Eq. 3.49 is very useful, since rapid
convergence requires c2�1. Later, in discussing mutual inductance, we shall use
Eq. 3.49b. Table 3.2 gives Π(c2, k) for selected values of c2 and k2. Mathcad and
a number of other software programs can evaluate K(k), E(k), and Π(c2, k).

Special Case 8: Total Midplane Force on Solenoid A

Let us first consider the case in which Solenoids A and B each have the same length
(2b) and surface current density (NI/2b) but different diameters. By making the
following substitutions to Eq. 3.44, 2bA = 2bB = 2b, NAIA/2bA = NBIB/2bB = NI/2b,
and ρ=0 (no gap between the two nearest ends of Solenoids A and B), we obtain
an expression for the total midplane force on Solenoid A, FzA(0), which becomes
useful when we consider a solenoid that is not “thin-walled.”

FzA(0) =
μ◦
2

(
NI

2b

)2

×
(

4b√
a2

T +4b2

{
[a2

T +4b2]
[
K(k2b)−E(k2b)

]
−Υ(c2, k2b)

}

− 4b√
a2

T +16b2

{
[a2

T +16b2]
[
K(k4b)−E(k4b)

]
−Υ(c2, k4b)

})
(3.50)
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Table 3.2: Complete Elliptic Integral of the Third Kind Π(c2, k)

For Selected Values of c2 and k [ Π(0, 0)=π/2; Π(1, k)=∞; Π(c2, 1)=∞ ]

c2 k=0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.999

0.1 1.6558 1.6600 1.6732 1.6961 1.7307 1.7803 1.8509 1.9541 2.1173 2.4295 4.8804

0.2 1.7562 1.7609 1.7752 1.8002 1.8380 1.8923 1.9696 2.0829 2.2625 2.6077 5.3514

0.4 2.0279 2.0336 2.0513 2.0822 2.1290 2.1963 2.2925 2.4343 2.6604 3.1001 6.7100

0.6 2.4836 2.4913 2.5148 2.5561 2.6187 2.7090 2.8389 3.0315 3.3418 3.9550 9.2511

0.8 3.5124 3.5246 3.5622 3.6283 3.7290 3.8751 4.0867 4.4042 4.9246 5.9821 16.070

0.9 4.9673 4.9863 5.0448 5.1480 5.3056 5.5355 5.8710 6.3796 7.2263 8.9943 27.895

0.92 5.5536 5.5754 5.6426 5.7610 5.9421 6.2069 6.5939 7.1824 8.1667 10.239 33.280

0.94 6.4127 6.4387 6.5186 6.6597 6.8758 7.1921 7.6557 8.3633 9.5535 12.086 41.737

0.95 7.0248 7.0537 7.1429 7.3002 7.5414 7.8948 8.4135 9.2071 10.547 13.414 48.138

0.96 7.8540 7.8869 7.9886 8.1681 8.4435 8.8475 9.4417 10.353 11.897 15.227 57.268

0.97 9.0690 9.1079 9.2280 9.4403 9.7662 10.245 10.951 12.036 13.884 17.905 71.507

0.98 11.107 11.156 11.308 11.575 11.986 12.592 13.486 14.867 17.233 22.440 97.397

0.99 15.708 15.780 16.002 16.395 17.001 17.894 19.219 21.277 24.832 32.789 163.12

0.991 16.558 16.634 16.869 17.286 17.927 18.874 20.279 22.462 26.239 34.711 176.15

0.992 17.562 17.643 17.894 18.338 19.022 20.033 21.532 23.864 27.903 36.986 191.85

0.993 18.775 18.862 19.131 19.609 20.345 21.431 23.045 25.557 29.914 39.735 211.22

0.994 20.279 20.374 20.667 21.185 21.985 23.167 24.923 27.658 32.409 43.151 235.80

0.995 22.214 22.319 22.642 23.214 24.096 25.400 27.339 30.362 35.623 47.552 268.26

0.996 24.836 24.954 25.318 25.962 26.956 28.426 30.613 34.027 39.978 53.523 313.54

0.997 28.679 28.816 29.239 29.989 31.147 32.860 35.412 39.400 46.365 62.286 382.16

0.998 35.124 35.294 35.817 36.745 38.178 40.300 43.464 48.416 57.088 77.009 502.08

0.999 49.673 49.916 50.666 51.996 54.050 57.096 61.643 68.776 81.309 110.30 787.66

where aT =aA+aB and the moduli k2b and k4b are given by:

k2
2b =

4aAaB

a2
T + 4b2

; k2
4b =

4aAaB

a2
T + 16b2

Because c2 � 1, though always c2 <1, for most problems of our interest, Eq. 3.50
cannot be approximated even for “long” coils (β	1).

Derivation of Eq. 3.50 from Eq. 3.44

If we make Solenoids A and B identical in diameter and surface current density but
each one half the length of the original, for ρ=0 the two solenoids are transformed
into one solenoid of length 2b. Next, if the following substitutions, i.e., 2aA =2aB =
2a, NAIA/2bA = NBIB/2bB = NI/2b, and 2bA = 2bB = b, are made in Eq. 3.44, the
modified equation is reduced to Eq. 3.50.

Answer to TRIVIA 3.1 i). The Swiss mathematician Leonhard Euler (1707–1783)
to the French encyclopedist Denis Diderot (1713–1784). This anecdote is disputed
by Dirk Struik, who states in A Concise History of Mathematics (Dover Publica-
tions, 1948) that “. . . no reason exists to think that the thoughtful Euler would
have behaved in the asinine way.” The great Pierre Simon de Laplace (1749–1827),
once asked by Napoleon why his monumental five-volume Celestial Mechanics had
no mention of God, replied, “I had no need of that hypothesis.”
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3.5.5 “Thick-Walled” Solenoid—Midplane Axial Force

When a solenoid cannot be treated as “thin-walled,” it may be divided radially into
many “thin-walled” subsolenoids. Here, we consider the simplest case for treating
a solenoid of α > 1: the solenoid divided into two “thin-walled” Subsolenoids A
(inner) and B (outer), each of the same radial build and length 2b. Subsolenoids
A and B have diameters respectively of 2aA and 2aB > 2aA and a current per unit
length of 1

2 (NI/2b). FzA(0), the total axial force on one half of Subsolenoid A
comprises two components, one due to its other half, FzAA(0) given by Eq. 3.41a,
and the other due to Subsolenoid B, FzAB(0). Figure 3.8 shows the arrangement
of two subsolenoids appropriate for derivation of an expression for the midplane
axial force on Subsolenoid A.

Comparing Figs. 3.7 and 3.8, we note that Eq. 3.44 is applicable if we make the
following substitutions for the main parameters: 2bA = b; 2bB = 2b; and ρ = −2b.
With these parameters and c2 given by Eq. 3.47, Eq. 3.44 becomes:

FzAB(0) = −μ◦
2

(
NI

4b

)2

×
(

2b√
a2

T +b2

{
[a2

T +b2]
[
K(kb)−E(kb)

]
−Υ(c2, kb)

}

− 2b√
a2

T +4b2

{
[a2

T +4b2]
[
K(k2b)−E(k2b)

]
−Υ(c2, k2b)

})
(3.51)

where aT =aA+aB. The moduli, kb and k2b, are given by:

k2
b =

4aAaB

a2
T + b2

; k2
2b =

4aAaB

a2
T + 4b2

FzAA(0), the midplane axial force by Subsolenoid A on itself, is given by Eq. 3.41a
with (NI/4b) in place of (NI/2b). Similarly, FzB(0) is the total midplane axial
force on Subsolenoid B comprised of FzBB(0) and FzBA(0):

FzA(0) = FzAA(0)+FzAB(0) (3.52a)

FzB(0) = FzBB(0)+FzBA(0) (3.52b)

Solenoid B
(NI)/2

2aA 2aB

b
Solenoid A
(NI)/2

2b

Fig. 3.8 Arrangement of Subsolenoids A and B for computation of
the midplane axial force on SubsolenoidA.
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Thus:

FzA(0) = −μ◦
2

(
NI

4b

)2

×
({

2b
√

4a2
A +b2

[
K(kbA)−E(kbA)

]
−2b

√
4a2

A +4b2
[
K(k2bA)−E(k2bA)

]}

+
2b√

a2
T +b2

{
[a2

T +b2]
[
K(kb)−E(kb)

]
−Υ(c2, kb)

}

− 2b√
a2

T +4b2

{
[a2

T +4b2]
[
K(k2b)−E(k2b)

]
−Υ(c2, k2b)

})
(3.53a)

Again c2 is given by Eq. 3.47. The moduli kbA , k2bA , kbB , and k2bB are given by:

k2
bA =

4a2
A

4a2
A + b2

; k2
2bA =

4a2
A

4a2
A + 4b2

; k2
bB =

4a2
B

4a2
B + b2

; k2
2bB =

4a2
B

4a2
B + 4b2

In this case, because 2bA =2bB =2b and NAIA =NBIB, FzAB(0)=FzBA(0). Thus:

FzB(0) = −μ◦
2

(
NI

4b

)2

×
({

2b
√

4a2
B +b2

[
K(kbB)−E(kbB)

]
−2b

√
4a2

B +4b2
[
K(k2bB)−E(k2bB)

]}

+
2b√

a2
T +b2

{
(a2

T +b2)
[
K(kb)−E(kb)

]
−Υ(c2, kb)

}

− 2b√
a2

T +4b2

{
(a2

T +4b2)
[
K(k2b)−E(k2b)

]
−Υ(c2, k2b)

})
(3.53b)

The total midplane axial force of a solenoid FzT(0), divided into two thin-walled
subsolenoids, is the sum of FzA(0) and FzB(0). We thus obtain:

FzT(0) = −μ◦
2

(
NI

4b

)2

×
(

2b
√

4a2
A +b2

[
K(kbA)−E(kbA)

]
−2b

√
4a2

A +4b2
[
K(k2bA)−E(k2bA)

]
+ 2b

√
4a2

B +b2
[
K(kbB)−E(kbB)

]
−2b

√
4a2

B +4b2
[
K(k2bB)−E(k2bB)

]
+

4b√
a2

T +b2

{
(a2

T +b2)
[
K(kb)−E(kb)

]
−Υ(c2, kb)

}

− 4b√
a2

T +4b2

{
(a2

T +4b2)
[
K(k2b)−E(k2b)

]
−Υ(c2, k2b)

})
(3.54)
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Note that when a solenoid is divided into two thin-walled subsolenoids, FzT(0)
requires computation of four terms in Eq. 3.54. When a solenoid is divided into
m > 2 thin-walled subsolenoids, it will require computation of 2(m!)/[(m−2)!]
terms to obtain FzT(0). For m=3 an expression of FzT(0) thus will contain twelve
terms and 18 moduli, clearly too tedious for hand computation.

To create a computer code that will accurately compute the midplane axial force
of a “practical” solenoidal coil, i.e., a thick-walled solenoid, one has to extend
Eq. 3.54 to a set of expressions applicable to m thin-walled subsolenoids. To
ensure that each subsolenoid is thin-walled, m may have to be 10 or even greater.

Note that because in most cases c2 is close to 1, it is not possible to approximate
the Π(c2, k) term contained in each Υ(c2, k) even for “long” (β	1) solenoids.

Special Case 9: Midplane Force for a “Long” Thick-Walled Solenoid

Because in most of our applications c2 � 1, each Π(c2, k) in the Υ(c2, k) terms in
Eq. 3.54 cannot be approximated by the first few terms of the series expansion in
k2 and c2. The remaining terms in Eq. 3.54, however, can be expanded for β	1,
as was done above in Special Case 5 (Eq. 3.41b). Thus:

FzT(0) � −μ◦

(
NI

4b

)2{
π(a2

A +a2
B ) − (aA−aB)2

[
2Π(c2, kb)−Π(c2, k2b)

]}

� −μ◦

(
NI

4b

)2

π(a2
A +a2

B )
{

1 − (aA−aB)2

π(a2
A +a2

B )
[
2Π(c2, kb)−Π(c2, k2b)

]}
(3.55)

Note that when aA = aB, Eq. 3.55 reduces to Eq. 3.41b. In the second form of
Eq. 3.55, the last term within the braces may be considered a correction term.

Kapitza’s Magnets (Part 1 of 3 Parts)

—Passage from Francis Bitter’s Magnets: The Education of a Physicist [3.4]

One project that appealed to me was to make a stronger magnetic field than
could be made with iron core magnets. The alternative was not to use iron at all,
but to concentrate on the effective use of copper for carrying a current. A current
passing through a coil of wire will produce a magnetic field at its center. The
larger the current, the stronger the magnetic field. There is no saturation effect
here. So far as we know, this increase of field with increasing current continues
indefinitely. If you double the current, you double the magnetic field in the middle
of the coil. The problem was to discover how far it was practically possible to
go. I remember discussing these matters at some length in Cambridge with Peter
Kapitza, a brilliant Russian scientist who came to England, became an important
part of the scientific community there, had a laboratory built for him, did some
pioneering work in developing new ways of producing strong magnetic fields, and
then returned to Russia.
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3.5.6 Axial Forces in a Nested Two-Coil Magnet

In a magnet comprised of several nested solenoids, all coaxially aligned, it is some-
times important to compute in each solenoid the midplane axial compressive force,
which in a large nested-coil magnet such as an MRI magnet can become substan-
tial. Here we consider the simplest nested-coil magnet comprised of two thin-walled
solenoids, A and B, shown in Fig. 3.9. Solenoid A (inner) has parameters of 2aA,
2bA, and NAIA/2bA; Solenoid B (outer) similarly has 2aB, 2bB, and NBIB/2bB.

Midplane Axial Force on Solenoid A

The total midplane axial force on the right-hand half of Solenoid A, FzA(0), is
the sum of FzAA(0) and FzAB(0), where FzAA(0) is the midplane axial force due to
its own left-hand half, while FzAB(0) is that due to Solenoid B. FzAA(0) is given
by Eq. 3.41a with the subscript A inserted appropriately. FzAB(0) is given by
Eq. 3.44, with the following substitutions: bA for 2bA and −(bA +bB) for ρ; 2bB in
Eq. 3.44 remains the same, and c2 is still given by Eq. 3.47.

FzA(0) = − μ◦
2

[(
NAIA

2bA

)2

×
{

2bA

√
4a2

A +b2
A

[
K(kbA)−E(kbA)

]
− 2bA

√
4a2

A +4b2
A

[
K(k2bA)−E(k2bA)

]}

+
(

NAIA

2bA

)(
NBIB

2bB

)(
2bB√
a2

T +b2
B

{
[a2

T +b2
B ]

[
K(kB)−E(kB)

]
−Υ(c2, kB)

}

− bD√
a2

T +b2
D

{
[a2

T +b2
D ]

[
K(kD)−E(kD)

]
−Υ(c2, kD)

}

− bT√
a2

T +b2
T

{
[a2

T +b2
T ]

[
K(kT)−E(kT)

]
−Υ(c2, kT)

})]

(3.56)

Note that aT =aA+aB, bD =bB−bA, and bT =bA+bB. kbA , k2bA , kA, kB, and kAB are:

k2
bA =

4a2
A

4a2
A + b2

A

; k2
2bA =

4a2
A

4a2
A + 4b2

A

; k2
B =

4aAaB

a2
T + b2

B

; k2
D =

4aAaB

a2
T + b2

D

; k2
T =

4aAaB

a2
T + b2

T

Solenoid B
NBIB

2aA 2aB

Solenoid A
NAIA 2bA

2bB

Fig. 3.9 Nested two-coil magnet comprised of Solenoids A and B.
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Special Case 10: Midplane Force on Solenoid A—“Long” Solenoids

When both solenoids are “long,” i.e., b2
A 	4a2

A and b2
B 	a2

T , and of differing lengths
so that b2

D 	a2
T , Eq. 3.56 may be simplified to:

FzA(0) �− μ◦
2

{(
NAIA

2bA

)2

πa2
A +

(
NAIA

2bA

)(
NBIB

2bB

)
×

(aA−aB)2
[
Π(c2, kD)+Π(c2, kT)−2Π(c2, kB)

]]}
(3.57a)

The second term in the right-hand side of Eq. 3.57a represents FzAB. Physically
this is due to Solenoid B’s Br on Solenoid A at the axial location near each end of
Solenoid B. Note that as bA→∞ and bB→∞, the second term becomes zero.

Special Case 11: Midplane Axial Force on Solenoid A—
Both Solenoids “Long” & Solenoid B Much Longer than Solenoid A

When both Solenoids are “long” as in Special Case 10 and Solenoid B is much
longer than Solenoid A, i.e., bD→bB and bT→bB, Eq. 3.57a is further simplified to:

FzA(0) �FzAA(0) � −μ◦
2

(
NAIA

2bA

)2

πa2
A (3.57b)

That FzAB(0) → 0 as bA/bB → 0 physically makes sense, because as Solenoid B
becomes much longer than Solenoid A, Solenoid B’s Br, a key ingredient of FzAB(0),
given by the second term in the right-hand side of Eq. 3.57a, becomes zero within
its bore where Solenoid A is located.

Midplane Axial Force on Solenoid B

Expressions for the midplane axial forces on Solenoid B are very similar to those
derived on Solenoid A. We may therefore derive these expressions from the previous
section by making appropriate substitutions. The total midplane axial force in
Solenoid B, FzB(0), is the sum of FzBB(0) and FzBA(0), where FzBB(0) is the midplane
axial force due to its own left-hand half, while FzBA(0) is that due to Solenoid A.

FzB(0) = −μ◦
2

[(
NBIB

2bB

)2

×
{

2bB

√
4a2

B +b2
B

[
K(kbB)−E(kbB)

]
−2bB

√
4a2

B +4b2
B

[
K(k2bB)−E(k2bB)

]}

+
(

NBIB

2bB

)(
NAIA

2bA

)(
2bA√
a2

T +b2
A

{
[a2

T +b2
A ]

[
K(kA)−E(kA)

]
−Υ(c2, kA)

}

+
bD√

a2
T +b2

D

{
[a2

T +b2
D ]

[
K(kD)−E(kD)

]
−Υ(c2, kD)

}

− bT√
a2

T +b2
T

{
[a2

T +b2
T ]

[
K(kT)−E(kT)

]
−Υ(c2, kT)

})]

(3.58)
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Here too c2 is given by Eq. 3.47. The moduli k2bB and kA are given by:

k2
2bB =

a2
B

4a2
B + 4b2

B

; k2
A =

4aAaB

a2
T + b2

A

The other moduli are the same as those given above for Eq. 3.56.

Special Case 12: Midplane Axial Force on Solenoid B—
Both Solenoids “Long” & Solenoid B Much Longer than Solenoid A

When both inner and outer coils are “long” and Solenoid B is much longer than
Solenoid A, as in Special Case 11, we obtain:

FzB(0) �− μ◦
2

{(
NBIB

2bB

)2

πa2
B +

(
NBIB

2bB

)(
NAIA

2bA

)[
π(a2

A +a2
B )

− (aA−aB)2
[
2Π(c2, kA)+Π(c2, kD)−Π(c2, kT)

]]}
(3.59a)

As in Special Case 11, the second term in Eq. 3.59a represents FzBA, which is
nonnegligible because Solenoid A’s Br impinges on Solenoid B at the axial location
near each end of Solenoid A.

Special Case 13: Midplane Axial Force on Solenoid B—
Both Solenoids “Long” & Solenoid B Much Shorter than Solenoid A

When both Solenoids are “long”(b2
B 	 a2

T and b2
A 	 a2

T ) but Solenoid B is much
shorter than Solenoid A (b2

D →b2
A 	a2

T ), Eq. 3.58 is simplified to:

FzB(0) �− μ◦
2

(
NBIB

2bB

)2

πa2
B (3.59b)

Equation 3.59b is analogous to Eq. 3.57b of Special Case 11; the same physical
interpretation used there applies here too.

Kapitza’s Magnets (Part 2 of 3 Parts)

—Passage from Francis Bitter’s Magnets: The Education of a Physicist

The first and main difficulty to overcome in attempting to produce strong mag-
netic fields by passing very large currents through a coil is that strong enough cur-
rents tend to heat the coil, melt it, squeeze it out of shape, and destroy it. Kapitza’s
solution was to pass currents through a coil for only such a short time that there
would not be sufficient energy liberated to heat it to a dangerous extent. Kapitza,
however, was not only a scientist but also an engineer. He succeeded in designing
novel equipment for producing pulsed magnetic fields of this kind, and also devices
for measuring the properties of matter during the small fractions of a second when
the fields were reasonably constant and steady.

Kapitza made great progress in developing this trick to overcome the objectionable
heating of the coil, but in the end he ran into another limitation, the strength of
the coil. You all know that passing a current through a magnetic field results in the
application of a force on the conductor of a coil producing its own magnetic field.
The parts are squeezed (axially) and pushed (radially) until finally the coil gives
way. It was necessary to build a very strong coil, as well as equipment to produce
and switch enormous currents on and off in a very short time.
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3.5.7 Axial Restoring Force on Axially Off-Centered Solenoids

When the axial field of each solenoid points in the same direction and when the
axial centers of Solenoids A and B mismatch by a distance of ρ, an axial restoring
force, FzR(ρ), is generated to align the axial centers. FzR(ρ) may be given by:

FzR(ρ) = − μ◦
2

(
NAIA

2bA

)(
NBIB

2bB

)
×

(
bT−ρ√

a2
T +(bT−ρ)2

{
[a2

T +(bT−ρ)2]
[
K(kT−)−E(kT−)

]
−Υ(c2, kT−)

}

+
bD+ρ√

a2
T +(bD+ρ)2

{
[a2

T +(bD+ρ)2]
[
K(kD+)−E(kD+)

]
−Υ(c2, kD+)

}

− bT+ρ√
a2

T +(bT+ρ)2

{
[a2

T +(bT+ρ)2]
[
K(kT+)−E(kT+)

]
−Υ(c2, kT+)

}

− bD−ρ√
a2

T +(bD−ρ)2

{
[a2

T +(bD−ρ)2]
[
K(kD−)−E(kD−)

]
−Υ(c2, kD−)

})

(3.60)

where aT =aA+aB, bT =bA+bB, and bD =bA−bB; kT+, kT−, kD+, and kD− are given by:

k2
T + =

4aAaB

a2
T + (bT + ρ)2

; k2
T − =

4aAaB

a2
T + (bT − ρ)2

k2
D + =

4aAaB

a2
T + (bD + ρ)2

; k2
D − =

4aAaB

a2
T + (bD − ρ)2

Special Case 14: No Axial Misalignment

When ρ=0, k2
T + =k2

T − and k2
D + =k2

D −, and thus FzR(ρ)=0, as expected physically.

Special Case 15: “Small” Axial Misalignment

For a small misalignment, defined as ρ�
√

a2
T +b2

D , FzR(ρ) is proportional to ρ:

FzR(ρ) ∝ −
(

NAIA

2bA

)(
NBIB

2bB

)
ρ (3.61)

Equation 3.61 is later used to derive an expression of MAB(ρ), the mutual induc-
tance between Solenoids A and B misaligned by a small distance (ρ�

√
a2

T +b2
D ).

Special Case 16: Either Solenoid “Long”

If either Solenoid A or Solenoid B is “long,” the longer solenoid’s axial field becomes
uniform, its Br becomes small and the solenoid generates little axial force on the
shorter solenoid even if the solenoid centers are misaligned considerably. This can
be seen because the first two +terms and the last two −terms in Eq. 3.60 cancel
out when b2

T 	 a2
T and b2

D 	 a2
T , resulting in FzR(ρ)→0.
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3.6 Stresses and Strains in Solenoid under Magnetic Force

We study here stresses and strains on a superconductor, induced principally by
Lorentz forces, in a solenoidal magnet [3.6]. The analytic expressions derived and
graphs presented here of magnetic stresses are for “simple” properties of the wind-
ing materials under a “simple” field distribution.

3.6.1 Stress and Strain Equations

The stresses, radial, σr(r, z); hoop, σ
θ
(r, z); axial, σz(r, z); and shear, τrz(r, z) in

the winding of a solenoid subjected to a magnetic force density generated by the
interaction of λJ and the axial magnetic field (induction), Bz(r, z), are found from
the solution of the equilibrium equations:

∂σr

∂r
+

σr − σ
θ

r
+

∂τrz

∂z
= −λJBz(r, z) (3.62a)

∂τrz

∂r
− τrz

r
+

∂σz

∂z
= −λJBr(r, z) (3.62b)

with boundary conditions: σr(r = a1, z) = 0; σr(r = a2, z) = 0; σz(r, z =±b) = 0;
τ
rz (r = a1, z) = 0; τrz (r = a2, z) = 0; and τrz (r, z = ±b) = 0. Note that the shear
stress τrz is the only variable that couples Eqs. 3.62a and 3.62b. Most composite
superconductors, LTS and HTS, may be considered orthotropic: Hooke’s law is
applicable. An orthotropic material has mechanical properties, e.g., Young’s mod-
ulus, Poisson’s ratio, that are different in, but symmetric about, three orthogonal
directions. The strains, εr, ε

θ
, εz, respectively, in the r, θ, and z directions, and

the shear strain, γrz , in the r-z plane, are related to the stresses by:

εr =
1

Er
σr −

ν
θr

Eθ
σ
θ
− νzr

Ez
σz + ε

Tr
(3.63a)

ε
θ

= −ν
rθ

Er
σr +

1
Eθ

σ
θ
− ν

zθ

Ez
σz + ε

Tθ
(3.63b)

εz = −νrz

Er
σr −

ν
θz

Eθ
σ
θ

+
1

Ez
σz + ε

Tz
(3.63c)

γ
rz

=
1

Grz
τ
rz

(3.63d)

Er, Eθ, and Ez are Young’s moduli, respectively, in the r, θ, and z directions. ν12≡
−ε2/ε1 is the Poisson’s ratio for transverse strains in two orthogonal directions
when the material is stressed in the 1-direction (σ1; σ2 = σ3 = 0). Grz is the
shear modulus. ε

Tr
, ε

Tθ
, and ε

Tz
are integrated coefficients of thermal expansion

between room temperature (300 K) and operating temperature (Top).

ε
Tr

=
∫ Top

300 K

α
Tr

(T ) dT ; ε
Tθ

=
∫ Top

300 K

α
Tθ

(T ) dT ; ε
Tz

=
∫ Top

300 K

α
Tz

(T ) dT (3.63e)

α
Tr

(T ), α
Tθ

(T ), and α
Tz

(T ) are temperature-dependent coefficients of thermal
expansion parallel to the major axes. Note that because these coefficients are
positive and because the integration is from 300 K to Top < 300 K, the thermal
strains in Eqs. 3.63a–3.63c are negative, i.e., compressive.
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The following conditions among ν’s and E’s also apply:
ν

rθ

Eθ
=

ν
θr

Er
;

ν
θz

Ez
=

ν
zθ

Eθ
;

ν
zr

Er
=

ν
rz

Ez
(3.63f)

In the case of an axisymmetric body, e.g., an ideal solenoid, the strains and dis-
placements, ur and uz, respectively, in the r and z directions, are related by:

εr =
∂ur

∂r
; ε

θ
=

ur

r
; εz =

∂uz

∂z
; γrz =

∂ur

∂z
+

∂uz

∂r
(3.63g)

Note that because of axial symmetry, all variables in Eq. 3.62 are independent of
θ, and u

θ
=0 too. In general, there is no closed-form simultaneous solution for σr

(Eq. 3.62a) and σz (Eq. 3.62b). In a “long” solenoid, such as that typically used
in a spatially high-field-homogeneity NMR magnet, the Bz(r, z) variation in the
z-direction, at least over most of the solenoid axial length about the midplane,
is quite insignificant. The origin of the shear stress τ

rz
is the variation in the z-

direction of the radial load on the coil generated by Bz(r, z). Therefore, in a long
solenoid, we can justifiably simplify Eq. 3.62a by assuming that all variables are
independent of z, including ur, i.e., ∂ur/∂z=0. Because in high-field-homogeneity
magnets ∂Br(r, z)/∂z�0, we may also safely assume that over most of the magnet
axial length ∂ur/∂z = 0, which, together with ∂uz/∂r = 0, leads to γrz = τrz = 0,
which in turn decouples Eqs. 3.62a and 3.62b.

Combining Eq. 3.62 and Eq. 3.63, with the assumption τrz =0, and solving for σr

and σ
θ

in terms of ur, we obtain a differential equation for ur:

d2ur

dr2
+

1
r

dur

dr
− ζ2 ur

r2
= −1 − ν

rθ
ν

θr

Er
λJBz(r) +

F

r
(3.64a)

where

ζ =
√

Eθ

Er
; F = −(ζ2 − ν

rθ
)ε

Tθ
+ (1 − ν

θr
ζ2)ε

Tr
(3.64b)

The general solution to Eq. 3.64a is given by:

ur = C1r
ζ +

C2

rζ
+ uL

r + uT
r (3.65)

where C1 and C2 are constants to be determined from boundary conditions at
r = a1 and r = a2. uL

r and uT
r (the superscripts L and T stand, respectively, for

Lorentz and thermal) are particular solutions corresponding to the “source” terms,
given in the right-hand side of Eq. 3.64a. The thermal term uT

r is given by:

uT
r =

Fr

1 − ζ2
(3.66)

For an isotropic material (Eθ =Er, and thus ζ =1), uT
r is given by:

uT
r (ζ =1) = 1

2Fr ln r (3.67)

In general Bz(r) may be given by a power series in r:

Bz(r) =
n∑

k=0

bkrk (3.68)

Then, the Lorentz term uL
r may be given by:

uT
r =

1 − ν
rθ

ν
θr

Er
λJ

n∑
k=0

bkrk+2

ζ2 − (k + 2)2
(3.69)
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3.6.2 Stress and Strain Equations in Isotropic Solenoid

We derive radial and hoop stresses in an isotropic solenoid with the winding current
density of λJ . The axial magnetic field in the winding varies linearly with r, from
Bz(r = a1) ≡ B1 to Bz(r = a2) ≡ B2. Note that both B1 and B2 can include a
“uniform” background field, generated by “long” coils, in a nested-coil magnet,
located outside of this solenoid. We define two nondimensional parameters: κ≡
B2/B1 and ρ = r/a1. In a high-field NMR magnet, κ for the innermost coil can
exceed 0.9; for a stand-alone coil it is roughly −0.1; and for an infinitely long
stand-alone coil, κ=0. Equation 3.62a for this solenoid is modified to:

dσ
ρ

dρ
+

σ
ρ
− σ

θ

ρ
= −λJB1a1

α − 1
[α − κ − (1 − κ)ρ] (3.70)

For an isotropic material, strains, with thermal strain ε
T

included, are given by:

ερ =
1
E

(σρ − νσ
θ
) + ε

T
(3.71a)

ε
θ

=
1
E

(σ
θ
− νσ

ρ
) + ε

T
(3.71b)

We may solve Eq. 3.71 for σ
ρ and σ

θ
:

σρ =
E

1 − ν2

[
ερ + νε

θ
− (1+ν)ε

T

]
(3.72a)

σ
θ

=
E

1 − ν2

[
ε

θ
+ νερ − (1+ν)ε

T

]
(3.72b)

Strains are related to displacement, u, (here only in the r-direction), by:

ε
ρ =

1
a1

du

dρ
; ε

θ
=

1
a1

u

ρ
(3.72c)

Combining Eqs. 3.72a–3.72c, we obtain:

σρ =
E

(1 − ν2)a1

[
du

dρ
+ ν

u

ρ
− a1(1+ν)ε

T

]
(3.72d)

σ
θ

=
E

(1 − ν2)a1

[
u

ρ
+ ν

du

dρ
− a1(1+ν)ε

T

]
(3.72e)

Combination of Eq. 3.70 and Eqs. 3.72d and 3.72e yields:

d2u

dρ2
+

1
ρ

du

dρ
− u

ρ2
= −

(
1 − ν2

E

) (
λJB1a

2
1

α − 1

)
[α − κ − (1 − κ)ρ] (3.73)

The general solution of Eq. 3.73 is given by:

u = C1ρ +
C2

ρ
−

(
1−ν2

E

) (
λJB1a

2
1

α − 1

) [
(α − κ)ρ2

3
− (1 − κ)ρ3

8

]
(3.74)

where C1 and C2 are constants determined from boundary conditions at ρ = 1
and ρ = α, and the last term is the particular solution. Combining Eq. 3.74 and
Eqs. 3.72d and 3.72e, we obtain:
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σρ
=

E

(1−ν2)a1

[
(1 + ν)C1 − (1 − ν)

C2

ρ2

]

−
{

λJB1a1

α − 1

[
2+ν

3
(α − κ)ρ − 3+ν

8
(1 − κ)ρ2

]}
− Eε

T

1−ν

(3.75a)

σ
θ

=
E

(1−ν2)a1

[
(1 + ν)C1 + (1 − ν)

C2

ρ2

]

−
{

λJB1a1

α − 1

[
1+2ν

3
(α − κ)ρ − 1+3ν

8
(1 − κ)ρ2

]}
− Eε

T

1−ν

(3.75b)

With σ
ρ(1)=0 and σρ(α)=0, we have expressions for C1 and C2:

[(1 + ν)C1 − (1 − ν)C2] =
1−ν2

E

(
λJB1a

2
1

α−1

)[
2+ν

3
(α − κ) − 3+ν

8
(1 − κ)

]

+ a1(1+ν)ε
T

(3.76a)

[
(1 + ν)C1 − (1 − ν)

C2

α2

]
=

1−ν2

E

(
λJB1a

2
1

α−1

)[
2+ν

3
(α − κ)α − (3+ν)

8
(1 − κ)α2

]

+ a1(1+ν)ε
T

(3.76b)

Equations 3.76a and 3.76b may be solved for C1 and C2:

C1 =
1−ν

E

(
λJB1a

2
1

α2 − 1

)[
2+ν

3
(α−κ)(α2+α + 1)− 3+ν

8
(1−κ)(α+1)(α2+1)

]
+a1εT

(3.76c)

C2 =
1+ν

E

(
λJB1a

2
1α

2

α2−1

)[
2+ν

3
(α−κ)− 3 + ν

8
(1−κ)(α+1)

]
(3.76d)

Substituting Eqs. 3.76c and 3.76d into Eq. 3.75, we obtain:

σ
ρ
=

λJB1a1

α − 1

[
2+ν

3
(α − κ)

(
α2+α+1−α2/ρ2

α+1
−ρ

)

− 3+ν

8
(1 − κ)

(
α2+1−α2

ρ2
−ρ2

)]
(3.77a)

σ
θ

=
λJB1a1

α − 1

{
(α − κ)

[
2+ν

3

(
α2+α+1+α2/ρ2

α+1

)
− 1+2ν

3
ρ

]

− (1 − κ)
[
3+ν

8

(
α2+1+

α2

ρ2

)
− 1+3ν

8
ρ2

]}
(3.77b)
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“Thin-Walled” Coil

Figures 3.10a and 3.10b show, respectively, plots, for a “thin” coil, here α = 1.2,
of normalized stresses, hoop, ς

θ
≡ σ

θ
/(λJB1a1), and radial, ςr ≡ σρ/(λJB1a1),

as functions of normalized radial distance, ρ ≡ r/a1, at selected “field ratios,”
κ≡B2/B1. Note that κ=−0.1 is appropriate for a stand-alone solenoid; κ=0 for
an infinitely long coil; and κ>0 for a coil exposed to a uniform background field.

For each field ratio (κ) ς
θ

decreases with ρ, while ςr , being 0 at r=a1 and r=a2,
has an extremum (maximum or minimum) radially midway through the winding.
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Fig. 3.10 Plots, at selected κ≡B2/B1 values, for a “thin-walled” coil (α=1.2): (a)
normalized hoop stress, ςθ ≡σθ

/(λJB1a1), vs. normalized radial distance, ρ≡r/a1; (b)
normalized radial stress, ςr ≡σρ

/(λJB1a1), vs. ρ. In each graph κ, from the bottom
trace to the top trace: −0.1 (bottom); 0; 0.2; 0.5; 0.7; 0.8; 0.9; and 0.95 (top).
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For κ>0.5, the winding throughout develops a positive radial stress, which tends
to separate turns, a condition that generally should be avoided. The positive effect
of winding tension in reducing ς

r
is discussed shortly (3.6.3).

“Medium-Walled” Coil

Figure 3.11 shows plots similar to those of Fig. 3.10 for a “medium-walled” coil,
here α=1.8. In this medium-walled coil, ςr >0 for κ≈0.2; furthermore, ςr exceeds
0.1 for κ > 0.8. That is, an “insert” coil in the bore of a high-field background
magnet should be “thin-walled,” or otherwise it should be subdivided.
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Fig. 3.11 Plots, at selected κ≡B2/B1 values, for a “medium-walled” coil (α = 1.8):
(a) ςθ ≡ σθ

/(λJB1a1) vs. ρ; (b) ςr ≡ σr
/(λJB1a1) vs. ρ. In each graph κ, from the

bottom trace to the top trace: −0.1 (bottom); 0; 0.2; 0.5; 0.7; 0.8; 0.9; and 0.95 (top).
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“Thick-Walled” Coil

Figure 3.12 shows plots for a “thick-walled” coil, here α = 3.6. Note that ς
θ

is
roughly twice that for the medium-walled coil. Most significantly, though, in the
thick-walled coil normalized radial stress σr >0 unless κ is sufficiently negative.

There are two practical ways to make σr nearly 0 or negative: 1) wind the coil with
conductor in tension; and 2) wrap the coil at its outermost layer with a banding
wire of high modulus of elasticity. Also, subdividing the coil into thinner coils
reduces not only σr but also σθ.
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Fig. 3.12 Plots, at selected κ≡B2/B1 values, for a “thick-walled” coil (α=3.6): (a)
ςθ ≡σθ

/(λJB1a1) vs. ρ; (b) ςr ≡σr
/(λJB1a1)vs. ρ. In each graph κ, from the bottom

trace to the top trace: −0.1 (bottom); 0; 0.2; 0.5; 0.7; 0.8; 0.9; and 0.95 (top).
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3.6.3 Winding Tension to Reduce Radial Stresses

Using an illustrative example, we show here the beneficial effect of winding ten-
sion to reduce the radial stress, σr, in the winding. As stated above, σr should
remain negative in the winding to keep the layers from separating in the radial
direction. Stated simply, when a coil is wound with conductor in tension, the ten-
sion generates radial stresses directed inward, reducing the radial stresses within
the winding. Even if the winding tension is kept constant during the winding
process, the radial variation of the effect of tension within the winding cannot
be expressed by an approximate equation as with magnetic body force. In the
presence of winding tension, computation of both hoop and radial stresses must
be performed through numerical analysis.

Consider an insert coil placed in the bore of a high-field background magnet. The
insert has an i.d. (2a1) of 87mm, an o.d. (2a2) of 156.6mm: α = 1.8, i.e., it is
“medium” thick, and in this analysis, as in the above, the coil is assumed “long.”
Other insert parameters include: Bz(r=a1)≡B1 =28.1T; Bz(r=a2)≡B2 =24.3 T
or κ≡B2/B1 = 0.865; and λJ =8.26×107 A/m2. From Fig. 3.11, which gives ςr(ρ)
plots for α = 1.8, we find the normalized radial stress, ςr ≡ σr/(λJB1a1), has a
maximum of 0.11 at ρ≡r/a1 =1.3. The maximum radial stress, [σr]mx, is thus:

[σr]mx = 0.11λJB1a1

= 0.11(8.26×107 A/m2)(28.1T)(43.5×10−3 m) = 11.1MPa

A radial stress of 11.1MPa is too large to be tolerated inside the insert. Figure
3.13 presents σr vs. r plots for this insert at selected winding tensions, Γ, from 0
to a maximum of 200N (�20 kg). The figure indicates that winding tension of at
least 160N is required to keep σr nearly zero or negative. In practice, a winding
tension up to 200N may be applied. For this particular insert a winding tension of
80N results in a maximum σr at ∼5 MPa; when a coil is “wet-wound” with epoxy
to “glue” adjacent layers, a positive radial stress up to ∼5 MPa is tolerable.
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Fig. 3.13 σ
r

vs. r plots of a solenoidal coil of α=1.8, with winding tensions, Γ, from 0
(no tension) to 200 N (� 20 kg). With Γ=0, σr has a peak, at r�57.5mm, of 11.1MPa.
Only at winding tensions above 160 N (� 16 kg), σr ≤ 0 everywhere.
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3.7 Self Inductance

Total flux linking a coil, Φ, is proportional to the current I through the coil.

Φ = LI (3.78)

The proportionality constant L is the self inductance of the coil. Note that Φ is a
“field concept” quantity, while I is a “circuit concept” quantity: L links these two
concepts, and because the field concept quantity necessarily involves a volume, L
is a geometry-dependent quantity. L is also related to the stored magnetic energy,
Em, of the coil through:

Em = 1
2LI2 (3.79)

For systems containing no magnetic materials, Em may be computed by integrating
(1/2)μ◦H2 over all space, i.e., Em is another field-concept quantity; L connects
Em to I through Eq. 3.79.

3.7.1 Self-Inductance of a Circular Loop

An approximate formula for L of a circular loop of radius R of wire of permeability
μ and radius a was derived by Maxwell:

L = μ◦R

[
ln

(
8R

a

)
− 2

]
+ 1

4μR (3.80a)

� μ◦R

[
ln

(
R

a

)
+ 0.079

]
+ 1

4μR (3.80b)

In the right-hand side of each equation above, the first term is the self inductance
of the loop due to the flux linked within the circular area (0 ≤ r ≤ R−a) of
the loop and the second term represents, as will be studied in PROBLEM 3.18
(p. 208), the self inductance of the interior of the wire, 2πR long. Because the
flux linkage outside the wire is frequency independent, the first term is valid for
all frequencies, while the second term is frequency dependent. Thus, (1/4)μR is
valid only at “low” frequencies; the second term reduces to 0 at “high” frequencies.
Derivation of the first term of the right-hand side of Eq. 3.80 is quite complex,
involving, among others, elliptic integrals.

Kapitza’s Magnets (Part 3 of 3 Parts)

—Passage from Francis Bitter’s Magnets: The Education of a Physicist

In the 1930’s, Kapitza completed the construction of a most interesting installa-
tion. Fields of the order of magnitude of 300,000 gauss (30T), or about ten times
that possible with an iron core magnet, were produced in small coils having about
a centimeter inside diameter. Not only did he make and operate these coils; he
also performed experiments to show how the properties of matter are influenced by
strong magnetic fields. Upon Kapitza’s departure from Cambridge this work was
stopped and was not picked up again until a few years ago (early 1950s).
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3.7.2 Self Inductance of Solenoidal Coil

For a solenoidal coil containing no ferromagnetic materials and characterized by
an inner winding radius a1, α, β, and total number of turns, N , its self inductance,
L, may be given by:

L = μ◦a1N
2L(α, β) (3.81)

where L(α, β) is a dimensionless inductance parameter that is a function only of
the shape of a coil, represented by α and β.

Figure 3.14 plots L(α, β) plots over the range of α = 1 to α = 5 and β = 0.04
to β = 10 that covers α and β values of solenoidal coils of our interest. For the
range β>1, which covers most solenoids, important exceptions being “rings” and
“pancake” (flat) coils, L(α, β), as seen from the figure, is roughly proportional to
α. In fact, when a rough (“ball-park”) value of L suffices, for example, during the
“first-cut” design phase, we might use:

L(α, β) ∼ πα

2(β + 0.5)
(for β → 1 from β>1) (3.82a)

L(α, β) ∼ πα

2β
(for β → ∞) (3.82b)

For a “thin-walled” solenoid, i.e., α�1, in the limit β→∞, Eq. 3.82b reduces to
π/2β, which will be derived later in PROBLEM 3.18 (Eq. 3.84c, p. 208).
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Fig. 3.14 L(α, β) for solenoidal coil of parameters α and β.
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3.7.3 Useful Inductance Formulas

Here, useful inductance formulas for coils with nonmagnetic material, i.e., μ=μ◦,
are given. Derivations of some of these formulas are revisited in PROBLEM 3.18.

Although analytical expressions for coils of “thick” winding build were derived in
the past—well before the proliferation of inductance computer codes—and given
in engineering reference books, these formulas, mostly not in SI units, are generally
tedious to use. Figure 3.14, or even Eq. 3.82, should be sufficient for inductance
computation in most applications, particularly during early design stages.

Wire

The interior of a wire of radius a per unit length, L [H/m]:

L =
μ◦
8π

(3.83)

“Long” Coils

a. A long (β>0.75), “thin” coil of i.d. 2a1 with N total turns [3.7]:

L = μ◦a1N
2

[
π(1 + α)2

8β

] [
1 − 2

3πβ
+

(1 + α)2

32β2
· · ·

]
(3.84a)

For (α−1)/(α+1) � 1 Eq. 3.84a reduces to:

L = μ◦a1N
2

(
π

2β

) [
1 − 2

3πβ
+

1
8β2

· · ·
]

(3.84b)

b. For a “very long” (β	1), “thin” (α�1) coil, Eq. 3.84b becomes:

L = μ◦a1N
2

(
π

2β

)
(3.84c)

Thus, as noted above, for a very long and thin coil, L(α, β)=π/2β.

“Short” Coil

A short (β<0.75), thin (α�1) coil of i.d. 2a1 with N total turns [3.7]:

L � μ◦a1N
2

(
α + 1

2

) (
ln

{[
2(α + 1)

β

] [
1 +

β2

2(1 + α2)

] }

− 1
2

[
1 +

β2

4(1 + α2)

])
(3.85a)

which for β�1 becomes:

L � μ◦a1N
2

(
α + 1

2

) {
ln

[
2(α + 1)

β

]
− 0.5

}
(3.85b)
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“Pancake” (Flat) Coil

A pancake (flat) coil (β � 1) of i.d. 2a1 with N total turns [3.7]:

L � μ◦a1N
2

(
α + 1

2

) {
ln

[
4(α + 1)
α − 1

] [
1 + 1

24

(α − 1)2

(α + 1)2

]

− 1
2

[
1 − 43

144

(α − 1)2

(α + 1)2

]}
(3.86a)

For (α−1)/(α+1) � 1 Eq. 3.86a further reduces to:

L � μ◦a1N
2

(
α + 1

2

) {
ln

[
4(α + 1)
α − 1

]
− 0.5

}
(3.86b)

Note that for a “ring” (N =1), i.e., a1(α+1)=2R (ring diameter) and 2a1β =2a
or a1(α−1)=2a (ring wire diameter), both Eqs. 3.85b and 3.86b simplify to:

L � μ◦R

[
ln

(
4R

a

)
− 0.5

]
= μ◦R

[
ln

(
R

a

)
+ 0.886

]
(3.86c)

Equation 3.86c applies to a ring having a rectangular cross sectional area, while
Eq. 3.80a to a ring of circular cross sectional area. For a really fat (α	1) pancake,
Eq. 3.86a further simplifies to:

L � 0.5μ◦a1αN2
{

ln
(

25
6

)
− 101

288

}
= 0.538μ◦a1αN2

L ≈ 0.5μ◦a2N
2 (3.86d)

Note that it is a2, not the usual a1, that appears in Eq. 3.86d.

“Ideal” Dipole Magnet

The inductance per unit length, L� [H/m], of an “ideal” dipole (PROBLEM 3.8)—
infinite in length and “zero” winding thickness—with N total turns:

L� = 1
8μ◦πN2 (3.87)

“Ideal” Quadrupole Magnet

The inductance per unit length, L� [H/m], of an “ideal” quadrupole, studied in
PROBLEM 3.9, infinite in length and “zero” winding thickness with N total turns:

L� = 1
16μ◦πN2 (3.88)

Note that for an ideal dipole or quadrupole magnet, the inductance is independent
of winding radius, but instead is proportional to length.
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“Ideal” Circular Cross Section Toroid

An “ideal” toroidal coil—PROBLEM 3.10—zero-winding thickness, major radius
R, and circular section of radius a with N total turns:

L = μ◦RN2

[
1 −

√
1 −

(a

R

)2
]

(3.89a)

In the limit a�R, L may be approximated by:

L = μ◦aN2
( a

2R

) [
1 + 1

4

(a

R

)2

+ 1
8

(a

R

)4

+ · · ·
]

(3.89b)

� μ◦aN2
( a

2R

)
(3.89c)

“Ideal” Rectangular Cross Section Toroid

An ideal toroid of major radius R and rectangular section of width (r-axis) 2a and
height (z-axis) 2b:

L = μ◦bN
2

[
1
π

ln
(

R + a

R − a

)]
(3.90a)

In the limit a�R, L may be approximated by:

L = μ◦bN
2

(
2a

πR

) [
1 + 1

3

(a

R

)2

+ 1
5

(a

R

)4

+ · · ·
]

(3.90b)

� μ◦bN
2

(
2a

πR

)
(3.90c)

My Magnets (Part 1 of 3 Parts)

—Passage from Francis Bitter’s Magnets: The Education of a Physicist [3.4]

My own thoughts ran in the direction of producing constant magnetic fields.
There are many experiments that are extremely difficult or impossible to perform
in a hundredth of a second. I wondered whether one might design coils having even
larger diameters, so that one might put inside them either a thermos bottle with
a liquid gas, like liquid air, for maintaining a low temperature, or a furnace for
maintaining a high temperature, and still have room left over for experimentation.
Questions then arose. How should one wind the coils so that the available power is
used most effectively? How much heat could one take out of the surface of a copper
conductor by means of a cooling liquid? What sort of flow would be most suitable?
What liquid would be most effective? How should it be introduced so that it would
not boil away before completing its function?

The problem of how to design a coil to give the most intense possible magnetic
field with a given supply of electric power is an interesting example to tell you
about . . . If one were to wind a coil on a hollow cylinder using different-sized wires
for different parts of the coil, was there a best choice of wire sizes? For example,
one might use very fine wire for a certain length of the cylinder, then cover this
over a longer length with thicker wire . . . It did not take me long to figure this out
and to convince myself that an improvement was possible . . .
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3.8 Mutual Inductance

When two coils, Coil 1 and Coil 2, are near each other, they usually interact in-
ductively. Their coupling may be quantified by means of the mutual inductance,
M12 or M21. Note that M12 =M21 = M . Thus:

M12 ≡ N1
Φ12

I2
=M21 ≡ N2

Φ21

I1
(3.91)

Φ12 is the flux linking the N1 turns of Coil 1 when Coil 2 carries current I2; Φ21 is
the flux linking the N2 turns of Coil 2 when Coil 1 carries current I1.

The total magnetic energy, Em, in a coupled 2-coil system is given by:

Em = 1
2L1I

2
1 + 1

2L2I
2
2 + 1

2M12I1I2 + 1
2M21I1I2

= 1
2L1I

2
1 + 1

2L2I
2
2 + M12I1I2 (3.92)

As with self inductance, there are mutual inductance formulas for selected sys-
tems. For systems of our interest, i.e., coupled coaxial solenoidal coils, a code that
computes the self inductance of a coil usually can compute the inductance matrix
of a multi-coil system.

Series Connected Coils

The effective self inductance, Ls, of a two-coil system of L1, L2, and M12, con-
nected in series is given by:

Ls = L1 + L2 ± 2M12 (3.93)

The + is chosen for the M12 term if the magnetic fields augment each other and
− if they oppose each other.

Parallel Connected Coils

The effective self inductance, Lp, of a two-coil system of L1, L2, and M12, con-
nected in parallel is given by:

Lp =
L1L2 − M2

12

L1 + L2 ∓ 2M12
(3.94)

Coupling Coefficient

Mutual inductance M12 is related to L1 and L2 by:

M12 = k
√

L1L2 (3.95a)

k =
M12√
L1L2

(3.95b)

k is called the coupling coefficient; k =0 when the coils are uncoupled, and k =1
when fully coupled. For a tightly nested solenoidal coil pair, in which one coil
is in the bore of the other coaxially and concentrically (with the two midplanes
coinciding), k ranges 0.3–0.6, being close to 0.6 when their α’s and β’s are similar
and towards 0.3 when they are not.
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3.8.1 Mutual Inductances—Selected Analytic Expressions

Because the force and mutual inductance between coils are related, the analytical
expression given earlier for axial forces between Coils A and B may be used to
derive mutual inductance expressions. From �F = IAIB∇M , it is evident that ex-
pressions for M can be one step more complicated than the axial force expressions
given earlier. Therefore only a few simple cases are discussed here.

Mutual Inductance between Two “Ring” Coils

For two coaxially aligned “ring” coils, Coils A (diameter 2aA; NA turns) and B
(2aB; NB), displaced by a distance ρ, the mutual inductance, MAB(ρ), is given by:

MAB =
μ◦
2

(NANB)
√

(aA + aB)2 + ρ2
{

2
[
K(k) − E(k)

]
− k2K(k)

}
(3.96)

where the modulus, k2 for this system is given by:

k2 =
4aAaB

(aA + aB)2 + ρ2

Special Case 1: Two Ring Coils Far Apart

When the two ring coils are far apart, i.e., ρ2 	 (aA + aB)2 or k2 � 1, Eqs. 3.38c
and 3.38a may be used to simplify Eq. 3.96:

MAB � μ◦
2π

[
(πa2

A NA)(πa2
B NB)

ρ3

]
(3.97)

Equation 3.97 states that the mutual inductance is approximately proportional to
the product of two “total” winding areas—πa2

A NA and πa2
B NB—reduced by ρ3.

Mutual Inductance of a “Thin-Walled” Solenoid and a Ring Coil

Here, we consider a coaxially aligned “thin-walled” solenoid (2aS; uniform turn
density NS/2bS) and a ring coil (diameter 2aR and NR turns). The ring coil is at a
distance ρ right of the right-hand end of the solenoid, as shown in Fig. 3.6 (p. 87).
The mutual inductance, MRS, between the solenoid and the ring coil is given by:

MRS(ρ) = −μ◦
2

(
NRNS

2bS

)
×

(
ρ√

(aR+aS)2+ρ2

{
[(aR+aS)2+ρ2]

[
K(kR)−E(kR)

]
−Υ(c2, kR)

}

− 2bS+ρ√
(aR+aS)2+(2bS+ρ)2

{
[(aR+aS)2+(2bS+ρ)2]

[
K(kS)−E(kS)

]
−Υ(c2, kS)

})

(3.98)

where kr, ks, and c2 are given by:

k2
R =

4aRaS

(aR + aS)2 + ρ2
; k2

S =
4aRaS

(aR + aS)2+(2bS + ρ)2
; c2 =

4aRaS

(aR + aS)2
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Special Case 2: Thin-Walled Solenoid and Ring Coil Far Apart

When these two coils are far apart such that k2
R � 1, k2

S � 1, and ρ>bS, Eq. 3.98
may be simplified to:

MRS =
μ◦
2

(
NRNS

2bS

) {
2π(aRaS)2bS

ρ3

(
1+

bS

ρ

)
−(aR−aS)2

[
Π(c2, kR)−Π(c2, kS)

]}
(3.99)

As long as ρ, though much greater than aR and aS, is still not much greater than bS,
the “correction” terms, bS/ρ and that with Π(c2, k)s, must be retained in Eq. 3.99.

Special Case 3: Thin-Walled Solenoid and Ring Coil Farther Apart

When these two coils are farther apart so that ρ	bS and the conditions of kR→0
and kS→0 are satisfied, Eq. 3.99 may be further simplified to:

MRS =
μ◦
2

(
NRNS

2bS

)
2π(aRaS)2bS

ρ3

=
μ◦
2π

(πa2
R NR)

(
πa2

S NS

2bS

)
2bS

ρ3
(3.100)

Ring Coil at the Middle of a Thin-Walled Solenoid

Figure 3.15 shows a schematic arrangement of the two coils, in which the ring
coil is at the midplane of a thin-walled solenoid, Note that in this arrangement,
ρ = −bS, with ρ defined in Fig. 3.6. Thus by inserting ρ = −bS into Eq. 3.98, we
obtain the simplified expression given below:

MRS(ρ=−bS) �
μ◦
2

(
NRNS

2bS

)
×

2bS√
(aR+aS)2+b2

S

{
[(aR+aS)2+b2

S ]
[
K(k)−E(k)

]
−Υ(c2, k)

}
(3.101)

where k is given by:

k2 =
4aRaS

(aR + aS)2 + b2
S

2bS
NS

NS

2aR 2aS

Fig. 3.15 Ring coil at the midplane of a thin-walled solenoid.
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Special Case 4: “Long” Thin-Walled Solenoid and Ring Coil

When the thin-walled solenoid is “long,” specifically when the conditions bS 	 aS

and bS	aR are met, the relative position between the ring coil and the solenoid is
no longer important. For a long solenoid, with k2� 4aRaS/b2

S , Eq. 3.101 becomes:

MRS �
μ◦
2

(
NRNS

2bS

)
(2)

{
b2
S

[
K(k)−E(k)

]
−Υ(c2, k)

}

� μ◦
2

(
NRNS

2bS

)
π(a2

R + a2
S )

[
1− 2(aR−aS)2

π(a2
R +a2

S )
Π(c2, k)

]
(3.102)

The second term within the brackets in Eq. 3.102 may be considered a correction
term which becomes negligible in the limit of aR 	 aS or aR � aS.

Special Case 5: Ring Coil of Widely Differing Diameter

When the diameter of the ring coil differs greatly from that of the solenoid, the
condition c2 → 0 is satisfied and, as noted earlier (Eq. 3.49b), Π(c2, 0) may be
given by the first few terms of the power expansion in c2. In the limit k2 → 0
(bS 	 aR and bS 	 aS), Π(c2, k)→Π(c2, 0) in Eq. 3.102, and using 3.49b, we obtain:

MRS �
μ◦
2

(
NRNS

2bS

)
π(a2

R + a2
S )

[
1− (aR−aS)2

(a2
R +a2

S )
(
1+ 1

2c2+ 3
8c4+ 5

16c6
)]

� μ◦
2

(
NRNS

2bS

)
π(a2

R + a2
S )×

{
1− (aR−aS)2

(a2
R +a2

S )

[
1+

2aRaS

(aR+aS)2
+

6(aRaS)2

(aR+aS)4
+

20(aRaS)3

(aR+aS)6

]}
(3.103)

3.8.2 Mutual Inductance and Interaction Force

Using expressions derived in 3.5.7 for axial restoring force on axially off-centered
solenoids, we may derive an expression for axial dependance of the mutual induc-
tance between the two solenoids. A net magnetic force, �FAB, between two solenoids,
A and B, is related to the total magnetic energy stored in the two solenoids:

�FAB = ∇EAB (3.104a)

Inserting Eq. 3.92, with the subscripts 1 and 2 replaced, respectively, by A and B
in the right-hand side of Eq. 3.104a, and noting that �FAB in the z-direction (with
variable ρ) is FzR(ρ), given by Eq. 3.60, we obtain:

FzR(ρ) =
∂EAB

∂ρ
= IAIB

∂MAB(ρ)
∂ρ

(3.105b)

For small ρ (ρ�
√

a2
T +b2

D ), we may integrate FzR(ρ) given by Eq. 3.61:

MAB(ρ) − MAB(0) ∝ −ρ2 (3.106)

For small ρ, MAB(ρ) thus decreases as ρ2, the square of the off-center distance.
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Magnetic Field (H ) and Magnetic Induction (B)

Unless otherwise qualified, every magnet in PROBLEMS&DISCUSSIONS is air-
cored, i.e., the magnetic induction, B, is simply related to the magnetic field,
H, by the magnetic permeability of air, which is virtually equal to that of vacuum
μ◦ = 4π×10−7 H/m: B = μ◦H. Often, especially by engineers, the unit of B,
tesla [T], is used for the unit of field H, ampere/meter [A/m]. Most likely, this
practice of interchanging B and H stems from: 1) B [gauss] and H [oersted] are
numerically equal in the cgs (centimeter-gram-second) electromagnetic unit; and
2) gauss is more universally used than oersted. In the 2nd Edition, most of field
equations originally given in H in the 1st Edition are given in B.

DISCUSSION 3.1: Uniform-Current-Density Solenoids

Here, the basics of a uniform-current-density solenoid, of winding i.d. 2a1, winding
o.d. 2a2, and total winding length 2b, are first discussed. Figure 3.16 defines the
winding cross section—because we are dealing with an axisymmetric solenoid,
only the z- and r-axes are considered. The differential magnetic field induction at
the center, dBz(0, 0) [T], generated by a current-carrying ring of differential cross
section dA [A/m2] located at (r, z) is given by an equivalent form of Eq. 3.3a:

dBz(0, 0) =
μ◦r2λJ dA

2(r2 + z2)3/2
(3.107)

where λJ [A/m2] is the overall current density within the differential cross section.
The dimensionless number λ, called the space factor, acknowledges that not all
the winding cross section is occupied by current-carrying conductors. Note that
λJ in this model is uniform over the winding cross section and given by:

λJ =
NI

2b(a2 − a1)
(3.108a)

=
NI

2a2
1β(α − 1)

(3.108b)

where, once again, α = a2/a1 and β = b/a1. N is the total number of turns, and
NI is often called the total ampere-turns.

z
λJdA

r2b �
Bz(0, 0)

2a1

2a2

Fig. 3.16 Cross section of a uniform-current-density solenoid.
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DISCUSSION 3.1: Uniform-Current-Density Solenoids (continuation)

By integrating Eq. 3.107 from r=a1 to r=a2 and from z=−b to z=b, we obtain
an expression for Bz(0, 0) for the solenoid, given in terms of Hz(0, 0) in 3.4 by
Eq. 3.13a and the field factor F (α, β) by Eq. 3.13b:

Bz(0, 0) = μ◦λJa1F (α, β) (3.109)

F (α, β) = β ln

(
α +

√
α2 + β2

1 +
√

1 + β2

)
(3.13b)

As stated earlier, F (α, β) is the “field factor” for a uniform-current-density coil
and, like the inductance parameter L(α, β) in Eq. 3.81, it depends only on the
cross-sectional shape of a solenoidal coil. Three graphs of F (α, β) are shown in
Fig. 3.17: F (α, β) vs. α with constant β lines (dashed) in Fig. 3.17a; F (α, β) vs. β
with constant α lines (dashed) in Fig. 3.17b; and β vs. α for constant F (α, β) lines
(dashed) in Fig. 3.17c [3.8].

The total conductor volume in a solenoid, Vcd =λ2πa3
1(α

2−1)β, depends, for given
λ and a1, only on α and β, as does F (α, β): each point on the heavy line in each
graph has the minimum volume for a given F (α, β). Salient features of F (α, β)
are noted in connection with special coils discussed in PROBLEM 3.1 below.
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Fig. 3.17a F (α, β) vs. α for constant β lines (dashed). The heavy curve
represents the minimum conductor volume for a solenoid coil of given F (α, β).
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DISCUSSION 3.1: Uniform-Current-Density Solenoids (continuation)
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Fig. 3.17b F (α, β) vs. β for constant α lines (dashed). The heavy curve
represents the minimum conductor volume for a solenoid coil of given F (α, β).
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PROBLEM 3.1: “Simple” solenoids*

a) Starting with Eq. 3.107, derive Eqs. 3.109 and 3.13b.

b) By combining Eqs. 3.108b and 3.109 we may also express Bz(0, 0) by:

Bz(0, 0) =
μ◦NI

2a1(α − 1)
ln

(
α +

√
α2 + β2

1 +
√

1 + β2

)
(3.110)

“Ring” Coil Simplify Eq. 3.110 for a “ring” coil (α = 1) of radius a1

carrying total current NI and reduce it to:

Bz(0, 0) =
μ◦NI

2a1
(3.111a)

“Thin-Walled” Solenoid: Show that for a “thin-walled” solenoid (α→1)
Eq. 3.110 is simplified to:

Bz(0, 0) =
μ◦NI

2a1

(
1√

1 + β2

)
(3.111b)

Also show:
Bz(0, 0) = μ◦λJa1(α − 1)

β√
1 + β2

(3.111c)

“Long” Solenoid: Simplify Eq. 3.110 for the case of a solenoid that is
much longer than its outer winding diameter, i.e., β�α, and reduce it to:

Bz(0, 0) =
μ◦NI

2b
(3.111d)

Because NI/2b=Kθ, Eq. 3.111d is equivalent to Eq. 3.5. Also, show that:

Bz(0, 0) = μ◦λJa1(α − 1) (3.111e)

“Pancake” Coil: Simplify Eq. 3.110 this time for a winding that is very
short compared with its outer winding diameter and reduce it to:

Bz(0, 0) =
μ◦NI

2a1

(
lnα

α − 1

)
(3.111f)

Equation 3.111f is valid for “pancake” coils (see DISCUSSION 3.6 ).

c) Field vs. Power: Show that an expression for the center field Bz(0, 0) in
a resistive, e.g., copper, solenoid is related to its power requirement, P , by:

Bz(0, 0) = μ◦G(α, β)

√
λP

ρcda1
(3.112a)

G(α, β) =

√
β

2π(α2 − 1)
ln

(
α +

√
α2 + β2

1 +
√

1 + β2

)
(3.112b)

where ρcd is the conductor’s electrical resistivity. G(α, β) is known as the G
factor for a uniform-current-density coil [3.2].

* Based on Problem3.1 in the 1st Edition (Plenum, 1994).
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Solution to PROBLEM 3.1

a) By integrating Eq. 3.107 over the appropriate limits for z- and r-coordinates,
we have:

Bz(0, 0) =
μ◦λJ

2

∫ a2

a1

∫ b

−b

r2 dz dr

(r2 + z2)3/2
= μ◦λJ

∫ a2

a1

∫ b

0

r2 dz dr

(r2 + z2)3/2

From a table of integrals we have:
∫ b

0

dz

(r2 + z2)3/2
=

[
z

r2
√

r2 + z2

]b

0

=
b

r2
√

r2 + b2

Thus:

Bz(0, 0) = μ◦λJ

∫ a2

a1

r2b dr

r2
√

r2 + b2
= μ◦λJb

[
ln

(
r +

√
r2 + b2

)]a2

a1

= μ◦λJb

[
ln

(
a2 +

√
a2
2 + b2

)
− ln

(
a1 +

√
a2
1 + b2

)]

= μ◦λJa1

(
b

a1

)
ln

[
a2/a1 +

√
(a2/a1)2 + (b/a1)2

(a1/a1) +
√

(a1/a1)2 + (b/a1)2

]
(S1.1)

With a2/a1 =α and b/a1 =β, Eq. S1.1 becomes:

Bz(0, 0) = μ◦λJa1β ln

[
α +

√
α2 + β2

1 +
√

1 + β2

]
(S1.2)

Thus:

Bz(0, 0) = μ◦λJa1F (α, β) (3.109)

F (α, β) = β ln

(
α +

√
α2 + β2

1 +
√

1 + β2

)
(3.13b)

b) “Ring” Coil For a ring coil (α → 1; β → 0), the logarithmic term in the
right-hand side of Eq. 3.110 becomes:

lim
β→0

ln

(
α +

√
α2 + β2

1 +
√

1 + β2

)
= lnα

In the limit α→1, lnα→α−1, because ln(1 + ε)=ε for |ε|�1. Thus:

Bz(0, 0) =
μ◦NI

2a1(α − 1)
(α − 1) =

μ◦NI

2a1
(3.111a)

Note that Eq. 3.111a, except for μ◦, is equivalent to Eq. 3.3a evaluated at z = 0,
with a and I replaced, respectively, by a1 and NI.
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Solution to PROBLEM 3.1 (continuation)

“Thin-Walled” Solenoid For a thin-walled solenoid (α→1), we can combine
Eqs. 3.13b and 3.23b to obtain:

lim
α→1

ln

(
α +

√
α2 + β2

1 +
√

1 + β2

)
=

α − 1√
1 + β2

(S1.3)

Combining Eqs. 3.110 and S1.3, we derive Eq. 3.111b; and from Eqs. 3.109, 3.13b,
and S1.3, Eq. 3.111c:

Bz(0, 0) =
μ◦NI

2a1

(
1√

1 + β2

)
(3.111b)

Bz(0, 0) = μ◦λJa1(α − 1)
β√

1 + β2
(3.111c)

Note that for a “long” solenoid (β�1), Eq. 3.111c becomes Eq. 3.111e.

“Long” Solenoid For β � α, we have:

lim
β�α

ln

(
α +

√
α2 + β2

1 +
√

1 + β2

)
= ln

(
α + β

1 + β

)
= ln

(
α/β + 1
1/β + 1

)

The same approximation in “Ring” Coil, ln(1 + ε)=ε for |ε|�1, may be used:

lim
β�α

ln
(

α/β + 1
1/β + 1

)
� α

β
− 1

β
=

α − 1
β

In the limit β�α, we thus obtain:

Bz(0, 0) =
μ◦NI

2b
(3.111d)

As remarked above, NI/2b may be considered a surface current density. From
Eq. 3.108, NI/(2b)=λJ(a2−a1), Eq. 3.111d may also be expressed as:

Bz(0, 0) = μ◦λJa1(α − 1) (3.111e)

For a long solenoid, the center field is independent of its length (β)—this virtual
independency of Bz(0, 0) on β for “large” β ( >∼ 3) and “moderate” α (< β) is
evident from F (α, β) vs. β plots (Fig. 3.17b). Also, Bz(0, 0) is proportional to the
winding build, (a2−a1), which makes perfect sense because the greater the winding
build, the greater is the total ampere-turns per unit length—this is evident from
F (α, β) vs. α plots for large β and moderate α (<β) shown in Fig. 3.17a.

“Pancake” Coil For a “pancake” coil, the appropriate limit is β → 0:

lim
β→0

ln

(
α +

√
α2 + β2

1 +
√

1 + β2

)
= ln

(
2α

2

)
= lnα

Bz(0, 0) =
μ◦NI

2a1

(
lnα

α − 1

)
(3.111f)

Note that the central field of a pancake coil is equal to that of a “ring” coil times
a factor lnα/(α − 1). In the limit α→1, Eq. 3.111f reduces to Eq. 3.111a.
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Solution to PROBLEM 3.1 (continuation)

c) Total conductor volume is equal to λ× <winding volume>:

<winding volume>= 2bπ(a2
2 − a2

1) = a3
12πβ(α2 − 1)

And thus:
P = ρcdJ

2λa3
12πβ(α2 − 1) (3.112)

where J is the current density in the conductor only. From Eq. 3.112, we can solve
for J in terms of P and other parameters:

J =

√
P

ρcdλa1

[
1

a1

√
2πβ(α2 − 1)

]
(S1.4)

Combining Eqs. S1.2 and S1.4, we obtain:

Bz(0, 0) = μ◦λ

√
P

ρcdλa1

[
1

a1

√
2πβ(α2 − 1)

]
a1β ln

(
α +

√
α2 + β2

1 +
√

1 + β2

)

= μ◦

√
λP

ρcda1

√
β

2π(α2 − 1)
ln

(
α +

√
α2 + β2

1 +
√

1 + β2

)

Thus:

Bz(0, 0) = μ◦G(α, β)

√
λP

ρcda1
(3.113a)

G(α, β) =

√
β

2π(α2 − 1)
ln

(
α +

√
α2 + β2

1 +
√

1 + β2

)
(3.113b)

Equation 3.113a implies that in resistive solenoids the required power P for a given
set of α and β, increases quadratically with the central magnetic field:

P =
ρcua1B

2
z(0, 0)

μ2
◦λG2(α, β)

(3.113c)

My Magnets (Part 2 of 3 Parts)

—Passage from Francis Bitter’s Magnets: The Education of a Physicist

. . . By using a variable-size wire in the construction of a coil, I found it possible
to increase the magnetic field at the center by a factor of just 1.52 over the best
design for a coil with a uniform winding. Therefore, by going into all kinds of
practical complications, one could improve the performance of coils only one and
a half times or a little more. However, this now was settled; there was no use
worrying about it any more. In the end these calculations did show me a practical
way of improving the performance of coils by an appreciable amount.
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DISCUSSION 3.2 “Bitter” Magnet

Although this book deals primarily with superconducting magnets, here we dis-
cuss the iron-free, water-cooled electromagnet. We may call the development of
DC high-field, water-cooled (“water”) magnet—“Bitter” magnet—that Francis
Bitter initiated at M.I.T. in the 1930s as the basis for modern magnet technology.
Passages from his book Magnets [3.4] are placed in this chapter to describe, in his
own words, the technical challenges and solutions for high-field magnets, including
pulse magnets of Kapitza, and a chronology of Bitter’s activities in the 1930s.

Bitter’s design employed a conductor in the form of a stack of annular plates, each
with a slit and separated by a thin sheet of insulation except over a sector. The
slit allows the bare sector to pressure-contact the next plate’s bare sector, enabling
the current to commutate from one plate to the next in a quasi-helical path as
it flows from one end of the stack to the other. Each “Bitter” plate is punched
with hundreds of cooling holes. To generate a high field, tens of thousands of
amperes of current are pushed through the electrically resistive stack, consuming
megawatts of electrical power, which heat the stack. This heat is removed by
water forced through the cooling holes at high velocity, ∼20 m/s. A silhouette of
two nested “Florida-Bitter” plates, developed in the 1990s at the National High
Magnetic Field Laboratory (NHMFL), is shown in Fig. 3.18 [3.9]. A radial slit in
each plate is clearly visible. Also note that each water passage hole is not circular
as in Bitter’s plates; the elongated—in the direction of current—shape was first
developed by Weggel at M.I.T. in the 1970s. The outer plate of the set here is
148 mm in diameter; plate sizes have been more than 400 mm in diameter. The
sixteen large holes are for axially clamping the plates with tie rods. A key feature
of the Bitter magnet construction is that it is modular, consisting of many similar
plates. Plate thickness, mechanical properties, and electrical properties can be
tailored to the axial position to optimize magnet performance.

Fig. 3.18 Silhouette of two nested “Florida-Bitter” plates, with an outer plate of 140mm
in diameter, in “water” magnets at the National High Magnetic Field Laboratory [3.9].
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DISCUSSION 3.2 Bitter Magnet (continuation)

As evident from Eq. 3.110 (PROBLEM 3.1), the smaller the inner winding radius,
a1, the higher the central field, Bz(0, 0), for a given total ampere-turns, NI.
Also, for the same power consumption, P , reducing a1 generates a higher Bz(0, 0)
(Eq. 3.113a). That is, to maximize Bz(0, 0) for a given power, it is most efficient to
place ampere-turns close to the magnet bore. The Bitter design, in which J∝1/r
(seen below), is a practical approach to approximate this goal.

A. Current Density, Field, Power

Here we derive expressions for [Jθ(r)]B (current density), [Bz(0, 0)]B (center field),
[F (α, β)]B (field-factor), and [G(α, β)]B (G-factor) for the Bitter magnet.

Current Density Distribution

We consider a single disk, in which current flows in the θ-direction. The resulting
E field gives a voltage V proportional to θ. Because 	E is only θ-directed (Eθ) and
it is constant at a given r, Eθ2πr = V . That is, Eθ varies as 1/r, and because
	J = 	E/ρcu, we have:

[Jθ(r)]B =
Eθ

ρcu
=

V

2πρcur
= J0

a1

r
(3.114)

where J0 = [Jθ(a1)]B = V/(2πρcua1). Equation 3.114 shows that in the Bitter
magnet current density decreases as 1/r, with its maximum at r=a1.

Field

We may substitute Jθ(r) given by Eq. 3.114 for λJ , a constant, in Eq. 3.107 and
integrate over appropriate limits:

[Bz(0, 0)]B = μ◦λBJ0a1

∫ a2

a1

∫ b

0

r dr dz

(r2 + z2)3/2
= μ◦λBJ0a1

∫ α

1

∫ β

0

η dη dζ

(η2 + ζ2)3/2

where r/a1 =η and z/a1 =ζ. From a table of integrals, we have:∫ β

0

dζ

(η2 + ζ2)3/2
=

[
ζ

η2
√

η2 + ζ2

]β

0

=
β

η2
√

η2 + β2

Combining the above two equations, we have:

[Bz(0, 0)]B = μ◦λBJ0a1β

∫ α

1

η dη

η2
√

η2+β2
= μ◦λBJ0a1β

[
− 1

β
ln

(
β+

√
β2+η2

η

)]α

1

[Bz(0, 0)]B = μ◦λBJ0a1 ln

(
α

β +
√

1 + β2

β +
√

α2 + β2

)

We may express the above expression as:

[Bz(0, 0)]B = μ◦λBJ0a1[F (α, β)]B (3.115a)

[F (α, β)]B = ln

(
α

β +
√

1 + β2

β +
√

α2 + β2

)
(3.115b)

Note that there is a subtle difference between Eqs. 3.115b and 3.13b.
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DISCUSSION 3.2 Bitter Magnet (continuation)

Field and Power

We may derive an expression relating [Hz(0, 0)]B and PB , the total power in the
Bitter magnet, by integrating power density, ρcu[Jθ]2B(r), over the entire winding
volume. Again, using dimensionless parameters, we have:

PB = a3
1

∫ α

1

∫ β

−β

ρcuλB

(
J0

η

)2

2πη dζ dη = J2
0ρcuλBa3

1(4πβ lnα)

From the above expression, we may relate J0 and PB :

J0 =
1

a1

√
4πβ lnα

√
PB

ρcuλBa1

and combine this with Eqs. 3.115 to relate [Bz(0, 0)]B and PB :

[Bz(0, 0)]B = μ◦[G(α, β)]B

√
λBPB

ρcua1
(3.116a)

where

[G(α, β)]B =
1√

4πβ lnα
[F (α, β)]B (3.116b)

As in uniform-current-density solenoids, [Bz(0, 0)]B increases as the square root
of PB ; PB is a quadratic function of field. The maximum of [G(α, β)]B occurs
when α � 6.42 and β � 2.15: [G(6.4, 2.15)]B � 0.166. [G(α, β)]B is at least 99%
of its peak value for 5≤α≤ 9 and 1.8≤ β ≤ 2.6. That is, PB for a given field is
within 2% of minimum throughout this range of α and β. However, because field
homogeneity for a given value of a1 improves with 2b or β, most Bitter magnets
have β values greater than 2.5, as in the magnet considered below.

Illustration We may apply Eq. 3.116 to compute PB for a Bitter magnet of
2a1 =6 cm, 2a2 =40 cm, 2b=22 cm, λB = 0.8, and ρcu =2×10−6 Ω cm, generating
[Bz(0, 0)]B =20 T. With α=(a2/a1)=40/6 = 6.67; β=(b/a1)=22/6=3.67,

[G(6.67, 3.67)]B =
1√

4π3.67 ln(6.67)
ln

[
6.67

3.67+
√

1+(3.67)2

3.67+
√

(6.67)2+(3.67)2

]
� 0.159

We have an expression of PB , similar to Eq. 3.113c, in terms of [Bz(0, 0)]B and
other parameters:

PB =
ρcua1[Bz(0, 0)]2B
μ2
◦λB [G(α, β)]2B

=
(2×10−8 Ω m)(3×10−2 m)(20 T)2

(4π×10−7 H/m)2(0.8)(0.159)2
� 7.5 MW

This power is typical of 20-T Bitter magnets that were operated at the Francis
Bitter National Magnet Laboratory.
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DISCUSSION 3.2 Bitter Magnet (continuation)

B. Current Density Distributions Other Than “Bitter”

One important parameter in water-cooled magnets is field efficiency, defined as
the square of the field at the magnet center divided by the total power input to
the magnet: [Bz(0, 0)]2B/μ2

◦PB . As with uniform-current-density magnets, field
efficiency defined for Bitter magnets is proportional to λB and [G(α, β)]2B and
inversely proportional to a1 and conductor resistivity ρcu.

We have considered two current density distributions so far: 1) uniform, J(r, z)=
J◦, and 2) Bitter, J(r, z)∝ 1/r. The uniform distribution means J is independent
of r and z. Superconducting magnets wound with “graded” conductors have J(r)
that changes with r in discrete steps. Those consisting of many nested coils, each
of which is wound with a different conductor, also have J(r) distributions that
change in discrete steps. We describe here three other current distributions of
interest for water-cooled magnets [3.3].

Kelvin Coil

The current density that gives the best field efficiency is known as the Kelvin
distribution, JK(r, z):

JK(r, z) ∝ r

(r2 + z2)3/2

Its unique feature is that every portion of the Kelvin coil produces the same field
per unit power. In comparison with a Kelvin coil, a uniform-current-density coil
for the same total power produces 66% of field at the magnet center; for a Bitter
coil, the ratio is 77%. It is not feasible to fabricate coils having the Kelvin current
density.

Gaume

The Gaume distribution, JG(r, z), also gives a good field efficiency:

JG(r, z) ∝ 1
r

(
1√

a2
1 + z2

− 1√
a2
2 + z2

)

The Gaume coils make each turn produce the same field per unit power as every
other turn. A Gaume coil produces 85% of the field of a Kelvin coil. The current
distribution of Bitter coils often approximates to a degree the Gaume distribu-
tion. This is achieved by using thicker Bitter plates axially away from the magnet
midplane: JB(r, z) ∝ 1/rδ(z), where δ(z) is the z-dependent plate thickness.

Polyhelix

A polyhelix coil consists of many nested single-layer coils, in which the current
density of each layer is adjusted to maximize the field efficiency and/or to match
the stress in each layer to its conductor strength:

JP (r, z) ∝ f(r)

A polyhelix coil of maximum efficiency, with JP (r, z) ∝ 1/r2, generates 92% of a
Kelvin coil field. In practice, because of the need to have many electrodes at both
ends, polyhelix coils are considered more difficult to manufacture than Bitter coils.
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PROBLEM 3.2: Maximum field in a solenoidal coil

Although the axial field at the center of a magnet is one of the parameters often
specified by the magnet user, an equally important parameter for the designer
is the maximum field to which the magnet is exposed. In a single solenoidal
magnet, as may be inferred from Eq. 3.12b, the axial field at the midplane, Hz(r, 0),
within the bore increases radially away from the axis. Indeed, the maximum field,
Hm, axially directed, occurs at the midplane and innermost winding radius point:
Hm = Hz(a1, 0). In multi-coil magnets comprised of nested coils, the maximum
field in any but the innermost coil, because of the fields generated by the remaining
coils, is generally not axially directed and occurs at points away from (a1, 0).

Again, this topic is treated here only to enhance the reader’s understanding of
field distribution of a simple solenoid. In an actual multi-coil magnet, one must
rely on a code to compute the maximum field and its location for each coil.

a) Using expressions in 3.4, show for a “thin-walled” coil (α=1) an expression
for Hz(r, 0)/Hz(0, 0)=hz(ξ), where ξ=r/a1, is given by:

hz(ξ) = 1 +
3

4(1+β2)2
ξ2 +

15(3−4β2)
64(1+β2)4

ξ4 +
35(5−20β2+8β4)

256(1+β2)6
ξ6

+
315(35−280β2+336β4−64β6)

16384(1+β2)8
ξ8

+
693(63−840β2+2016β4−1152β6+128β8)

65536(1+β2)10
ξ10

(3.117a)

b) Also, show that for a “short” coil (β=0) an expression for hz(ξ) is given by:

hz(ξ) = 1 +
3(α2−1)
8α2 lnα

ξ2 +
45(α4−1)
256α4 lnα

ξ4 +
175(α6−1)
1536α6 lnα

ξ6

+
11025(α8−1)
131072α8 lnα

ξ8 +
43659(α10−1)
655360α10 lnα

ξ10 + · · · (3.117b)

c) Similarly, show for a “thin-walled and long” coil, hz(ξ) is given by:

hz(ξ) � 1 +
3

4β4
ξ2 − 15

16β6
ξ4 +

35
32β8

ξ6 − 315
256β10

ξ8 +
693

512β12
ξ10 − · · ·

(3.117c)

d) Compute an approximate value of Hm/Hz(0, 0) ≡ hm for a “thin-walled”
(α=1) and relatively short coil with β=0.4.

e) Calculate hm for a pancake coil of α=2 and β�0.

f) Determine hm for a “thin-walled” and “long” coil of α=1 and β=2.

Note that for a single solenoid of a set of any α and β values, Hm/Hz(0, 0) may
be given by hz(ξ) obtained by combining Eqs. 3.12b and 3.14.
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Solution to PROBLEM 3.2

a) When considering Hz(r, 0), which in the midplane is equivalent to Hz(x, 0)
or Hz(y, 0), we use Eq. 3.12b where ξ = x/a1, ξ = y/a1, or ξ = r/a1. For a “thin-
walled” solenoid, we may then combine Eqs. 3.12b and 3.25 to obtain Eq. 3.117a.

b) Similarly, Eq. 3.117b may be obtained by combining Eqs. 3.12b and 3.21.

c) We obtain Eq. 3.117c by combining Eqs. 3.12b and 3.26. Note that unlike
Eq. 3.117b in which the signs of the higher terms are all pluses, the signs in
Eq. 3.117c alternate.

d) Inserting β=0.4 and ξ=1 into Eq. 3.117a, we obtain:

hm = 1 + 0.5574 + 0.3055 + 0.1125 − 0.0086 − 0.0585 = 1.9082

The Hm/Hz(0, 0) vs. α plots for constant values of β and F (α, β) by Mont-
gomery [3.2], give a value of 1.87.

e) Inserting α=2 and ξ=1 into Eq. 3.117b, we obtain:

hm � 1 + 0.4058 + 0.2378 + 0.1618 + 0.1209 + 0.0960 = 2.0222

f) Inserting β=2 and ξ=1 into Eq. 3.117a, we obtain:

hm � 1 + 0.03 − 0.0049 + 0.0005 + 0.0000 − 0.0000 = 1.0256

A quicker but less accurate solution may be obtained from Eq. 3.117c, which is
really valid for β�1:

hm � 1 + 0.0469 − 0.0146 + 0.0043 − 0.0012 + 0.0003 = 1.0356

My Magnets (Part 3 of 3 Parts)

—Passage from Francis Bitter’s Magnets: The Education of a Physicist

The next point was to estimate how much heat could actually be removed from
every square centimeter of surface. And here I ran into a great disappointment. The
engineers of that time never had tried to remove a lot of heat from the surface . . . It
seemed that water would be a suitable cooling medium. What would happen if the
temperature of the pipes or holes through which the water flowed was at the boiling
point of water, or above? Would steam layers be formed, such as are formed when
you spit on a hot stove?. . .We discovered (from experiments) that it was possible
to take very much more heat out of every square centimeter of surface than had
been recorded . . . We found that in turbulent flow any steam layer that is formed is
immediately scooped up into the body of the liquid, the steam is condensed, and that
heat is transferred to the liquid without the continued existence of the steam layer.
An important number for my design was 200 watts per square centimeter . . .Rather
than explore the possible limits to discover whether one could go even further, we
decided to stop at this point and build magnets based on this figure.
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DISCUSSION 3.3: Load Lines

A. Solenoid Magnet Wound with “Isotropic” Superconductor

Figure 3.19 shows the critical current Ic vs. B curve of an “isotropic” supercon-
ductor at a constant temperature T◦, Ic(B, T◦), and two sets of “load lines” for
a solenoid magnet wound with the superconductor. Here, the Ic(B, T◦) curve is
isotropic, i.e., Ic(B, T◦) is independent of field direction, the condition generally
met with superconductors of circular cross section.

The load lines, solid and dashed, that emerge from the origin (0, 0) correspond to
the “self” fields of the magnet energized alone: the solid line corresponds to the
axial center field, Bz(0, 0), and the dashed line to the maximum field within the
winding, Bmx—for a simple solenoid magnet Bmx occurs at the winding inside
radius (r =a1) and the axial midplane (z =0), Bmx =Bz(a1, 0). The intercept of
the Ic(B, T◦) point and the dashed load line is the maximum operating current,
Iop(Bmx, T◦), achievable by this magnet, still fully superconducting.

When a magnet is placed in the bore of another magnet, the field generated by this
“background-field” magnet must be added to the load lines of the inside magnet,
the so-called “insert”—in a combined system the two magnets are generally coaxial
with the midplanes coincident. The solid load line emerging from Bb◦ on the B-
axis corresponds to the center field of the combined system, while the dashed line
to the maximum insert field—note that the dashed line starts from a field slightly
greater than Bb◦, because the background field there is greater; the intercept of
the Ic(B, T◦) point and the dashed line gives the maximum operating current,
Iop(Bmxb, T◦), for this combined magnet system.

For various reasons, some of which are discussed in later chapters, a superconduct-
ing magnet, alone or in a combined system, is generally designed to operate at a
current 50–70% of its maximum possible current.

Ic(B, T◦)

Ic(0, T◦)

Iop(Bmx, T◦)

Iop(Bmxb, T◦)

0 B
0 Bmx Bb◦ Bmxb

Load lines
(no background field)

Load lines
(in center field of Bb◦)

Fig. 3.19 Critical current Ic vs. B curve of an “isotropic” superconductor at a constant
temperature T◦, Ic(B, T◦), and two sets of “load lines” for a solenoid magnet, by itself
and placed in the bore of another magnet generating a background center field of Bb◦.
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DISCUSSION 3.3: Load Lines (continuation)

B. Solenoid Magnet Wound with “Anisotropic” Superconductor

For noncircular-cross-section superconductors, Ic(B, T◦) is generally “anisotropic,”
i.e., Ic(B, T◦) depends on the field orientation relative to the cross section. Promi-
nent examples of noncircular-cross-section superconductors are high-temperature
superconductors, Bi2223 and YBCO, that are available only in tape form.

In APPENDIX V are presented Ic(B, T )/Ic(sf, 77 K) plots—Ic(B, T ) data normal-
ized to Ic(sf, 77 K) data—for Bi2223 and YBCO, where sf stands for “self field,”
the field generated by the transport current alone; for each superconductor two
sets of data are given, one in which the applied external field, B, is parallel (B‖)
to the tape superconductor’s “broad” surface normal to the current direction, and
the other in which B is perpendicular (B⊥) to the surface. For both Bi2223 and
YBCO, Ic(B, T◦) decreases more sharply with B⊥ than with B‖. Also note that
for both superconductors, Ic(B), in both field directions, decreases more sharply
with B at higher T◦.

As may be inferred from the field lines in Fig. 3.3 of a solenoid magnet, the radial
component of the field, Br, which is exactly zero at the solenoid axial midplane
(z=0), increases in the ±z and r directions, with a peak radial field, [Br(α, β)]pk,
occurring at z = ±b and a1 < r < a2. No closed-form analytical expression of
[Br(α, β)]pk exists. However, for most single solenoids, i.e., 1 ≤ α ≤ 3.6 and
0.1 ≤ β ≤ 10, and for a preliminary (even before the first-cut ) design of a tape-
based magnet, e.g., a stack of “double-pancake” coils (DISCUSSION 3.6 ), Eq. 3.118
below gives [Br(α, β)]pk to within ±30% of those computed with a code.

[Br(α, β)]pk

Bz(0, 0)
≈ 0.3

α2β
+

0.6
α

(3.118)

Note that for thin- and medium-walled (α ≤ 1.8) and “short” (β < 1) solenoids,
[Br(α, β)]pk can exceed Bz(0, 0), e.g., [Br(α=1.1, β=0.1)]pk≈3Bz(0, 0)!

In a tape-wound magnet, therefore, the intercept of a load line corresponding
to the maximum perpendicular field, B⊥, i.e., [Br(α, β)]pk, and the conductor’s
Ic(B⊥, T◦) curve may limit its operating current rather than the maximum B‖
(= Bz) load line corresponding to the Ic(B‖, T◦) curve. Also, because B⊥ varies
over the height of the tape (tape width) itself in the winding, this variation may
have to be included in computing the maximum operating current. Voccio recently
formulated an analytical approach to determine the maximum operating current
for “pancake coils” wound with Bi2223 and YBCO tapes [3.10].

TRIVIA 3.2 Which one of the cooling water flow rates (liters/min)
below is closest for a 31-T (24MW) water magnet at the NHMFL?

i) 150,000; ii) 15,000; iii) 1,500; iv) 150.
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DISCUSSION 3.4: Superposition Technique

The law of Biot-Savart as applied in solving field problems essentially states that
a magnetic field at a point in a solenoid is the vector sum (superposition) of
fields generated by all current elements within the solenoid. Here we apply a
superposition technique to the entire body of a solenoid and compute the axial
field at any point on the axis of a solenoid. This technique, though limited to the
field on the axis only, is introduced to enhance the reader’s general understanding
of field generation by a solenoid.

A. End Field

The axial end field of an axially symmetric solenoid is half the center field of a
solenoid of identical composition but twice the length of the original. We may
visualize this by considering an axially symmetric solenoid comprised of two iden-
tical sections, each of the original length 2b (Fig. 3.20). The axial center field of
the new solenoid is the sum of two equal fields, generated by the two sections:

H(b) = H(α, β)|z=b = 1
2H(α, 2β)|z=0 = 1

2λJa1 [F (α, 2β)] (3.119)

Because F (α, 2β)>F (α, β) (Fig. 3.17b), it follows that H(z = b)>0.5H(0). That
is, the end axial field of a solenoid is always greater than half its central field. Note
that H(z=b) → 0.5H(0) in the limit β → ∞.

B. Off-Center Axial Fields

The technique may also be applied to compute the axial field at any location along
the solenoid axis. Two off-center cases are considered here: 1) 0<z<b, i.e., within
the solenoid bore; and 2) z > b, i.e., outside the bore. Figure 3.21 illustrates the
procedure for applying this superposition technique for each case. We thus have:

(Case 1: z<b) H(z)= 1
2λJa1

[
F

(
α, β=

b+z

a1

)
+ F

(
α, β=

b−z

a1

)]
(3.120a)

(Case 2: z>b) H(z)= 1
2λJa1

[
F

(
α, β=

b+z

a1

)
− F

(
α, β=

z−b

a1

)]
(3.120b)

× = 1
2× ⊗

← → ← →2b 4b

↑

↓
2a1

Fig. 3.20 In a superposition technique, the end field of an axially symmetric solenoid
of length 2b may be computed as half of the center field of a solenoid of the same
construction having length 4b.
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DISCUSSION 3.4: Superposition Technique (continuation)

Case 1: z<b

⊗ ×

← → ←
← →

b+z b−z
2b

→ ←z

=

⊗

← →2b+2z

1
2×

+

⊗

← →2b−2z

1
2×

ORIGINAL COIL

Case 2: z>b

⊗ ×

← →
← →

2b
b+z

=

← →z

⊗

← →2b+2z

1
2
×

−

⊗

→ ← 2z−2b

1
2
×

ORIGINAL COIL

Fig. 3.21 Superposition technique for off-center axial points. Case 1: z<b; Case 2:z>b.
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DISCUSSION 3.5: Hybrid Magnet

A “hybrid” magnet comprises two axially aligned and centered electromagnet
“species:” a high-power water-cooled (“water”) magnet in the bore of a super-
conducting magnet (SCM). It was conceived in the mid 1960s by Montgomery
and others at the National Magnet Laboratory (NML) as a means to achieve
DC fields above ∼25 T [3.11], the highest DC field achievable by Bitter magnets
with the power of 9 MW then available. For the next three decades, the Magnet
Lab contributed to the development of hybrid magnet technologies by designing,
building, and operating several hybrid magnets [3.12–3.18].

A. Selected Hybrid Magnet Facilities

There are several hybrid magnet facilities now operating. Selected hybrid magnets
are briefly described below in the chronological order of their operation.

High Field Magnet Laboratory, Radboud University, Nijmegen

Since 1977 the High Field Magnet Laboratory (HFML) at Nijmegen has operated
two hybrid magnets, 25.4 T [3.12] and 32 T [3.14, 3.15], powered by a 6-MW sup-
ply [3.19]. With its newly installed 20-MW supply [3.20] and advanced “water”
magnets [3.21], a 45-T hybrid magnet is scheduled to begin operation in 2012.

High Field Laboratory, Tohoku University, Sendai

In operation since 1983 with a 7.5-MW supply [3.22], the High Field Laboratory
has replaced its 23-T “wet” hybrid with a “dry” version that generates 30 T [3.23].

For a facility hybrid magnet that must undergo many field-sweep sequences, its
SCM should ideally be dry and of HTS. A dry cryostat avoids loss of liquid cryogen
after a trip in its water-cooled magnet; an HTS magnet can tolerate a much greater
rise in its operating temperature, caused by AC losses, than its LTS counterpart.
CHAPTER 4 discusses two design/operation options that should enable even a dry
HTS magnet to operate reliably under the facility operation conditions of a hybrid
magnet: 1) a volume of solid cryogen in the HTS magnet chamber; and 2) a
cryocirculator (DISCUSSION 4.7 ) rather than a cryocooler as the primary cooling
source for the SCM.

Grenoble High Magnetic Field Laboratory

The Grenoble Magnet Laboratory began its hybrid magnet operation in 1987 [3.24].
Its latest 24-MW supply [3.25] is for a 40-T hybrid magnet [3.26].

Magnet Laboratory, National Research Institute of Materials Science

In operation since 1995, the Magnet Laboratory at the National Institute of Mate-
rials Science at Tsukuba, with its 17-MW supply, operates 30–35 T hybrids [3.27].

National High Magnetic Field Laboratory (NHMFL)

The 45-T hybrid magnet [3.28, 3.29] of the National High Magnetic Field Labora-
tory (NHMFL) at Florida State University generates the highest DC magnetic field
in the world. Currently, the water magnet generates 34 T and the SCM generates
11 T [3.30]. The SCM is discussed in more detail below.
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DISCUSSION 3.5: Hybrid Magnet (continuation)

B. NHMFL 45-T Hybrid Magnet

Figure 3.22 shows a cross-sectional view of the “water” magnet, SCM, and some
auxiliary components of the 45-T hybrid magnet at the NHMFL [3.31]. The water
magnet has four nested coils; it generates a center field of 31 T at 24 MW. The
SCM, consisting of three coils, A, B, and C, operated at 1.8 K, initially generated
14 T but now operates at 11 T [3.30]; the water magnet has been redesigned to
contribute 34 T at 30 MW. The system includes a superfluid helium supply cryo-
stat, to which the SCM cryostat is connected by a pipe, shown truncated at the
right, middle of the figure.

Fig. 3.22 Cross sectional view of the 45-T hybrid magnet at NHMFL [3.31].

↓ ↓ ↓ ↓

SCM Coils: C BA WATER-COOLED MAGNET (4Nested Coils)

↑

↓

1232mm

→
Magnet Center
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DISCUSSION 3.5: Hybrid Magnet (continuation)

Table 3.3: Parameters of 14-T SCM for NHMFL 45-T Hybrid Magnet [3.31]

Coils (each wound with CIC conductor) Coil A Coil B Coil C

Strand composite superconductor Nb3Sn NbTi

Type of winding Layer Pancake

Number of layers/double pancakes 6 7 29

Total number of turns 306 378 1015

Winding i.d., 2a1 [mm] 710 908 1150

Winding o.d., 2a2, [mm] 888 1115 1680

Winding length, 2b [mm] 869 868 992

Operating current, Iop [kA] 10*

λJ @ Iop [MA/m2] 39.6* 44.3* 38.6*

Field contribution at center @ Iop [T] 3.3* 3.6* 7.4*

Bpeak @ Iop with water magnet idle [T] 15.7* 11.7* 8.5*

Combined inductance [H] 1.96

Stored energy @ Iop [MJ] 98*

* Corresponds to operation at 10 kA; currently operated at 8 kA [3.30].

Parameters of the 45-T Hybrid SCM

Table 3.3 presents key parameters of the 45-T hybrid SCM [3.31]. The most notable
feature of this SCM is its three coils, each wound with cable-in-conduit (CIC)
conductor, which is discussed in CHAPTER 6. The two inner coils, A and B, are
layer-wound, while the outer coil, C, is a stack of 29 double-pancake coils.

C. Engineering Challenges of the Hybrid Magnet

Hybrid magnets are rare species, operated at only a half dozen or so major na-
tional laboratories. It is not a kind of magnet that is being built regularly, not
even at a rate of one a year. It is certainly not a type of magnet that a group
of engineers or physicists can or would build in a few months. Because of this
rarity few engineers have actually participated in the design, manufacture, and
operation of hybrid magnets. Nevertheless, because it combines two species of
magnets in close proximity, one operating at room temperature and the other at
liquid helium temperature, the two are tightly-coupled, electromagnetically and
mechanically. Thus, in addition to engineering issues specific to each magnet,
there is an important design and operation challenge unique to the hybrid mag-
net: transmission of a horrendously large interaction force on the cold SCM to
the magnet structure at room temperature with the least heat load to the SCM
cryostat. Although a hybrid magnet itself will not be encountered by most of the
readers of this textbook, it offers salient design and operational issues that most
magnet and cryogenic engineers may find instructive.

Generic topics related to hybrid magnets in the remainder of this chapter as well
as in CHAPTERS 4, 6, 7, and 8 are derived chiefly from the 35-T hybrid magnet
operated at M.I.T. until 1995 [3.16–3.18].
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DISCUSSION 3.5: Hybrid Magnet (continuation)

D. Configuration & Unique Features

In a hybrid magnet, the superconducting magnet is always placed outside of its
water magnet (“insert”) and not the other way around. By this configuration,
each component’s features are optimized, as given below for each component.

“Water” Magnet

• In DISCUSSION 3.2, it has been shown that the power requirement PB for
Bitter magnets is proportional to a1 and [Bz(0, 0)]2B (from Eq. 3.116a) , with
PB typically in the 6∼30 MW range. A Bitter magnet is “power hungry,”
and it is best to minimize its overall volume: use it as an insert in a hybrid.
However, because the stronger the field strength, the greater the magnetic
stresses in the conductor, the conductor materials must be stronger, which are
generally more resistive. Thus, Bz(0, 0)∝

√
P (Eq. 3.113a) and [Bz(0, 0)]B ∝√

PB (Eq. 3.116a) both become invalid at higher fields.

• Normal metals such as copper have no “intrinsic” field limit above which they
cannot be used to build a magnet. However, as stated above, because those
made of stronger materials require greater power, and equally demanding, the
cooling that must match this increased Joule dissipation, the range 30–40 T
is considered the limit for practical magnet facilities.

Superconducting Magnet

• Superconductors have fairly well-defined upper field limits above which they
cannot remain superconducting. Thus it is best to place this magnet in the
lower-field part of a hybrid: place it outside the “water” magnet.

• The total energy storage increases with magnet size, but the power required,
chiefly for cryogenics, remains insignificant. A 100-MJ magnet does not
require a 100-MW power supply; typically 10–100 kW supplies suffice.

Combination of these features makes it natural for a hybrid magnet to consist of
a water-cooled insert surrounded by a superconducting magnet.

“We have learned that ‘paper’ hybrid magnets:
are always built with perfect superconductors;
can be built in perfect confidence with utmost materials;
are not subject to fatigue; never have shorts . . .;
have cryostats closed with zippers and are always vacuum tight;
provide unlimited experimental access; operate themselves;
. . . are always on schedule and within budget.” —Mathias J. Leupold
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DISCUSSION 3.5: Hybrid Magnet (continuation)

E. Interaction Force

A unique and demanding aspect of a hybrid magnet system arises from interactive
forces between the insert magnet and the SCM. If the two magnets are aligned
axially and radially, they exert no force on each other. However, relative dis-
placements of their field centers result in forces of increasing magnitude. Axial
displacements produce axial restoring forces—the magnets center themselves ax-
ially. Radial displacements of the field centers result in forces that increase the
displacement, i.e., instability. Normally, forces are modest; careful design and con-
struction can cope with them relatively easily. However, the failure of a necessarily
high-performance water-cooled insert must be accepted as inevitable. In such a
failure, large forces can suddenly develop from a field displacement created when
part of the insert winding becomes shorted and ceases to produce field.

Although less demanding than the structural requirements to contain fault forces,
magnet monitoring for electrical protection is also complicated because of magnetic
coupling (mutual inductance) of the two systems. Obviously, each magnet and its
power system must have electrical protection of some sort to prevent damage or
injury if something goes wrong, but there are also strong electrical interactions be-
tween the two magnets which would not exist were they separate. PROBLEMS 8.3
and 8.4 in CHAPTER 8 discuss coil monitoring in more detail for magnets in general
and for hybrid magnets in particular.

DISCUSSION 3.6: “Double-Pancake” vs. “Layer-Wound”

Of the two magnet winding techniques, one is commonly known as “double-
pancake” or simply “pancake,” and the other as “layer-wound.” A double-pancake
coil is generally wound with flat conductor, e.g., tape, and sometimes with “large”
square- or rectangular-cross-sectioned conductor, e.g., CIC. Each is wound with a

A

C

B

Fig. 3.23 Pictorial view of a double-pancake coil, with the top and bottom pancakes
separated axially for clarity. The pancakes in this drawing are wound with a tape
conductor. Points A and B indicate the ends of a continuous conductor, with Point
C marking the approximate midpoint.
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DISCUSSION 3.6: “Double-Pancake” vs. “Layer-Wound” (continuation)

continuous length of conductor. In a double-pancake coil, a schematic drawing
of which is shown in Fig. 3.23, the starting point of the winding is the midpoint
(approximately point C in Fig. 3.23) of the conductor; in a layer-wound coil,
it is one end (A or B) of the conductor. Because the winding height (2b) of
each double-pancake coil is about twice the conductor height (width in tape), a
practical magnet requires multiple double-pancake coils, adjacent coils spliced in
the radial space outside the outermost winding diameter (2a2). A layer-wound coil,
on the other hand, is wound continuously from one end to the other end of the
conductor, layer by layer from the innermost layer to the outermost. Advantages
and disadvantages of both techniques are discussed below.

Advantages & Disadvantages

1. For a double-pancake coil, the required length is much less than that for a
full, splice-free layer-wound coil. A splice-free length as short as ∼50 m suffices
for small coils. Even in a large magnet, a length of ∼1–2 km should be sufficient.
In layer-wound coils, on the other hand, splice-free conductor can easily exceed
10 km in a single coil. Because longer conductors are generally more difficult to
manufacture than shorter conductors, in terms of conductor length, a pancake coil
is preferable to a layer-wound coil.

2. A pancake magnet generally requires many double-pancake coils, each of which
ideally is an identical module, to build up the magnet winding height. This mod-
ular magnet construction approach, together with conductor length requirement
stated above, makes manufacturing of a pancake magnet easier (and probably less
expensive) than that of a layer-wound counterpart. Also, one catastrophic mistake
during the winding process that can potentially render the entire stock unusable
in a layer-wound coil will affect only one spool needed for one double-pancake. Be-
cause both electromagnetic performance and dimensions of each completed double-
pancake can be slightly different, another advantage of the pancake technique is
that it enables placement of each double-pancake coil at its most suitable location
along the magnet axis.

3. One clear disadvantage of the pancake technique is the unavoidable need for
splices between adjacent double-pancakes. Splicing is an added process in the man-
ufacturing, made more difficult than a simple conductor splice because the splice
here has to conform to the curvature of the winding. Perhaps more importantly
from operation, these splices generate unwanted Joule dissipation, unless they are
superconducting. Magnets for NMR and MRI generally require superconducting
splices. To make a superconducting splice could be a challenge itself; to ascertain
that each splice is indeed superconducting is also not an easy task.

Answer to TRIVIA 3.2 ii). Corresponds to a net temperature rise of ∼25◦C. Note that
this 17-MW dissipation must obviously be matched by a cooling power of 17MW. It has
been suggested, half in jest, that a water-cooled magnet is a zero-efficiency machine.
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PROBLEM 3.3: Helmholtz coil*

Highly uniform magnetic fields are desirable in many applications. An arrange-
ment known as the “Helmholtz coil” achieves a high uniformity of the field over a
limited region of space by simple means. It uses two identical coils spaced coaxi-
ally a distance d apart (Fig. 3.24a) in the magnet axis (z-direction); the coils are
located, respectively, at z = d/2 and z =−d/2. The spacing d in the Helmholtz
coil is adjusted to make at the magnet center (r=0, z=0):

d2Hz(0, z)
dz2

∣∣∣∣
z=0

= 0 (3.121)

a) Idealizing the two coils by two “rings” each of radius a, show that when d=a,
dH2

z (0, z)/dz2 = 0 at the magnet center. The solid curve in Fig. 3.24b gives
Hz(0, z) of a coil with d that does not satisfy Eq. 3.121.

b) Show that with coils of opposing polarity, a gradient field is generated at the
magnet center. Evaluate this dHz/dz at z=0. (Note that d3Hz(0, z)/dz3 �=0
when d = a; d3Hz(0, z)/dz3 = 0 requires d =

√
3a.) This configuration with

reverse current is called a Maxwell coil. The dotted curve in Fig. 3.24b gives
Hz(z) of a gradient coil.

Fig. 3.24 (a) Ideal Helmholtz coil arrangement; (b) Hz(0, z) for a “uniform”
field case (solid) and Hz(0, z) for a “gradient” field case (dotted).

* Problem3.4 in the 1st Edition (Plenum, 1994).

z

z = d / 2

d / 2−d / 2

a

d z =0

z−d 0 d

(b)

(a)

Hz(z)
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Solution to PROBLEM 3.3

a) The z-component of magnetic field along the axis (r =0) due to the bottom
loop, located at z=−d/2, may be given by Eq. 3.3a:

Hz(0, z) =
a2I

2[a2 + (z + d/2)2]3/2

Adding the field from the top coil, located at z=d/2, we have:

Hz(0, z) =
a2I

2

{
1

[a2 + (z + d/2)2]3/2
+

1
[a2 + (z − d/2)2]3/2

}
(S3.1)

Differentiating Hz(z) given by Eq. S3.1 with respect to z, we have:

dHz(0, z)
dz

=
3a2I

2

{
− (z + d/2)

[a2 + (z + d/2)2]5/2
− (z − d/2)

[a2 + (z − d/2)2]5/2

}

Note that from symmetry dHz(0, z)/dz=0 at z=0 for any value of a.

The second derivative of Eq. S3.1 is given by:

d2Hz(0, z)
dz2

=
3a2I

2

{
− a2 − 4(z + d/2)2

[a2 + (z + d/2)2]7/2
− a2 − 4(z − d/2)2

[a2 + (z − d/2)2]7/2

}

The second derivative is zero at z = 0 if d = a. This technique of locating two
identical coils with axial spacing equal to the coil radius to produce a region of field
homogeneity, here through the 2nd harmonic order, is one of the design principles
used in MRI and other magnets requiring a high spatial field homogeneity.

b) For this system with the current polarity of the bottom coil reversed, we have:

Hz(0, z) =
a2I

2

{
− 1

[a2 + (z + d/2)2]3/2
+

1
[a2 + (z − d/2)2]3/2

}
(S3.2)

By symmetry, Hz(z=0)=0. Differentiating Eq. S3.2 with respect to z, we obtain:

dHz(0, z)
dz

=
3a2I

2

{
(z + d/2)

[a2 + (z + d/2)2]5/2
− (z − d/2)

[a2 + (z − d/2)2]5/2

}
(S3.3)

Evaluating Eq. S3.3 at z=0, we have:

dHz(0, z)
dz

∣∣∣∣
0

=
3a2Id

2[a2 + (d/2)2]5/2

This method of locating two identical coils having opposite currents to achieve a
field gradient is the basic principle used in magnets requiring a gradient field at
the midplane. A pulsed magnet used in an MRI system to produce a gradient field
(to extract spatial information for imaging) is one example.
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PROBLEM 3.4: Analysis of a Helmholtz coil—another method

Here, we analyze the Helmholtz coil of PROBLEM 3.3, using Eqs. 3.16a and 3.22.

Show that for a Helmholtz pair comprised of two “ring” coils, Coils 1 and 2, each
of radius a, located, respectively, at ζ(≡ z/a) = +0.5 and ζ =−0.5, its axial field
2nd derivative at its center (ζ =0), d2hz(0)/dζ2|1/2, expressed in a power series in
ζ2n converges to 0 as more terms are added. Because each coil is not evaluated at
its own ζ =0, the simplified expression of Eq. 3.17b cannot be used here.

Use up to the 20th term to compute d2hz(0)/dζ2|1/2. Note that E2(1, 0). . . E10(1, 0)
are given by Eq. 3.28. A technique used to derive E2(1, 0). . .E10(1, 0) may be used
to derive E12(α, 0). . .E20(α, 0) from Eq. 3.15b and f12(α, β). . .f20(α, β) given in
APPENDIX IB. In the limit β → 0, the expansion of 1/(1+β2)19.5 up to the β20

term, for example, results in the following expression:
1

(1+β2)19.5
= 1 − 39

2 β2 + 39
2 · 412

β4

2!
− 39

2 · 412 · 432
β6

3!
+ · · ·

+ 39
2 · 412 · 432 · 452 · 472 · 492 · 512 · 532 · 552 · 572

β20

10!
(3.122)

For E12(α, 0). . .E20(α, 0), similar to E2(α, 0). . .E10(α, 0) as in Eq. 3.21, we have:

E12(α, 0) =
7·11·13

212
· (α

12 − 1)
α12 lnα

=
1001(α12 − 1)
4096α12 lnα

(3.123a)

E14(α, 0) = −5·9·11·13
212 ·7 · (α

14 − 1)
α14 lnα

= −6435(α14 − 1)
28672α14 lnα

(3.123b)

E16(α, 0) =
5·9·11·13·17

219
· (α

16 − 1)
α16 lnα

=
109395(α16 − 1)
524288α16 lnα

(3.123c)

E18(α, 0) = −5·11·13·17·19
217 ·32

· (α
18 − 1)

α18 lnα
= −230945(α18 − 1)

1179648α18 lnα
(3.123d)

E20(α, 0) =
3·7·11·13·17·19

220 ·5 · (α
20 − 1)

α20 lnα
=

969969(α20 − 1)
5242880α20 lnα

(3.123e)

In the limit α → 1, Eqs. 3.123a – 3.123e become:

E12(1, 0) =
3003
1024

=
3·7·11·13

210
=

3·5·7·9·11·13
2·4·6·8·10·12

� 2.933 (3.124a)

E14(1, 0) = −6435
2048

= −5·9·11·13
211

= −3·5·7·9·11·13·15
2·4·6·8·10·12·14

� −3.142 (3.124b)

E16(1, 0) =
109395
32768

=
5·9·11·13·17

1015
=

3·5·7·9·11·13·15·17
2·4·6·8·10·12·14·16

� 3.338 (3.124c)

E18(1, 0) = −230945
65536

=
5·11·13·17·19

1016
= −3·5·7·9·11·13·15·17·19

2·4·6·8·10·12·14·16·18
� −3.524

(3.124d )

E20(1, 0) =
969969
262144

=
3·7·11·13·17·19

1018
=

3·5·7·9·11·13·15·17·19·21
2·4·6·8·10·12·14·16·18·20

� 3.700

(3.124e)
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Solution to PROBLEM 3.4

d2hz(ζ)/dζ2 at ζ = 0 due to Coil 1 at ζ = +0.5, d2hz(0)/dζ2|1/2, is given by
Eq. 3.16a:

d2hz(0)
dζ2

∣∣∣∣
1/2

= 2E2(1, 0) + 12E4(1, 0)×(0.5)2 + 30E6(1, 0)×(0.5)4

+ 56E8(1, 0)×(0.5)6 + 90E10(1, 0)×(0.5)8

+ 132E12(1, 0)×(0.5)10 + 182E14(1, 0)×(0.5)12

+ 240E16(1, 0)×(0.5)14 + 306E18(1, 0)×(0.5)16

+ 380E20(1, 0)×(0.5)18 + · · · (S4.1)

Because Coil 2 (at ζ = −0.5) gives numerically the same d2ζz/dζ2 at ζ = 0.5 as
that of Coil 1 at ζ =0.5 given by S4.1, we have:

d2hz(0)
dζ2

∣∣∣∣
1/2

= 4
(
−3

2

)
+ 24

(
15
8

)
(0.5)2 + 60

(
−35

16

)
(0.5)4

+ 112
(

315
128

)
(0.5)6 + 180

(
−693

256

)
(0.5)8

+ 264
(

3003
1024

)
(0.5)10 + 364

(
−6435

2048

)
(0.5)12

+ 480
(

109395
32768

)
(0.5)14 + 612

(
−230945

65536

)
(0.5)16

+ 760
(

969969
262144

)
(0.5)18 + · · · (S4.2)

We compute Eq. S4.2 as each higher term is added:
d2hz(0)

dζ2

∣∣∣∣
1/2

= −6 (only E2)

= 5.25 (through E4)

� −2.9531 (through E6)

� 1.3535 (through E8)

� −0.5499 (through E10)

� 0.2062 (through E12)

� −0.0730 (through E14)

� 0.0248 (through E16)

� −0.0081 (through E18)

� 0.0026 (through E20)

From the above, it is clear that d2hz(0)/dζ2|1/2 → 0 as more higher terms are
added. Note that for a single ring coil placed at ζ =0: d2hz(0)/dζ2 =−3.
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PROBLEM 3.5 Analysis of a spatially homogeneous magnet

Table 3.4 Field Parameters

Parameters Value

Center field, B0 [T] 1.000

d2B/dz2|0 [T/cm2] 0.4658×10−6

d4B/dz4|0 [T/cm4] 4.8450×10−5

d6B/dz6|0 [T/cm6] 1.0893×10−4

d8B/dz8|0 [T/cm8] 1.0789×10−4

Figure 3.25 shows a schematic cross
section of a spatially high field homo-
geneity magnet consisting of three coils,
Coils 1–3. Coils 1 and 3 are identical
and located below and above the middle
coil, Coil 2, to enhance the homogeneity
at the center (0,0). Key dimensions (in
mm) are indicated in the figure. Each
coil has the same 2a1 of 100 mm and the
same overall current density, λJ =2.5147×108 A/m2. Table 3.4 gives field param-
eters of the magnet computed with a computer code by Bobrov [3.32].

112.89

100.00

Coil 1 55.85

106.44

Coil 2

289.24 148.21

Coil 3 55.85

Figure 3.26 shows the same magnet represented by three coils, A, B, and C, each
centered at (0,0). Coil A extends from
Coil 1 to Coil 3, including the two gaps
in between. Coil B is identical to Coil 2.
Because in the new representation Coil 2
is represented twice, by Coils A and B,
Coil C “subtracts” one of the two Coil 2’s
as well as the two gaps, with its current
in the opposite direction from those of
Coils A and B.

a) Verify that the coil configuration
of Figs. 3.26 gives the same center
field of B0 = 1.000 T as the origi-
nal coil configuration. Coils A, B,
and C have the same overall cur-
rent density, λJ .

B0 = 1.000 T

= μ◦λJa1[FA(α, β) + FB(α, β)
− FC(α, β)]

(3.125)

b) Apply Eqs. 3.14 and 3.17, and us-
ing a handheld scientific calculator,
compute, d2B/dz2|0 and d4B/dz4|0
for this magnet. The values should
agree with those given in Table 3.4
computed with a code.

Fig. 3.25 Magnet comprised of 3 coils. Dimensions are in mm.
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PROBLEM 3.5: Analysis of a spatially homogenous magnet (continuation)

112.89
100.00

289.24

Coil A

106.44

100.00

148.21

Coil B

112.89
100.00

177.55

Coil C

Fig. 3.26 The magnet of Fig. 3.25 represented by CoilsA, B, and C, with each
center at the magnet center. Note that the minus sign signifies that Coil C carries
current in the direction opposite from those in CoilsA and B. Dimensions are in mm.
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Solution to PROBLEM 3.5

Table 3.5 Field Parameters

Coils α β

A 1.12888 2.89244

B 1.06444 1.48212

C 1.12888 1.77548

Table 3.5 lists appropriate values of
α and β for Coils A, B, and C. Using
these values, we obtain:

FA(α, β) = 0.12094421

FB(α, β) = 0.05287933

FC(α, β) = 0.11053327

a) From Eq. 3.125 we have:

B0 = (4π×10−7 H/m)(2.5147×108 A/m2)(5×10−2 m)

× (0.12094421 + 0.05287933 − 0.11053327) = 1.000 T

b) Inserting α and β into Eqs. 3.14a and 3.14b1, we obtain:

F (α, β)E2(α, β)A = −0.002277367; F (α, β)E4(α, β)A = −0.000315757
F (α, β)E2(α, β)B = −0.007938543; F (α, β)E4(α, β)B = −0.001737981
F (α, β)E2(α, β)C = −0.010216278; F (α, β)E4(α, β)C = −0.002133593

When all coils have the same a1 and λJa1, Eq. 3.18 becomes:

hζ(ζ) = 1 +

∑k
j=1 F (αj , βj)E2(αj , βj)∑k

j=1 F (αj , βj)
ζ2 + · · · (S5.1)

E2(α, β) =
F (α, β)E2(α, β)A + F (α, β)E2(α, β)B − F (α, β)E2(α, β)C

F (α, β)A + F (α, β)B − F (α, β)C

=
−0.002277367 − 0.007938543 + 0.010216278

0.120924421 + 0.05287933 − 0.11053327
= 0.000005822

E4(α, β) =
−0.000315757 − 0.001737981 + 0.002132363

0.06329027
= 0.001261725

We thus have:

d2B

dz2

∣∣∣∣
0

= 2E2

(
B0

a2
1

)
= 2(0.000005822)

(1.000 T)
(5 cm)2

= 0.4658×10−6 T/cm2

d4B

dz4

∣∣∣∣
0

= 24E4

(
B0

a4
1

)
= 24(0.001261725)

(1.000 T)
(5 cm)4

= 4.8453×10−5 T/cm4

These values are virtually identical with those in Table 3.4, though one must have
diligence to compute each figure up to 9 decimal places.

It should be noted that the analysis presented here is useful, though tedious, for
computing field gradient terms for a given magnet design. The analysis in this
present form is impractical for designing a spatially high homogeneity magnet; it
can, however, certainly be used as the basis for developing one’s own design code.
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PROBLEM 3.6: Field expansion in Cartesian coordinates*

In spherical coordinates (r, θ, ϕ) defined in Fig. 3.4, the magnetic field in the z-
direction, Hz, in a source-free space generated by a magnet consisting of nested
coils can be expressed by Eq. 3.9.

Show that expressions for Hz(r, θ, ϕ) in Cartesian coordinates, Hz(x, y, z), for
n=0, 1, and 2 are given by:

n = 0 Hz(x, y, z) = A0
0 (3.126a)

n = 1 Hz(x, y, z) = A0
0+2zA0

1+3(A1
1 x+B1

1 y) (3.126b)

n = 2 Hz(x, y, z) = A0
0+2zA0

1+3(A1
1 x+B1

1 y)

+ 3
2A0

2(2z2−x2−y2)+12z(A1
2 x+B1

2 y)

+ 15[A2
2 (x2−y2)+2B2

2 xy] (3.126c)

* Based on Problem3.5 in the 1st Edition (Plenum, 1994).

Help from Van (Part 1 of 5 Parts)

—Passage from Francis Bitter’s Magnets: The Education of a Physicist

And so the design of the first powerful water-cooled coils at M.I.T. gradually
evolved. An interesting side light at this point was that a thorough search of the
literature revealed that actually we were not the first to attempt to build coils along
these lines. During World War I two Frenchmen tried to do the same sort of
thing. They designed water-cooled coils and found that the only place they could
conveniently get the power to operate them was in the private power station of one
of the big department stores in Paris. But they had to stop work because of the
war, and for about twenty years it was forgotten. My designs were quite different
from theirs, and I decided to follow my own plans. Now I was faced with the same
problem as the Frenchmen. If we did build some coils, where could we test them?

Throughout this period and up to the completion of the first magnets the chief
person responsible for the realization of my ambitions was Vannevar Bush, at that
time the Vice-President of M.I.T. He was interested in what I was doing, and gave
it the needed backing. To begin with, after I had made some preliminary designs
that looked reasonable, he suggested that I try them out at one of the substations
of the Boston Edison Company. They had old-fashioned DC power stations which
had spare power during the early hours of the morning. He arranged to have space
made available for me to set up a magnet, and to get water cooling from the city
water mains.

And so the first magnet was constructed in the basement of the physics building.
It was to dissipate about 1000 kilowatts in a magnet having a volume of about one
cubic foot (∼30 liters). If the water cooling should fail, the 1000 kilowatts dissipated
in this volume would melt everything in it in a few seconds. Our water-cooling tests
had indicated that the heating would not fail, that steam layers would not form and
stop the cooling processes. But it was still an exciting time. When we set up the
magnet at the Scotia Street substation of the Edison Company, the engineers were
frankly skeptical. But because of Van Bush’s backing they were willing enough to
give me a chance to prove my ideas.
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Solution to PROBLEM 3.6

The spherical coordinate parameters, r, u = cos θ, s = sin θ, sinϕ, and cosϕ are
given in terms of x, y, and z:

r =
√

x2 + y2 + z2 (S6.1a)

u = cos θ =
z√

x2 + y2 + z2
(S6.1b)

s = sin θ =

√
x2 + y2√

x2 + y2 + z2
(S6.1c)

sinϕ =
y√

x2 + y2
(S6.1d)

cos ϕ =
x√

x2 + y2
(S6.1e)

Equations 3.9 and S6.1a–S6.1e are combined for cases n = 0, 1, and 2.

n = 0 :

Hz(x, y, z) =
0∑

m=0

r0(1 + 0)P 0
0 (u)(A0

0 cos 0 + B0
0 sin 0) (S6.2a)

= (1)(1)(1)(A0
0) (S6.2b)

For n=0, we thus have:
Hz(x, y, z) = A0

0 (3.126a)

Note that A0
0 represents the magnet center field: Hz(0, 0, 0).

n = 1 :

Hz(x, y, z) =
1∑

m=0

r1(2+m)Pm
1 (Am

1 cos mϕ+Bm
1 sinmϕ) (S6.3a)

= r1(2+0)P 0
1 (A0

1)+r1(2+1)P 1
1 (A1

1 cos ϕ+B1
1 sinϕ)

= 2ruA0
1+3rs(A1

1 cos ϕ+B1
1 sinϕ)

= 2
√

x2+y2+z2
z√

x2+y2+z2
A0

1

+ 3
√

x2+y2+z2

√
x2+y2√

x2+y2+z2

(
A1

1 x+B1
1 y√

x2+y2

)

= 2zA0
1+3(A1

1 x+B1
1 y) (S6.3b)

TRIVIA 3.3 Which of the French mathematicians below chaired a commission
to draw up a new system of measurements, out of which came the metric system?

i) Cauchy; ii) Fourier; iii) Lagrange; iv) Poisson.
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Solution to PROBLEM 3.6 (continuation)

Thus for n up to 1, we have:

Hz(x, y, z) = A0
0 + 2zA0

1 + 3(A1
1 x + B1

1 y) (3.126b)

Note that Hz(x, y, z) contains terms up to those varying only as z, x, and y.

n = 2 :

Hz(x, y, z) =
2∑

m=0

r2(3+m)Pm
2 (Am

2 cos mϕ+Bm
2 sinmϕ) (S6.4)

= r2(3+0)P 0
2 (A0

2)+r2(3+1)P 1
2 (A1

2 cos ϕ+B1
2 sinϕ)

+ r2(3+2)P 2
2 (A2

2 cos 2ϕ+B2
2 sin 2ϕ)

Hz(x, y, z) = 3(x2+y2+z2) 1
2

(
2z2−x2−y2

x2+y2+z2

)
A0

2

+ 4(x2+y2+z2)
3z

√
x2+y2

x2+y2+z2

(
A1

2

x√
x2+y2

+B1
2

y√
x2+y2

)

+ 5(x2+y2+z2)
3(x2+y2)
x2+y2+z2

[
A2

2

(
2x2

x2+y2
−1

)
+B2

2

2xy

x2+y2

]

= 3
2A0

2(2z2−x2−y2)

+ 12z(A1
2 x+B1

2 y)+15[A2
2(x

2−y2) + 2B2
2 xy] (S6.4b)

Summing Eqs. S6.2b, S6.3b, and S6.4b, we have, for n up to 2:

Hz(x, y, z) = A0
0+2zA0

1+3(A1
1 x+B1

1 y)

+ 3
2A0

2(2z2−x2−y2)+12z(A1
2 x+B1

2 y)

+ 15[A2
2(x

2−y2)+2B2
2 xy] (3.126c)

Note that when evaluated for n = 0, 1, and 2, Hz(x, y, z) contains terms varying
as x, y, z, z2, x2, y2, zx, zy, and xy.

“Ignorance is like a delicate exotic fruit; touch it and the bloom is gone.”
—Lady Bracknell
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PROBLEM 3.7: Notched solenoid*

The principle of the Helmholtz coil—to place current-carrying elements symmet-
rically about the solenoid center to create a spatially homogeneous field in the
central zone—is the basis for notched solenoids. Many MRI and NMR magnets
are variants of the notched solenoid design.

For a simple solenoid, with winding inner radius a1, winding outer radius a2, total
winding length 2b, and overall current density λJ , recall that the axial magnetic
field at the center, H0≡Hz(0, 0), is given by Eqs. 3.13a and 3.13b:

H0 = λJa1F (α, β) (3.13a)

F (α, β) = β ln

(
α +

√
α2 + β2

1 +
√

1 + β2

)
(3.13b)

Using symmetry considerations and the superposition technique presented in
DISCUSSION 3.4, show that an expression for Hz(0, z1) of the notched solenoid
having a uniform current density λJ shown in Fig. 3.27 is given by:

Hz(0, z1) = 1
2λJa1

[
F (α1, β1 + γ1) + F (α1, β1 − γ1)

]
− 1

2λJa3

[
F (α2, β2 + γ2) + F (α2, β2 − γ2)

]
(3.127)

where α1 = a2/a1, β1 = b1/a1, γ1 = z1/a1, α2 = a2/a3, β2 = b2/a3, and γ2 = z1/a3.
The coil parameters, a1, a2, a3, b1, and b2 are defined in Fig. 3.27.

A simple notched solenoid has too few degrees of freedom to zero more than a
couple spatial homogeneity coefficients, but it is very good at zeroing those of 2nd

and 4th order.

C L D H F

I G K
b2

a2a3

b1

A B E

a1

z1

Fig. 3.27 Geometrical arrangement of a notched solenoid.

* Problem3.6 in the 1st Edition (Plenum, 1994).
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Solution to PROBLEM 3.7

To solve Hz(0, z1), we may divide the solenoid into four single solenoids whose
cross sections are designated by corner points as follows:

Solenoid 1: ABDC, with α1 = a2/a1 = α and β1 = (b1 +z1)/a1 = β+γ, where
β=b1/a1 and γ=z1/a1;

Solenoid 2: BEFD, with α2 =a2/a1 =α and β2 =(b1−z1)/a1 =β−γ;

Solenoid 3: IGDL, with α3 = a2/a3 = α′ and β3 = (b2+z1)/a3 = β′+γ′, where
β′=b2/a3 and γ′=z1/a3;

Solenoid 4: GKHD, with α4 =a2/a3 =α′ and β4 =(b2−z1)/a3 =β′−γ′.

Note that in all solenoids J is of the same magnitude but in Solenoids 3 and 4
is of opposite sign relative to Solenoids 1 and 2. Also note that all solenoids are
notchless.

Field from Solenoid 1: Hz(0, z1) from Solenoid 1, 2b=b1+z1 long, is one-half
of the center field of a solenoid, 2b = 2(b1 +z1) long, having the same values of
a1, a2, and λJ . This may be best seen by noting that the center field Hz(0, 0) of
a notchless solenoid, 2b long, is the sum of the field generated by one-half of the
solenoid (from 0 to z=b) and that generated by the other half (from z=−b to 0).
That is, each half of the solenoid generates 50% of the total field Hz(0, 0). Thus:

Hz(0, z1)|1 = 1
2λJa1F (α, β+γ) (S7.1)

Field from Solenoid 2: At (0, z1), Hz from Solenoid 2, 2b = b1−z1 long, is
one-half of the center field of a solenoid, 2b=2(b1−z1) long, both solenoids having
the same values of a1, a2, and λJ .

Hz(0, z1)|2 = 1
2λJa1F (α, β−γ) (S7.2)

Field from Solenoid 3: At (0, z1), Hz from Solenoid 3, 2b=b2+z1 long, is one-
half of the center field of a solenoid having 2b=2(b2+z1), both solenoids with the
same values of a3, a2, and λJ . Because J is directed opposite to that of Solenoids
1 and 2, we have:

Hz(0, z1)|3 = − 1
2λJa3F (α′, β′+γ′) (S7.3)

Field from Solenoid 4: At (0, z1), Hz from Solenoid 4, 2b = b2−z1 long, is
one-half of the center field of a solenoid 2b=2(b2−z1) long.

Hz(0, z1)|4 = − 1
2λJa3F (α′, β′−γ′) (S7.4)

Field from the Notched Solenoid

Hz(0, z1) generated by the original notched solenoid is thus given by the sum of
Eqs. S7.1–S7.4:

Hz(0, z1) = Hz(0, z1)|1 + Hz(0, z1)|2 + Hz(0, z1)|3 + Hz(0, z1)|4

= 1
2λJa1

[
F (α, β+γ) + F (α, β−γ)

]
− 1

2λJa3

[
F (α′, β′+γ′) + F (α′, β′−γ′)

]
(3.127)
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DISCUSSION 3.7: Field Analysis of a Pancake-Coil Magnet

Applying the superposition technique of DISCUSSION 3.4, we derive here expres-
sions for axial field that may be used to compute field error coefficients of a
solenoidal magnet comprised of 2N pancake coils (N double-pancake coils). With
Bi2223 and YBCO that are available in tape form, a magnet comprised of pancake
coils wound with HTS is a viable design option for spatially homogeneous mag-
nets such as for NMR magnets [3.33, 3.34]. Pancake coils are ideal for conductors
of “thin” rectangular cross sectional area.

In this analysis, each pancake is of identical dimensions—2a1; 2a2; 2b=w (equal to
conductor width)—and the same value of λJ in the pancake coil winding. Adjacent
pancake coils are separated by a distance δ. Figure 3.28 shows a schematic drawing
of the cross section of a magnet comprised of 2N single pancake coils.

In deriving field equations, all centered about the magnet origin, we use the fol-
lowing simplified notations. Here, using an abbreviated expression for F (α, β)/β,

F (α, β)
β

≡ ln(α, β) = ln

[
α +

√
α2 + β2

1 +
√

1 + β2

]
(3.128a)

we define a dimensionless axial magnetic field parameter, η(ζ) ≡ H(z)/(λJa1),
where ζ≡z/a1, given by:

η(ζ) ≡ H(z)
λJa1

= β ln(α, β)

⎡
⎣1 +

n∑
j=1

E2j(α, β)ζ2j

⎤
⎦ (3.128b)

Because of the use of ln(α, β), Eq. 3.128b is a dimensionless field expression slightly
different from that derivable from Eq. 3.13a.

• •

• •

• •

→ ←↓

↑
↓
↑

2a2

2a1

w δ

2N(w+δ)−δ

2N

(2N−1)

2

1

+

Fig. 3.28 Magnet comprised of 2N single pancakes (N double pancakes),
each of identical dimensions—2a1; 2a2; 2b=w—and the same λJ .
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DISCUSSION 3.7: Field Analysis of Pancake-Coil Magnet (continuation)

+

+
+ +

↓

↑

↑

↓

↓
↑

w

w

2w+δ δ= −

Two-Pancake Magnet Coil 2 Coil 2′

P2

P1

δ

Fig. 3.29 Two-pancake magnet as Coil 2 of 2b=2w+δ minus Coil 2′ of 2b′ =δ.

Step 1: Two-Pancake Magnet—Pancake 1 & Pancake 2

Consider first the simplest case: a magnet comprised of two pancake coils, P1 and
P2. Using the superposition technique of DISCUSSION 3.4, the original magnet
with a gap of δ (leftmost drawing in Fig. 3.29) is equivalent to two gapless solenoids:
Coil 2 (middle) of height (2b2 = w + δ) minus Coil 2′ of height (2b′2 = δ). The
subscript 2 signifies that the magnet under consideration comprises two pancake
coils. Note that the cross section of each coil in Fig. 3.29 shows only its height
(2b), because this is the only relevant parameter under consideration: thus, Coil 2
has β2 =(2w+δ)/2a1; and Coil 2′, β′

2 =δ/2a1.

The dimensionless axial field due to the two coils, η2(ζ), is given by:

η2(ζ) = [η(ζ)]2 − [η′(ζ)]2 (3.129)

From Eq. 3.128b, we have [η(ζ)]2 and [η′(ζ)]2 given by:

[η(ζ)]2 = β2 ln(α, β2)

[
1 +

n∑
j=1

E2j(α, β2)ζ2j

]
(3.130a)

[η′(ζ)]2 = β′
2 ln(α, β′

2)

[
1 +

n∑
j=1

E2j(α, β′
2)ζ

2j

]
(3.130b)

Combining Eqs. 3.129 and 3.130, we have:

η2(ζ) =
[
β2 ln(α, β2) − β′

2 ln(α, β′
2)

]
+

n∑
j=1

[
β2 ln(α, β2)E2j(α, β2) − β′

2 ln(α, β′
2)E2j(α, β′

2)
]
ζ2j (3.131)

Step 2: Four-Pancake Magnet—Addition of Pancakes 3 & 4

Next, we consider a magnet comprised of four pancake coils. As illustrated in
Fig. 3.30, the new magnet is the two-pancake magnet considered in Step 1 with
one pancake added to the bottom and another added to the top of the two-pancake
magnet. These new pancakes, as indicated in Fig. 3.30, may be modeled as Coil 4
with 2b=4w+3δ minus Coil 4′ with 2b=2w+3δ. Thus, Coil 4 has β4 =(4w+3δ)/2a1;
and Coil 4′, β′

4 =(2w+3δ)/2a1.
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DISCUSSION 3.7: Field Analysis of Pancake-Coil Magnet (continuation)

+

+

+ +

↑

↓

4w+3δ 2w+3δ= −

Pancakes 3&4 Coil 4 Coil 4′

P4

P3

↓

↑

↓

↑

w

2w+3δ

w

Fig. 3.30 Four-pancake magnet as Coil 4 of 2b=4w+3δ minus Coil 4′ of
2b′ =2w+3δ added to the two-pancake magnet shown in Fig. 3.29.

The total dimensionless axial field due to all 4 coils, η4(z) is:

η4(z) = [η(ζ)]2 − [η′(ζ)]2 + [η(ζ)]4 − [η′(z)]4 (3.132)

where

[η(ζ)]4 = β4 ln(α, β4)

[
1 +

n∑
j=1

E2j(α, β4)ζ2j

]
(3.133a)

[η′(ζ)]4 = β′
4 ln(α, β′

4)

[
1 +

n∑
j=1

E2j(α, β′
4)ζ

2j

]
(3.133b)

From Eqs. 3.130 through 3.133 we obtain:

η4(ζ) =
[
β2 ln(α, β2) + β4 ln(α, β4)

]
−

[
β′

2 ln(α, β′
2) + β′

4 ln(α, β′
4)

]
+

n∑
j=1

{[
β2 ln(α, β2)E2j(α, β2) + β4 ln(α, β4)E2j(α, β4)

]

−
[
β′

2 ln(α, β′
2)E2j(α, β′

2)+β′
4 ln(α, β′

4)E2j(α, β′
4)

]}
ζ2j (3.134)

Step 3: 2N-Pancake Coil—Addition of Final Two Pancakes

Figure 3.31 illustrates modeling of the final pancakes, (2N−1)th and 2N th, of the
magnet, Coil 2N of 2bN =2Nw+(2N−1)δ and thus β2N =[2Nw+(2N−1)δ]/2a1 and
Coil 2N ′ of 2b′N =2(N−1)w+(2N−1)δ and thus β′

2N =[2(N−1)w+(2N−1)δ]/2a1.

An expression for the axial field for a 2N -pancake magnet, which in practice
comprises N double-pancake coils, is given by:

η2N (ζ) =
N∑

k=1

{
[η(ζ)]2k − [η′(ζ)]2k

}
(3.135)

In this analysis it is assumed that the spacing between pancake coils within each
double-pancake coil and those between adjacent double-pancake coils are equal.
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DISCUSSION 3.7: Field Analysis of Pancake-Coil Magnet (continuation)

+

+

+ +2bN 2b′N

2bN =2Nw +(2N−1)δ 2b′N =2(N−1)w +(2N−1)δ

= −

Pancakes (2N−1) & 2N Coil 2N Coil 2N ′

P2N

P (2N−1)

Fig. 3.31 2N -pancake magnet as Coil 2N of 2b2N =2Nw+(2N−1)δ minus Coil 2N ′

of 2b′2N =2(N−1)w+(2N−1)δ added to the 2(N−1)-pancake magnet.

We may express Eq. 3.135 in a form similar to Eq. 3.134:

η2N (ζ)=
N∑

k=1

{[
β2k ln(α, β2k) − β′

2k ln(α, β′
2k)

]

+
n∑

j=1

[
β2k ln(α, β2k)E2j(α, β2k)−β′

2k ln(α, β′
2k)E2j(α, β′

2k)
]}

ζ2j (3.136)

where

β2k =
2kw + (2k − 1)δ

2a1

β′
2k =

2(k − 1)w + (2k − 1)δ
2a1

Equation 3.136 may also be expressed as:
η2N (ζ)
η2N (0)

=
{

1 + [E2]2Nζ2 + · · · + [E2n]2Nζ2n
}

(3.137)

where η2N (0) is the dimensionless center field and [E2n]2N is the nth overall error
coefficient. η2N (ζ =0) and [E2n]2N are given by:

η2N (0) =
N∑

k=1

[
β2k ln(α, β2k) − β′

2k ln(α, β′
2k)

]
(3.138a)

[E2n]2N =
∑N

k=1

[
β2k ln(α, β2k)E2n(α, β2k)−β′

2k ln(α, β′
2k)E2n(α, β′

2k)
]

∑N
k=1

[
β2k ln(α, β2k)−β′

2k ln(α, β′
2k)

] (3.138b)

Thus Eq. 3.138b gives an expression for computation of nth error coefficient com-
prised of 2N identical pancake coils, each of 2a1 i.d., 2b = w, α, and β, and
separated from each other by δ.
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PROBLEM 3.8: Ideal dipole magnet*

This problem studies an ideal dipole magnet, which is infinitely long (no end ef-
fects) and whose fields, directed normal to the dipole axis, are generated by a
longitudinal surface current having zero winding thickness. Field and force so-
lutions for real dipole magnets are more complex than those in the ideal dipole;
nevertheless, except for complications at the ends, the ideal dipole illustrates most
of the key aspects. Dipole magnets are used in systems that require a uniform
field directed transverse to the magnet axis, such as in high-energy particle accel-
erators [3.35–3.40] and electric generators [3.41–3.43].

A long (two-dimensional) dipole magnet of radius R and “zero” winding thickness
is energized by a surface current flowing in the z-direction at the dipole shell
(r = R). The magnetic field within the bore (r < R), 	Hd1, and that outside the
shell (r>R), 	Hd2, are given by:

	Hd1 = H0(sin θ	ır + cos θ	ıθ) (3.139a)

	Hd2 = H0

(
R

r

)2

(sin θ	ır − cos θ	ıθ) (3.139b)

The 2-D coordinates are defined in Fig. 3.32. The +z-direction is out of the paper.
In answering the following questions, neglect end effects.

a) Draw neatly the field profile of the dipole for both regions, r<R and r>R.

b) Show that an expression for the surface current 	Kf at r=R is given by:
	Kf = −2H0 cos θ	ız (3.140)

Indicate on a sketch its direction, with circles (o) where 	Kf is +z-directed
(out of the paper) and with crosses (×) where 	Kf is −z-directed.

c) Show that an expression for the Lorentz force density per unit length, 	fL

[N/m2], acting on a current-carrying element of the shell, is given by:
	fL = −μ◦H

2
0 sin 2θ	ıθ (3.141)

y

r

θ

x
R

Fig. 3.32 Cylindrical coordinate system; +z-direction is out of the paper.

* Problem3.7 in the 1st Edition (Plenum, 1994).
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PROBLEM 3.8: Ideal dipole magnet (continuation)

d) Show that the net x-directed Lorentz force (per unit dipole length), FLx

[N/m], acting on the right-hand sector (−90◦<θ<90◦) is given by:

FLx =
4Rμ◦H2

0

3
(3.142)

e) Show that an expression for the total magnetic energy stored (per unit dipole
length), Em [J/m], is given by:

Em =
πR2B2

0

μ◦
(3.143)

Compute Em for B0 = 5 T and R = 20 mm. Also, from Em, compute the
inductance, L, of a 10-m long dipole with an operating current, Iop, of 5000 A.

To reduce the field outside the dipole, an iron yoke (μ=∞) of radial thickness d
is placed outside the dipole, as shown in Fig. 3.33.

f) Show that the new 	Kf1 needed to generate the same 	H field inside the dipole
is exactly one-half that given by Eq. 3.140. Explain this current reduction.

g) In reality, the iron yoke cannot maintain its high μ for an unlimited value of
H0. Show that an expression for the minimum dm to keep the yoke unsatu-
rated is given by:

dm = R

(
H0

Msa

)
(3.144)

where Msa is the yoke material’s saturation magnetization. Compute dm for
the following set: μ◦H◦=5 T; μ◦Msa =1.2 T; R=20 mm.

y

r

θ
x

μ◦ R R + d
μ

Fig. 3.33 Ideal dipole with an iron yoke of thickness d.
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Solution to PROBLEM 3.8

a) The field lines are sketched in Fig. 3.34a for both regions. The normal (r-
directed) component of the field is continuous at the boundary (r=R).

b) The discontinuity in the tangential (θ-directed) component of the field at
r=R is equal to the surface current density ( 	Kf ) flowing there. From Eq. 2.6:

	Kf =	ır × ( 	Hd2 − 	Hd1) =	ır ×−2H0 cos θ	ıθ

= −2H0 cos θ	ız (3.140)

As indicated in Fig. 3.34b, 	Kf in the −90◦ < θ < 90◦ segment points in the −z-
direction, while that in the 90◦<θ<270◦ segment points in the +z-direction.

y

x

(a)

y y

x x

(b) (c)

Fig. 3.34 Ideal dipole. a) inside and outside fields;
b) surface current density vectors; c) force vectors.
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Solution to PROBLEM 3.8 (continuation)

c) 	fL is given by 	Kf ×μ◦ 	Hd, where μ◦ 	Hd =μ◦( 	Hd1+ 	Hd2)/2:

	fL = 	Kf × μ◦H0 sin θ	ır (S8.1)

= −2μ◦H
2
0 cos θ sin θ	ıθ

= −μ◦H
2
0 sin 2θ	ıθ (3.141)

Note that 	fL has no r-component; it has only a θ-component (Fig. 3.34c). Also
the force density is maximum at θ =π/4+nπ/2 and zero at θ =0 + nπ/2, where
n=0, 1, 2, 3. The cumulative force, ∝

∫
fL(θ) dθ, is maximum at θ=0 and 180◦.

d) It is clear from Fig. 3.34c that the net Lorentz force per unit length [N/m]
acting on the right-hand segment of the shell is +x-directed. Thus:

FLdx =
∫

	fL ·	ıx dx = −R

∫ π/2

−π/2

fLθ sin θ dθ (S8.2a)

= −2R

∫ π/2

0

fLθ sin θ dθ = 4Rμ◦H
2
0

∫ π/2

0

cos θ sin2 θ dθ (S8.2b)

From Eq. S8.2b, we obtain:

FLx =
4Rμ◦H2

0

3
(3.142)

The net Lorentz force on the left-hand segment has the same magnitude as that
on the right-hand segment but is −x-directed. That is, there is a large force trying
to push the two halves of the dipole apart. In fact structural support to withstand
these forces is a key design issue for dipole magnets.

e) Em [J/m] may be computed by integrating μ◦|H(r, θ)|2/2, the magnetic en-
ergy density, over the entire surface, from r=0 to r=∞ and from θ=0 to θ=2π,
transverse to the dipole axis.

Em =
μ◦
2

∫ R

0

|Hd1|22πr dr +
μ◦
2

∫ ∞

R

|Hd2|22πr dr (S8.3a)

=
μ◦
2

H2
0πR2 +

μ◦
2

H2
0πR2 (S8.3b)

= μ◦πR2H2
0 =

πR2B2
0

μ◦
(3.143)

From Eq. S8.3b it is clear that the total stored magnetic energy is divided equally
inside and outside the dipole shell. We may imagine that one-half of the current
flowing in the dipole is used to create 	Hd1 and the other half is used to create 	Hd2.
Inserting μ◦H0 =B0 =5 T and R=0.02 m into the above expression, we obtain:

Em =
π(2×10−2 m)2(5 T)2

4π×10−7 H/m
= 25 kJ/m



158 CHAPTER 3—PROBLEMS & DISCUSSIONS

Solution to PROBLEM 3.8 (continuation)

For a 5-T dipole, 10-m long, the total magnetic energy becomes 250 kJ. This total
energy may be equated to the dipole’s total inductive energy:

1
2LI2

op = 250 kJ (S8.4)

Solving Eq. S8.4 for L with Iop =5000 A, we have:

L =
2(250×103 J)

(5000 A)2

= 20 mH

In 3.7.3 the inductance per unit length of an ideal dipole is given by:

L� = 1
8μ◦πN2 (3.87)

Equating this L�(= 2 mH/m) with 20 mH and solving for N , we find N � 64 for
Iop = 5000 A. Note that if the dipole’s operating current is, for example, 1000 A,
then the dipole must have an inductance of 0.5 H; it must have five times more
winding turns than the 20-mH dipole: N �318.

f) Because μ=∞, 	Hd2 =0 for R< r< R+d and, if the shield is thick enough to
avoid saturation, 	Hd2 =0 also for r>R+d. We still have 	Hd1 as before. Clearly:

	Kf1 = −H0 cos θ	ıθ (S8.5)

which is exactly one-half of 	Kf given by Eq. 3.140. Considering the surface current
requirements for both cases, we may interpret that of the total surface current
needed to generate the bore field, −2H◦ cos θ, one half comes from the “surface
current” of the iron magnetization.

g) All the flux per unit length [Wb/m] entering the yoke of radial thickness d
between 0 and θ=90◦ must be equal to or less than μ◦Msad. That is:

Rμ◦H0

∫ π/2

0

sin θ dθ = Rμ◦H0 ≤ μ◦Msad (S8.6)

The minimum yoke thickness dm is thus given by:

dm = R

(
H0

Msa

)
(3.144)

With R=20 mm, μ◦H0 =5 T, and μ◦Msa =1.2 T, we obtain:

dm = (20 mm)
5 T

1.2 T
= 83 mm

Note that from Table 2.5 (p. 50), at μ◦M = 1.25 T for as-cast steel, the material
has a permeability of 180μ◦ which, though not ∞, is still large enough for our
simple approach based on the assumption that μ=∞.
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PROBLEM 3.9: Ideal quadrupole magnet*

This problem studies an ideal quadrupole magnet, which is infinitely long (no end
effects) and whose fields, directed normal to the magnet axis, are generated by a
longitudinal surface current having zero winding thickness. Like dipole magnets,
quadrupole magnets are chiefly used in particle accelerators [3.35, 3.39, 3.44–3.46].
As discussed below in f), they are used to focus beams of charged particles.

A long quadrupole magnet of radius R and of “zero” winding thickness is energized
by a surface current flowing in the z-direction at the quadrupole shell (r = R).
The magnetic field within the bore (r<R), 	Hq1, and that outside the shell (r>R),
	Hq2, are given by:

	Hq1 = H0

( r

R

)
(sin 2θ	ır + cos 2θ	ıθ) (3.145a)

	Hq2 = H0

(
R

r

)3

(sin 2θ	ır − cos 2θ	ıθ) (3.145b)

In answering the following questions, neglect end effects.

a) Draw neatly the field profiles of the quadrupole for both regions.

b) Show that an expression for the surface current 	Kf at r=R is given by:

	Kf = −2H0 cos 2θ	ız (3.146)

Indicate neatly on a sketch its direction, with circles (o) where 	Kf is +z-
directed (out of the paper) and with crosses (×) where 	Kf is −z-directed.

c) Show that an expression for the Lorentz force density per unit length [N/m2],
	fL, acting on a current-carrying element of the shell is given by:

	fL = −μ◦H
2
0 sin 4θ	ıθ (3.147)

d) Show that an expression for the “magnetic spring constant,” kLx, in the x-
direction for a proton traveling in the +z-direction along the center of the
magnet with a speed nearly equal to that of light, c, is given by:

kLx � qcμ◦H0

R
(3.148)

e) Similarly, show that an expression for the “magnetic spring constant,” kLy,
in the y-direction for a proton traveling in the +z-direction along the center
of the magnet with a speed nearly equal to that of light, c, is given by:

kLy � −qcμ◦H0

R
(3.149)

f) By stating whether kLx and kLy are unstable or restoring, describe the func-
tion of quadrupoles for charged particle accelerators.

* Problem3.8 in the 1st Edition (Plenum, 1994).
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Solution to PROBLEM 3.9

a) The field lines are sketched in Fig. 3.35a. As with the ideal dipole, the r-
component of the field is continuous at r=R.

b) The discontinuity in the θ-component of the field at the boundary is equal to
the surface current density ( 	Kf ) flowing at r=R. Thus:

	Kf =	ır × ( 	Hq2 − 	Hq1) =	ır ×−2H0 cos 2θ	ıθ

= −2H0 cos 2θ	ız (3.146)

The 	Kf vectors change directions four times around the magnet shell (Fig. 3.35b).

y

x

(a)y y

x x

(b) (c)

Fig. 3.35 a) Quadrupole fields inside and outside the bore; b) surface current
density vectors in the magnet; c) force directions in the magnet.
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Solution to PROBLEM 3.9 (continuation)

c) 	fL, is given by the cross-product of 	Kf and μ◦ 	H at r = R. At r = R, the
average field, ( 	Hq1+ 	Hq2)/2, is 	H =H0 sin 2θ	ır, because the θ-component of 	Hq1

cancels that of 	Hq2. Noting that 	Kf =−2H0 cos 2θ	ız, we have:

	fL = −2μ◦H
2
0 sin 2θ cos 2θ	ıθ

= −μ◦H
2
0 sin 4θ	ıθ (3.147)

The 	fL distribution is sketched in Fig. 3.35c.

d) We may define the magnetic spring constant in the x-direction as:

kLx = −∂FLx

∂x
(S9.1)

FLx, the Lorentz force in the x-direction on a proton of electric charge q traveling
in the z-direction with a velocity nearly equal to c (speed of light), is given by:

FLx � [q(c	ız)×μ◦Hq1	ıθ]θ=0

� −qcμ◦H0

( r

R

)
	ıx (S9.2)

kLx is thus given by:

kLx = −∂FLx

∂x
= −∂FLx

∂r

� qcμ◦H0

R
(3.148)

e) In the y-direction (r-direction at θ=90◦), the magnetic force FLy is given by:

FLy � [q(c	ız)×μ◦Hq1	ıθ]θ= π
2

� qcμ◦H0

( r

R

)
	ıy (S9.3)

kLy is thus given by:

kLy = −∂FLy

∂y
= −∂FLy

∂r

� −qcμ◦H0

R
(3.149)

f) FLx is restoring, but FLy is unstable, diverging the beam in the y-direction.
In accelerator rings, quadrupole magnets are thus used in pairs, one focusing the
beam in the x-direction followed by another focusing the beam in the y-direction;
the net effect is focusing in both directions.

Answer to TRIVIA 3.3 iii). Despite his friendship with the royal family, having been
lionized by Marie Antoinette, it is said that Joseph Louis Lagrange (1736–1813) survived
the Terror because of the general respect for his accomplishments in mathematics and
his foreign birth (Torino). He was appointed to head this commission in 1793.
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DISCUSSION 3.8: Two-“Racetrack” Coil Magnet*

We discuss here a magnet comprised of two parallel long ideal “racetrack” coils
spaced a distance 2c apart in the plane normal to the magnet axis. The name
“racetrack” arises because at each end the conductor loops around 180◦ like the
end of a racetrack. Unlike in a dipole winding, its windings remain in a plane, i.e.,
flat. The flat winding makes it easier to wind a racetrack than a dipole, and thus
racetrack coils are preferred over dipole coils in generators and motors [3.47–3.50].
The racetrack magnet is also suitable for Maglev [3.51–3.53].

Figure 3.36 shows a cross sectional view of the winding configuration of a magnet
comprised of two long ideal racetracks. A set of two very long racetrack coils,
parallel to each other as shown, can sometimes substitute for a dipole magnet.
For example, if a long length of a superconductor must be tested in a uniform field
directed transverse to its major axis, this magnet configuration could be used; it
has the advantage of requiring simpler winding rigs than a dipole magnet. As
indicated in Fig. 3.36, each of the two racetracks, 2c apart, has a winding outer
width of 2a2, inner width of 2a1, and contains N turns.

The direction of current in the right-hand side of each racetrack coil is in the +z
direction (out of the paper), while the direction of current in the left-hand side is
in the −z direction. We shall derive expressions of key parameters of the magnet.

2a2

2a1

Racetrack 1 (N turns) y

x 2c

Racetrack 2 (N turns)

Fig. 3.36 Cross section of a magnet comprised of two ideal racetrack coils.

* Problem3.9 in the 1st Edition (Plenum, 1994).
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DISCUSSION 3.8: Two-“Racetrack” Coil Magnet (continuation)

A. Field at Magnet Center

By applying the law of Biot-Savart (Eq. 3.1) on a differential surface current, K dξ,
located at ξ in the right-hand side of racetrack 1 (with +z current) as shown in
Fig. 3.37, we obtain an expression for the differential field at (x, y), d �H1+:

d �H1+ =
K dξ

2πr1
�ı (3.150)

where the field direction is shown in the figure and K = NI/(a2−a1). The y-
component of field, Hy1+, contributed by the entire +z-surface current, from ξ =
a1 to ξ = a2, is given by integration of Eq. 3.151 (below) from ξ=a1 to ξ=a2:

Hy1+ = − K

2π

∫ a2

a1

cos θ1 dξ

r1
(3.151)

With r1 =
√

(ξ−x)2+(c−y)2 and cos θ1 =(ξ−x)/r1 into Eq. 3.151, we obtain:

Hy1+ = − K

2π

∫ a2

a1

(ξ−x) dξ

(ξ−x)2+(c−y)2
= − K

4π
ln

[
(a2−x)2+(c−y)2

(a1−x)2+(c−y)2

]
(3.152a)

Similarly, the contributions from the remaining current sheets are given by:

Hy1− = − K

2π

∫ a2

a1

(ξ+x) dξ

(ξ+x)2+(c−y)2
= − K

4π
ln

[
(a2+x)2+(c−y)2

(a1+x)2+(c−y)2

]
(3.152b)

Hy2+ =− K

2π

∫ a2

a1

(ξ−x) dξ

(ξ−x)2+(c+y)2
= − K

4π
ln

[
(a2−x)2+(c+y)2

(a1−x)2+(c+y)2

]
(3.152c)

Hy2−=− K

2π

∫ a2

a1

(ξ+x) dξ

(ξ+x)2+(c+y)2
= − K

4π
ln

[
(a2+x)2+(c+y)2

(a1+x)2+(c+y)2

]
(3.152d)

dξ

r1

θ1 c

(x, y)

z
(0, 0) θ1 ξ

d�H1+

Fig. 3.37 Field produced by a differential current element.
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DISCUSSION 3.8: Two-“Racetrack” Coil Magnet (continuation)

Combining these four contributions, we have:

Hy(x, y) = − K

4π

{
ln

[
(a2−x)2+(c−y)2

(a1−x)2+(c−y)2

]
+ ln

[
(a2+x)2+(c−y)2

(a1+x)2+(c−y)2

]

+ ln
[
(a2−x)2+(c+y)2

(a1−x)2+(c+y)2

]
+ ln

[
(a2+x)2+(c+y)2

(a1+x)2+(c+y)2

]}
(3.153a)

By inserting x=0 and y=0 into Eq. 3.153a, we obtain:

Hy(0, 0) = −K

π
ln

(
a2
2 + c2

a2
1 + c2

)
(3.153b)

B. Field Near the Center

We may derive an expression of Hy(x, y) (Eq. 3.153a) as the sum of Hy(0, 0) and
a term containing Hy1+ derived above. Equation 3.152a may be expressed as:

Hy1+ = − K

4π
ln

[
(a2−x)2+(c−y)2

(a1−x)2+(c−y)2

]

= − K

4π

{
ln[(a2−x)2+(c−y)2]−ln[(a1−x)2+(c−y)2]

}
(3.154)

The term ln[(a2−x)2+(c−y)2] may be given as:

ln[(a2−x)2+(c−y)2] = ln
[
(a2

2+c2)
(
1+

x2 + y2−2a2x−2cy

a2
2+c2

)]

= ln(a2
2+c2)+ln

(
1+

x2+y2−2a2x−2cy

a2
2+c2

)

By using ln(1+x) � x − x2/2 for |x|�1, we have:

ln[(a2−x)2+(c−y)2] � ln(a2
2+c2)

+
(c2−a2

2)(x
2−y2)−2(a2

2+c2)(a2x+cy)−4a2cxy

(a2
2+c2)2

ln[(a1−x)2+(c−y)2] � ln(a2
1+c2)

+
(c2−a2

1)(x
2−y2)−2(a2

1+c2)(a1x+cy)−4a1cxy

(a2
1+c2)2

Thus, Eq. 3.154 may be expressed as:

Hy1+(x, y) � − K

4π

[
ln

(
a2
2+c2

a2
1+c2

)
+

(c2−a2
2)(x

2−y2)−2(a2
2+c2)(a2x+cy)−4a2cxy

(a2
2+c2)2

− (c2−a2
1)(x

2−y2)−2(a2
1+c2)(a1x+cy)−4a1cxy

(a2
1+c2)2

]
(3.155a)
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DISCUSSION 3.8: Two-“Racetrack” Coil Magnet (continuation)

Similarly, Hy1−, Hy2+, and Hy2− may be expressed as:

Hy1−(x, y) � − K

4π

[
ln

(
a2
2+c2

a2
1+c2

)
+

(c2−a2
2)(x

2−y2)+2(a2
2+c2)(a2x−cy)+4a2cxy

(a2
2+c2)2

− (c2−a2
1)(x

2−y2)+2(a2
1+c2)(a1x−cy)+4a1cxy

(a2
1+c2)2

]
(3.155b)

Hy2+(x, y) � − K

4π

[
ln

(
a2
2+c2

a2
1+c2

)
+

(c2−a2
2)(x

2−y2)−2(a2
2+c2)(a2x−cy)+4a2cxy

(a2
2+c2)2

− (c2−a2
1)(x

2−y2)−2(a2
1+c2)(a1x−cy)+4a1cxy

(a2
1+c2)2

]
(3.155c)

Hy2−(x, y) � − K

4π

[
ln

(
a2
2+c2

a2
1+c2

)
+

(c2−a2
2)(x

2−y2)+2(a2
2+c2)(a2x+cy)−4a2cxy

(a2
2+c2)2

− (c2−a2
1)(x

2−y2)+2(a2
1+c2)(a1x−cy)−4a1cxy

(a2
1+c2)2

]
(3.155d)

Combining each term, near (0, 0) we have:

Hy(x, y) � −K

π

[
ln

(
a2
2+c2

a2
1+c2

)
− (a2

2−a2
1)[3c4+(a2

2+a2
1)c

2−a2
2a

2
1]

(a2
2+c2)2(a2

1+c2)2
(x2−y2)

]

� Hy(0, 0) + K

[
a2
2−c2

(a2
2+c2)2

− a2
1−c2

(a2
1+c2)2

]
(x2−y2) (3.156a)

Note that the 2nd-order inhomogeneity term becomes zero when c2 satisfies:

c2 = 1
6

[√
(a2

2+a2
1)2 + 12a2

2a
2
1 − (a2

2+a2
1)

]
= 1

6

[√
a4
2+14a2

2a
2
1+a4

1 − (a2
2+a2

1)
]

(3.156b)

.

C. Center Field from Four Current Elements

We may further simplify the expression for the magnetic field near the center
of the racetrack magnet by approximating each of the four current sheets as a
current element carrying NI, illustrated in Fig. 3.38. A dot indicates it is in the
+z-direction and a cross in the −z-direction.

In this case, we let a1 = a, a2 = a + ε, and Kε = K(a2 − a) = NI. Substituting
these parameters into Eq. 3.153b and noting ln(1+x)=x for |x|�1, we have:

Hy(0, 0) = −K

π
ln

(
a2
2+c2

a2
1+c2

)
� −K

π
ln

(
a2+c2 + 2aε

a2+c2

)

� − K2aε

π(a2+c2)
� − 2aNI

π(a2+c2)
(3.157a)
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DISCUSSION 3.8: Two-“Racetrack” Coil Magnet (continuation)

2a
2 1

NIy

x 2c

4 3

•
(0, 0)

Fig. 3.38 Current distribution model for force calculation.

The quantity K(a2
2−a2

1)=K(a2+a1)(a2−a1) in the second term of the right-hand
side of the first line of Eq. 3.156a becomes 2aNI. Thus:

K(a2
2−a2

1)[3c4+(a2
2+a2

1)c
2−a2

2a
2
1]

π(a2
2+c2)2(a2

1+c2)2
(x2−y2)� 2aNI[3c4+2a2c2−a4]

π(a2+c2)4
(x2−y2)

= −Hy(0, 0)
[
3c4+2a2c2−a4

(a2+c2)3
(x2−y2)

]

Combining the above equation and Eq. 3.156, we obtain:

Hy(x, y) � Hy(0, 0)
[
1 +

3c4+2a2c2−a4

(a2 + c2)3
(x2−y2)

]
(3.157b)

D. Forces on Current Elements

The same 4-current-element model may be used to compute the Lorentz forces
(per unit axial length) acting on current element 1, �F1, as the sum of Lorentz
interactions on current element 1 by current elements 2, 3, and 4:

�F1 = �F1|2 + �F1|3 + �F1|4 (3.158)

where �F1|2, �F1|3, and �F1|4 are the force vectors on element 1 by elements, respec-
tively, 2, 3, and 4.

The force, �F1|2, on element 1 carrying I1 =NI by element 2 carrying I2 =NI, is
+x-directed and given by:

�F1|2 =
μ◦I1I2

4πa
�ıx =

μ◦N2I2

4πa
�ıx (3.159a)
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DISCUSSION 3.8: Two-“Racetrack” Coil Magnet (continuation)

Similarly, the force on element 1 by element 3, �F1|3, is −y-directed and given by:

�F1|3 = −μ◦I1I3

4πc
�ıy = −μ◦N2I2

4πc
�ıy (3.159b)

The force on element 1 by element 4, �F1|4, is directed along both x and y axes:

�F1|4 =
μ◦I1I4

4π
√

a2 + c2

(
a√

a2 + c2
�ıx +

c√
a2 + c2

�ıy

)

=
μ◦N2I2

4π

(
a

a2 + c2
�ıx +

c

a2 + c2
�ıy

)
(3.159c)

The x- and y-components of the electromagnetic force on element 1 from the three
other current elements, F1x and F1y, are thus given, respectively, by:

F1x =
μ◦N2I2

4π

(
1
a

+
a

a2 + c2

)
=

μ◦N2I2

4πa

(
1 +

a2

a2 + c2

)
(3.160a)

F1y =
μ◦N2I2

4π

(
−1

c
+

c

a2 + c2

)
= −μ◦N2I2

4πc

(
1 − c2

a2 + c2

)
(3.160b)

E. Interaction Forces Within Racetrack and Between Racetracks

Because c2 < a2 +c2, F1y points in the −y-direction. The net force between el-
ements 1 and 2, within racetrack 1, is repulsive because their current polarities
are opposite. Similarly, that between elements 3 and 4 in racetrack 2 is repulsive.
Thus, in the absence of external restraint, each racetrack seeks a circular geometry.

The net force between elements 1 and 3, because their polarities are the same, is
attractive. Similarly, that between elements 2 and 4 is attractive. As indicated by
Eq. 3.160b, the net force between the two racetracks is attractive.

Help from Van (Part 2 of 5 Parts)

—Passage from Francis Bitter’s Magnets: The Education of a Physicist

I well remember the occasion for the first trial. We were to have the power at
some time in the middle of the night, around 1 A.M. Shortly before the appointed
hour Van arrived to see how things went. Then, as usual, there were seemingly
endless delays. First of all, for some unforeseen reason, the power was not available,
and we were told to wait half an hour. Then another hour. Then we went out to
get some coffee. I don’t remember just how long, in the end, we had to wait.

But finally the moment arrived. Sometime near dawn, when we were all worn
out with waiting, we stood around the corner of a wall and watched as the power
began to be turned up. At first everything was all right. Then there were slight
hissing sounds. They got louder; finally there was a bang. Whereupon the power
was shut off. When we went to examine the magnet, we could find nothing much
wrong. One of the bolts in the flanges of the case holding the parts together had
mysteriously exploded. The magnet had failed for some reason quite different from
those we had expected.
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PROBLEM 3.10: Ideal toroidal magnet*

This problem deals with an ideal toroidal magnet, i.e., of zero winding thickness,
illustrating key features of toroidal magnets.

An ideal circular-cross-section torus of major radius R and minor radius a is
energized with a surface current sheet with equivalent total ampere turns NI
(Fig. 3.39). Assume that the surface current flows around the torus in the plane
perpendicular to the toroidal direction, i.e., zero pitch in the ϕ-direction.

a) Show that an expression for the toroidal magnetic induction, Bϕ, within the
torus is given by:

Bϕ(r) =
μ◦NI

2πr
(3.161)

Also show that Bϕ outside the torus is zero.

b) Assuming that the torus consists of N loops, each carrying a current of I,
show that an expression for the net radial Lorentz force FL+ acting on a
single loop is given by:

FL+ =
μ◦NI2

2

(
1 − R√

R2 − a2

)
(3.162)

z
ϕ

R

I I

�Bϕ
�Bϕ

r
a

Fig. 3.39 Ideal toroidal magnet comprised of N loops, each carrying current I.

* Based on Problem3.10 in the 1st Edition (Plenum, 1994).

TRIVIA 3.4 Of the four pressures below, three are close to the magnetic pressure
corresponding to a 1.5-T field, while the other is not. Identify this odd man out.

i) Compressive, on the toes of a ballerina performing a pirouette;

ii) Internal, of an uncorked champagne bottle;

iii) Lift, on the wings of a 747 jet at cruising speed;

iv) Thermal, of the plasma in an experimental Tokamak.
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Solution to PROBLEM 3.10

a) Noting that Hϕ, from symmetry, is independent of ϕ, we can apply Ampere’s
integral law within the torus:∫ 2π

0

Hϕ(r)r dϕ = 2πrHϕ(r) = NI (S10.1)

Because Bϕ(r)=μ◦Hϕ(r), we have:

Bϕ(r) =
μ◦NI

2πr
(3.161)

Outside the torus, no net current is enclosed when the above integral is performed
over the entire circumference. Therefore Hϕ(r)=0 and Bϕ(r)=0.

b) Figure 3.40 shows a single loop in which a differential force d�FL acts on a
differential element d�s with differential force dFLr in the r-direction.

d�FL is given by:
d�FL = −I ds�ıθ×B̃ϕ(r)�ıϕ (S10.2)

where B̃ϕ(r) is the average field acting on the surface current. Because this field
varies from that given by Eq. 3.161 just inside the surface current to zero just
outside, the average field is one half of that given by Eq. 3.161. Thus:

d�FL = −I ds�ıθ×B̃ϕ(r)�ıϕ =
μ◦NI2ds

4πr
�ıξ (S10.3)

where the vector �ıξ points in the direction of �FL (Fig. 3.40). The r-component of
this differential force is given by:

dFLr =
μ◦NI2 cos θ ds

4πr
(S10.4)

z
ϕ

R
d�FL

d�s

dFr
dθ

θ r
a

Fig. 3.40 Differential force acting on a single loop.
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Solution to PROBLEM 3.10 (continuation)

Because ds=a dθ and r=R + a cos θ, we can write Eq. S10.4 for dFLr as:

dFLr =
μ◦NI2a cos θ dθ

4π(R + a cos θ)
(S10.5)

By integrating Eq. S10.5 for the entire minor circle, we have:

FLr =
μ◦NI2a

4π

∫ 2π

0

cos θ dθ

R + a cos θ
=

μ◦NI2a

2π

∫ π

0

cos θ dθ

R + a cos θ
(S10.6)

Using a table of integrals, we obtain:

FLr =
μ◦NI2a

2π

(
θ

a

∣∣∣∣
π

0

− R

a

∫ π

0

dθ

R + a cos θ

)

=
μ◦NI2a

2π

{
π

a
− 2R

a
√

R2 − a2
tan−1

[√
R − a

R + a
tan

θ

2

]π

0

}
(S10.7a)

FLr =
μ◦NI2

2

(
1 − R√

R2 − a2

)
(3.162)

Note that as R → ∞, the torus becomes a straight solenoid of diameter 2a and,
as expected, FLr → 0.

DISCUSSION 3.9: Nuclear Fusion and Magnetic Confinement

If nuclei of light elements are confined and heated to a very high temperature
(∼100 MK), they fuse. Because the total mass of the fusion products, Mf , is less
than the total mass of the original nuclei, Mn, a net energy En =(Mn−Mf )c2 is
released by the reaction, where c is the speed of light. The sun generates energy
through this process. A controlled thermonuclear fusion reactor is a miniature
man-made sun. The sun confines unstable hot plasma gravitationally. Magnetic
pressure can substitute for gravitational pressure; the technique of using magnetic
fields to stabilize a hot plasma is known as magnetic confinement.

Power-generating fusion reactors will most likely use the Tokamak, a toroidal-
shaped machine configuration that uses magnetic confinement. The Tokamak was
conceived in the 1950s by L.A. Artsimovich and A.D. Sakharov of the Kurchatov
Institute of Atomic Energy, Moscow. The International Thermonuclear Experi-
mental Reactor (ITER) project is a joint project of the European Union, Japan,
Russia, United States, Korea, China, and India. ITER’s goal is to construct a
break-even Tokamak based on superconducting magnets. ITER’s toroidal mag-
net, not circular as studied above but D-shaped, will have a major radius (R) of
∼8 m and be ∼12 m tall (2a in the z-direction); its toroidal magnetic induction
(Bϕ) is ∼6 T, with a peak induction at the conductor of ∼13 T. ITER will be built
in the French region called Cadarache, ∼40 km north of Aix-en-Provence.
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PROBLEM 3.11: Fringing field*

This problem deals with fringing fields—unwanted fields outside a magnet system.
A fringing field is important because it can be a safety hazard to those near the
system; it may also disrupt or distort field-sensitive equipment. For computing the
fringing field, �Hf , at locations far from the magnet, the magnet can be modeled
as a spherical dipole with an effective radius Re:

�Hf = H0

(
Re

r

)3

(cos θ�ır + 1
2 sin θ�ıθ) (3.163)

where μ◦H0 is the central field. We may compute Re by equating the dipole’s far
field (r�Re) along the z-axis (r-direction at θ = 0), given by Eq. 3.163, and that
(z�a) of a ring of current I and radius a, given by Eq. 3.3a. Thus:

H0R
3
e = 1

2a2I (3.164)

a) For a solenoidal coil having total ampere-turns of NI, i.d. of 2a1 and o.d. of
2a2, show, by using a weighted-average, ã2, that Eq. 3.164 is modified to:

H0R
3
e = 1

2 ã2NI = 1
6 (a2

1 + a2
2 + a1a2)NI (3.165)

When Eq. 3.164 is applied to each layer of a winding comprising n� layers, each
layer having the same total turns per layer, nt/�, we have, given without derivation,
an expression, which the reader with extra time may derive:

H0R
3
e = 1

2a2
1NI

[
1+(α−1)

(n�+1)
n�

+(α−1)2
(n�+1)(2n�+1)

6n2
�

]
(3.166)

Note that N = nt/�n�. For n� � 1, Eq. 3.166 may be approximated by Eq. 3.165.
Because Re is proportional to the cube root of the right-hand side of each equa-
tion, in most cases Eq. 3.165 is a good approximation to Eq. 3.166. In any case
these equations are valid only for r�Re, and thus Re computed by Eq. 3.165 is
independent of magnet length, 2b, and NI. For a nested-coil magnet comprised
of k coils, Eq. 3.165 may be generalized to:

H0R
3
e = 1

6I
k∑

j=1

(a2
1j

+ a2
2j

+ a1j
a2j

)Nj (3.167)

b) By using Eq. 3.167 and parameter values given in Table 3.3, show that
Re =0.67 m for the 45-T SCM. (Because the water magnet’s volume is much
smaller than the SCM’s, the water magnet, despite its central field of 31 T,
contributes little to the fringing fields and may be neglected here.)

c) For reasons of safety, people and equipment associated with operation and
experiment of this magnet should be outside the 100-gauss contour prolate
spheroid of the magnet. Determine the radial distance rm, at z =2.75 m, at
which the fringing field magnitude |μ◦ �Hf | is 100 gauss.

* Based on Problem3.11 in the 1st Edition (Plenum, 1994).
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Solution to PROBLEM 3.11

a) The weighted-average ã2 of a solenoid of 2a1 and 2a2 may be given by:

ã2 =
1

(a2 − a1)

∫ a2

a1

r2 dr =
(a3

2 − a3
1)

3(a2 − a1)
= 1

3 (a2
1 + a2

2 + a1a2) (S11.1)

Thus:

H0R
3
e = 1

2 ã2NI = 1
6 (a2

1 + a2
2 + a1a2)NI (3.165)

b) Applying Eq. 3.167 to the 45-T SCM (Table 3.3) with H0 =14 T/μ◦, we have:

(14 T)
(4π×10−7 H/m)

R3
e = 1

6 (104 A)×
{

[(0.355 m)2+(0.444 m)2+(0.355 m)(0.444 m)]×306

+ [(0.454 m)2+(0.5575 m)2+(0.454 m)(0.5575 m)]×378

+ [(0.575 m)2+(0.840 m)2+(0.575 m)(0.840 m)]×1015
}

(11.1408×106 A/m)R3
e = 3.300×106 A m2

Re = 0.667 m

c) With μ◦ �Hf =0.01 T (100 gauss) at Iop = 10 kA, we have:

(0.01 T) = (14 T)
(

0.67 m
R m

)3

(cos θ�ır + 1
2 sin θ�ıθ) (S11.2a)

(R m) =
√

(xm)2 + 0 + (2.7 m)2 (S11.2b)

θ = tan−1
( xm
2.7 m

)
(S11.2c)

Solving Eqs. S11.2a, S11.2b, and S11.2c for x, we find: x=6.52 m. For x=6.52 m,
we find from Eq. S11.2b that R�7.05 m and θ�67.5◦.

Note that this 100-gauss exposure to the experimenters, presumably over a period
of a half day or at most a day, is different from the long-term exposure level of
5 gauss sanctioned by the FDA.

Answer to TRIVIA 3.4 iii) 747 (0.06, in atm); 1.5-T field (9)
—champagne (6); ballerina toes (8); plasma (10).
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DISCUSSION 3.10: Scaling a Solenoidal Magnet

In an early stage of magnet design, it is sometimes convenient, and certainly quick,
to scale, up or down, the parameters of a magnet already designed to those of a
new magnet. Requirements often imposed in scaling are to preserve the central
field, Hz(0, 0), or power consumption. Note that all the scaling laws below, though
formulated for a solenoidal magnet, are applicable to magnets of any shape.

Thus, the original winding dimensions, a1◦ ≡a◦; a2◦ ≡α◦a◦; b◦≡β◦a◦, are scaled
up by χ>1 (or down by χ<1), where χ is a constant, to new winding dimensions,
respectively, a1χ = χa◦, a2χ = χα◦a◦, and bχ = χβ◦a◦. Note that in the following
discussion all ◦-subscripted parameters are those of the original magnet, while
χ-subscripted parameters are those of the scaled magnet.

The parameters of interest are: Hz(0, 0) ≡ H, the central field; λ, the space factor;
J , the overall current density; I, the operating current; A, the conductor cross-
sectional area; E, the magnetic energy; �, the total conductor length, and V, the
volume in the winding. In this discussion, let us assume that both magnets have
the same space factor: λχ =λ◦=λ.

A. Spatial Homogeneity

As discussed in 3.4, the spatial field homogeneity of a solenoidal magnet is deter-
mined completely by α and β. Therefore, the full-scale magnet will have the same
field homogeneity (over the scaled volume) as the model magnet (over the original
volume) if α and β are kept the same.

B. Center Field vs. Current Density

From Eq. 3.13a (3.4 and PROBLEM 3.1), for the same λ, α, and β, the center field
is proportional to a1J . Because a1χ =χa◦, Jχ must be scaled by 1/χ: Jχ =J◦/χ.
Note that because the magnetic pressure is proportional to H2

z (0, 0), it follows that
the magnetic pressure of the new magnet remains the same as that of the original
magnet. This can also be seen by noting that magnetic pressure is proportional to
a1J , the product of the magnet’s radial size and its operating current density, and
the product is invariant in this scaling process. As may be inferred from Eq. 3.54,
the total axial force at the midplane of the new magnet will be χ2 times that of
the original magnet—in Eq. 3.54, the (NI/4b)2 term remains unchanged; it is the
“area” term that increases by χ2.

C. Conductor Size & Operating Current

The scaled magnet’s conductor cross sectional area, Aχ�Iχ/Jχ, has to be scaled
by χ2 if Iχ is scaled by χ: Aχ = χ2A◦ for Iχ = χI◦. On the other hand, if the
operating current remains unchanged, Iχ =I◦, then Aχ =χA◦.

D. Total Number of Turns

The scaled magnet’s number of turns, Nχ, may be given by:

Nχ =
λJχ(2βaχ)aχ(α−1)

Iχ
(3.168a)
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DISCUSSION 3.10: Scaling a Solenoidal Magnet (continuation)

As with Aχ, and Jχ = J◦/χ, because Hz(0, 0) must remain unchanged, Nχ can
remain unchanged or must be scaled by χ, as shown below.

(for Iχ = χI◦) Nχ =
λ(J◦/χ)(2βχa◦)χa◦(α−1)

χI◦
= N◦ (3.168b)

(for Iχ = I◦) Nχ =
λ(J◦/χ)(2βχa◦)χa◦(α−1)

I◦
= χN◦ (3.168c)

E. Total Conductor Length, Operating Current & Ampere-Meter

The total conductor length required for the magnet, �χ, may have two options:

(for Iχ = χI◦) �χ = Nχπ(αaχ + aχ) = N◦χπa◦(α + 1) = χ�◦ (3.169a)

(for Iχ =I◦) �χ = χN◦χπa◦(α + 1) = χ2�◦ (3.169b)

The total ampere-meter, Iχ�χ, which is a good indication of the conductor cost,
thus is scaled by χ2 in either case:

Iχ�χ = χ2I◦�◦ (3.170)

F. Total Magnetic Energy

Because the total magnetic energy of a magnet is the magnetic energy density
integrated over the entire spatial volume occupied by the field, and because the
magnetic energy density remains unchanged, it follows: Emχ =χ3Em◦ .

Illustrative Example

We have a model magnet of the following parameters: Hz(0, 0) = 1.53 T; 2a1 =
80 mm; 2a2 = 130 mm; 2b = 220 mm; total number of turns, N◦ = 2976. The
magnet has a self inductance of 0.301 H and generates a center field of 1.53 T at
an operating current, I◦, of 100 A. Now let us consider a “full-scale” magnet with
its dimensions scaled by 10 from the model magnet with λ remaining the same.
We may compute a few parameters for the full-scale magnets.

Inductance Because Lχ = μ◦aχN2
χL(α, β), 1) Lχ = χL◦ (if Iχ = χI◦); or 2)

Lχ =χ3L◦ (if Iχ = I◦). Thus: 1) Lχ � 3.01 H if Iχ =1000 A; and 2) Lχ =301 H if
Iχ =100 A.

Let us first compute �◦:

�◦ = N◦
a◦(α+1)

2

= (2976)
(0.04 m)(1.625+1)

2
� 156 m

Thus: 1) �χ�1.56 km if Iχ =1000 A; or 2) �χ =15.6 km if Iχ =100 A.
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DISCUSSION 3.11: Particle Accelerators

The simple principle that an electric field ( �E) accelerates charged particles is the
basis for particle accelerators. Early machines of Cockroft-Walton (1928) and Van
de Graaff (1930) were linear, accelerating particles along a straight path over a
potential (

∫
�E ·d�s). A large potential is always required to produce highly energetic

particles. A linear accelerator thus requires either a large �E field, a long distance,
or a combination of both. The Stanford Linear Accelerator (∼20 GeV) has a beam
distance of 2 miles (3.2 km).

In the 1930s E.O. Lawrence developed the cyclotron, a circular accelerator. Mod-
ern circular accelerators are variations of Lawrence’s cyclotron. In a circular ac-
celerator, charged particles are accelerated by a modest potential each time they
circulate around the machine; by circulating them many times it is possible to ac-
celerate them to energy levels well beyond those achievable by linear accelerators.
One essential component of a circular accelerator is a set of magnets that supplies
a magnetic field (usually in the vertical direction) to bend the particles into a
circular trajectory; modern machines use dipole magnets, while Lawrence’s first
1.2-MeV cyclotron used magnet polepieces, which sandwiched the beam trajectory.

As studied in PROBLEM 3.12 below, the particle energy (Ep) in circular accel-
erators is proportional to the beam trajectory’s radius (Ra), beam velocity, and
vertical magnetic induction (Bz). For a particle energy of 7 TeV of the newest
particle accelerator, Large Hadron Collider (LHC), at CERN, it means a machine
radius of nearly 3 km! Compare this with ∼0.1 m, the radius of Lawrence’s first
cyclotron. If the LHC were to use ∼1 T, the strength of Bz in Lawrence’s first
cyclotron, the factor of ∼3×104 increase in radius (and increase in beam energy)
would still bring Ep to only ∼0.8 TeV. In LHC, the additional factor of ∼8 needed
to reach the energy level of 7 TeV is achieved through increased field strength, a
goal feasible only with superconducting dipole magnets.

PROBLEM 3.12: Circulating proton in an accelerator*

The LHC, the world’s largest “atom smasher” (protons), has ∼1250 dipole mag-
nets, each ∼14 m long and generating a field of 8.3 T within a diameter of 56 mm.
The LHC will have two counter-circulating beams of protons, each accelerated to
an energy (Ep) of 7 TeV.

a) The oblong-shaped main ring comprises two half circles of radius Ra =2.8 km,
connected by 4.5-km nearly straight sections for a proton with an energy
Ep of 7 TeV. The dipoles occupy the ring’s two half-circle sections. Show
that a dipole field of 8.3 T generates a Lorentz force, �FL, that balances the
centripetal force, �Fcp, on a 7-TeV proton in the circular section. Assume that
the proton speed is equal to the speed of light. Note: 1 eV= 1.6×10−19 J.

b) Show that the proton speed at an energy of 7 TeV is nearly the speed of light.

* Based on Problem3.12 in the 1st Edition (Plenum, 1994).
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Solution to PROBLEM 3.12

a) The centripetal force, �Fcp, on a circulating proton (mass Mp) is balanced by
the Lorentz force, �FL. The direction of Bz is chosen to make FL point radially
inward because Fcp always points radially outward. The two forces are given by:

�Fcp =
Mpv

2

Ra
�ır � Mpc

2

Ra
�ır =

Ep

Ra
�ır (S12.1a)

�FL = −qcBz�ır (S12.1b)

Solving for Ra from �Fcp + �FL = 0, we obtain:

Ra =
Ep

qcBz
(S12.2)

From Eq. S12.2, we have:

Ra =
(1.6×10−19 J/eV)(7×1012 eV)

(1.6×10−19 C)(3×108 m/s)(8.3 T)

� 2.81×103 m � 2.8 km

This is less than the actual radius of LHC, which is slightly over 4 km. Note that in
the above computation it is assumed that the entire ring is occupied by dipoles; in
fact the occupancy rate for the dipoles is ∼60%—quadrupoles, detector magnets
occupy most of the rest. The average dipole field along the LHC ring is thus ∼5 T,
leading to a computed radius of ∼4 km. Of course, a dipole field of Bz = 15 T,
for example, will nearly halve the ring diameter; superconducting dipole magnets
with a field in the range 10–16 T are not out of the question [3.54–3.56].

b) The proton mass Mp, traveling at speed v, is related to its rest mass, Mp◦
(1.67×10−27 kg), by:

Mp =
Mp◦√

1 −
(v

c

)2
=

Ep

c2
(S12.3)

Solving for v/c from Eq. S12.3, we have:

v

c
=

√
1 −

M2
p◦c

4

E2
p

(S12.4)

Because v/c is very close to 1, Eq. S12.4 may be approximated by:

v

c
� 1 −

M2
p◦c

4

2E2
p

= 1 − (1.67×10−27 kg)2(3×108 m/s)4

2(1.6×10−19 J/eV)2(7×1012 eV)2

� 1 − 9×10−9

That is, the proton velocity is within nine parts per billion of the speed of light.

TRIVIA 3.5 If an electron is to circle around the earth at the equator, should it
travel eastward or westward? (Note that it will travel at nearly the speed of light.)
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PROBLEM 3.13: Two-coil magnet

Figure 3.41 shows a cross sectional view of a magnet consisting of two axially
aligned identical coils, A and B, energized in the same polarity. The axial field,
Bz, is in the horizontal direction. As remarked in PROBLEM 3.3 (Helmholtz coil),
the antisymmetric system (Maxwell coil) generates a “linear” axial field (Bz) at
the midpoint (z = 0). The axial interaction force between coils in the symmetric
system is attractive; in the split-pair antisymmetric configuration, repulsive, of
identical magnitude.

The winding parameters of each coil are: 2a1 = 1.5 m; 2a2 = 2.1 m; 2b = 0.1 m;
N =8900; and I =65 A. The left coil is axially centered at z=0.5 m, while the right
coil is at z = 0.5 m—the center-to-center distance is 1 m (ρ in 3.5). Each heavy
horizontal bar schematically represents a room-temperature structural element
that supports the interactive force between the two coils.

Figures 3.42a and 3.42b show, respectively, Bz(r, z) and Br(r, z) plots for one coil
at I =65 A. Note that here z=0 coincides with the axial midpoint of the coil.

Fig. 3.41 Cross sectional view of a 2-coil magnet consisting of two identical coils,
A and B, energized in the same polarity. Dimension in meters.
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PROBLEM 3.13: Two-coil magnet (continutation)

Fig. 3.42 (a) Bz(r, z) and (b) Br(r, z) plots for one coil, A or B, at I =65A,
with the other coil unenergized, at axial (z) locations of the energized coil.
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PROBLEM 3.13: Two-coil magnet (continuation)

a) Compute the overall current density of Coil A at I =65 A.

b) Compute the total conductor length in the winding of Coil A.

c) Using an appropriate analytical expression, show that Bz at the axial mid-
point of Coil A at 65 A, with Coil B not energized, is approximately 0.4 T, as
given by Fig. 3.42a.

d) Using L(α, β) given by Fig. 3.14 for solenoidal coils and Eq. 3.81, compute
the self inductance L of Coil A; a code gives 216.8 H.

f) Show, qualitatively, that the axial force on Coil A, FzA(ρ), studied in 3.5.1,
when Coil B is energized at 65 A, is +z-directed, i.e., the axial force between
Coils A and B is attractive.

g) Using appropriate field data of Figs. 3.42a and 3.42b, compute the magnitude
of this interactive force, when each coil is energized with a current of 65 A,
to within ±20% of ∼2×105 N. (A code value is −193 kN, the minus sign
indicating that the force is attractive.)

h) Approximating each coil as a “ring coil” (see Fig. 3.5) and using Eq. 3.34,
compute the axial force exerted on Coil A, FzA(ρ), by Coil B. Use K(k) =
2.10000 and E(k)=1.2000 with k=0.874157. Note that here aA =aB =0.9 m
and ρ=1.0 m.

i) Compute FzA(ρ) for ρ=5 m.

Table 3.6 gives computed mutual inductance vs. center-to-center distance data,
MAB(ρ), for this 2-coil system.

j) Show that the total stored magnetic energy of the system, Em, for ρ=1.0 m
at an operating current of 65 A is approximately 1 MJ. Use L=216.8 H.

k) By applying Eq. 3.105b on the system, compute FzA(ρ) from the MAB(ρ) data.

Table 3.6: MAB vs. ρ Data

ρ [m] MAB [H] ρ [m] MAB [H]

0.4 85.230 0.9 34.873

0.5 69.890 1.0 29.826

0.6 57.997 1.1 25.650

0.7 48.585 1.2 22.173

0.8 41.028 1.3 19.258

“Sometimes there is as much magic as science in the explanations of the force.
Yet what is a magician but a practicing theorist?” —Obi Wan Kenobi
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Solution to PROBLEM 3.13

a) From Eq. 3.108a:

λJ =
NI

2b(a2 − a1)
(3.108a)

=
(8900)(65 A)

(0.1 m)(1.05 m − 0.75 m)
= 19.3×106 A/m2

b) Total conductor length, �, is given by: �=Nπ(a2+a1)�50.3 km. This 2-coil
magnet thus contains a total conductor length of ∼100 km.

c) We may approximate Coil A (or Coil B) as a “pancake” coil with α=1.4. By
applying Eq. 3.111f , we obtain BzA, the center axial field of Coil A:

BzA � Bz(0, 0) =
μ◦NI

2a1

(
lnα

α − 1

)
(3.111f)

=
(4π×10−7 H/m)(8900)(65 A)

(1.5 m)

(
0.336
0.4

)
= 0.4 T

d) From Fig. 3.14, we have L(α=1.4, β=0.067)�2.8. From Eq. 3.81:

L = μ◦a1N
2L(α, β) (3.81)

= (4π×10−7 H/m)(0.75 m)(8900)2(2.8) = 209 H

f) Br(r, z) of Fig. 3.42b is valid for z≥0, indicating Br(r, z) is positive, pointing
radially outward. When Br(r, z) generated by Coil B is applied to Coil A, however,
because Coil A is located at z<0 relative to the axial midpoint of Coil B, Br(r, z)
of Coil B on Coil A is directed radially inward. If we apply the I�ıθ×−Br(r, z)�ır
product to the top winding cross section of Coil A in Fig. 3.41, the axial force on
Coil A by Coil B is +z-directed, indicating the force, as expected, is attractive.

g) FzA(ρ) is the Lorentz interaction force, here given by:

FzA(ρ) � (average winding circumference)×(NI)×
(Br at the winding cross section center)

= π(1.8 m)(8900×65 A)(0.06 T) = 196 kN

h) FzA(ρ) on Coil A due to Coil B is given by:

FzA(ρ) =
μ◦
2

(NAIA)(NBIB)
ρ
√

(aA + aB)2 + ρ2

(aA − aB)2 + ρ2

×
{

k2K(k) + (k2 − 2)[K(k) − E(k)]
}

(3.34)

where K(k) and E(k) are, respectively, the complete elliptic integrals of the first
and second kinds.

k2 =
4aAaB

(aA + aB)2 + ρ2
(3.36)
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Solution to PROBLEM 3.13 (continuation)

Here, we have: NA =NB =N =8900; aA =aB =(a1+a2)/2=0.9 m; and ρ=1 m.

k2 =
4(0.9 m)(0.9 m)

(0.9m + 0.9 m)2 + (1.0 m)2
= 0.764151 ⇒ k = 0.874157

We have: K(k)=2.100000 and E(k)=1.200000. Thus:

FzA(1 m)=− (4π×10−7 H/m)
2

(8900×65 A)2

×
[

(1.0 m)
√

(0.9 m+0.9 m)2+(1.0 m)2

(0.9 m−0.9 m)2+(1.0 m)2

]

×
{

(0.764151)2.10000+(0.764151−2)(2.10000−1.200000)
}

=(210.27×107 N)(2.059)(0.492) � −213.2 kN

i) In the limit ρ2�(aA+aB)2, Eq. 3.34 is simplified to:

FzA(ρ) =
3μ◦
2π

(
πa2

A NAIA

ρ2

)(
πa2

B NBIB

ρ2

)
(3.39c)

With ρ2 =25.0 m2 and (aA+aB)2 =3.24 m2, the condition ρ2�(aA+aB)2 is satisfied.
Because NA =NB =N =8900, IA =IB =65 A, aA =bB =0.9 m, Eq. 3.39c becomes:

FzA(ρ) =
3(4π×10−7 H/m)

2π

[
π(0.9 m)2(8900)(65 A)

(5.0 m)2

]2
= 2.08 kN

A force of 2 kN (∼200 kg) is only about 13% the weight of each coil.

j) The total stored magnetic energy of the system, Em, is given by Eq. 3.92:

Em = 1
2L1I

2
1 + 1

2L2I
2
2 + M12I1I2 (3.92)

With L1 = LA = L2 = LB ≡L = 216.8 H, I1 = IA = I2 = IB ≡ I = 65 A, and from the
table MAB�29.8 H, thus:

Em = LI2 + MABI
2 = (L + MAB)I2 = (246.6 H)(65 A)2 = 1.04 MJ

k) Equation 3.105b is given by:

FzR(ρ) =
∂EAB

∂ρ
= IAIB

∂MAB(ρ)
∂ρ

(3.105b)

From the table, MAB(ρ=0.9 m)=34.873 H and MAB(ρ=1.1 m)=25.650 H. Thus:

∂MAB(ρ)
∂ρ

� (25.650 H − 34.873 H)
(1.1 m − 0.9 m)

= −46.115 H/m (S17.1)

Inserting Eq. S17.1 into Eq. 3.105b with IA =IB =I =65A, we have:

FzR(ρ) � (65 A)2(−46.115 H/m) = −194.8 kN

Not surprisingly, this agrees quite well with the −193 kN computed by a code.
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PROBLEM 3.14: Midplane axial force in a solenoid

In this problem, we shall apply some of the expressions derived in Sec. 3.5 for
a solenoid of 2a1 = 10 cm; 2a2 = 14 cm; 2b = 25 cm; NI = 1.5×106 A, shown in
Fig. 3.43a.

a) Although this solenoid (α = 1.4, β = 2.5) is really neither “thin-walled” nor
“long,” use Eq. 3.111d to compute Bz(0, 0).

b) Treating the solenoid as “thin-walled,” apply Eq. 3.41a to compute the axial
midplane force, Fz(0), which by a code is −187.8 kN. Use 2a=10 cm.

c) Use Eq. 3.41b, valid for a “long” coil, to compute Fz(0). Choose: 1) 2a =
10 cm; 2) 2a=12 cm, the solenoid average diameter.

d) Now, divide the solenoid into two subsolenoids, A and B, as illustrated in
Fig. 3.43b, each of an equal radial build of 1 cm, with 2aA =10 cm, 2aB =12 cm,
and NI =0.75×106 A. Compute Bz(0, 0).

e) Apply Eq. 3.54 and compare with FzT(0)=−187.8 kN, computed by a code.

f) Apply Eq. 3.55, valid for a “long” coil, and compute FzT(0).

g) Applying the condition ∇· �B=0 over the surfaces of one half of a “thin-wall”
and “long” coil (2a, 2b) having a uniform surface current density NI/2b,
derive Eq. 3.41b. Note that the surfaces to be considered are the coil’s x-y-
plane cross-sectional areas at z =0 (midplane) and z = b, each πa2, and the
cylindrical surface area at r=a from z=0 to z=b, i.e., 2πab.

h) For a long (β�1) coil, explain why its axial force over most of its length, from
the midplane to near its end, is constant and given by that corresponding to
the midplane value. Try estimating the z location over one half of this long
solenoid at which Bz begins to plummet from Bz(0, 0).

Table 3.7 on the next page gives values of appropriate complete elliptic integrals.

Fig. 3.43 (a) Solenoid with 2a1 =10 cm; 2a2 =14 cm; 2b=25 cm. (b) Solenoid subdivided
into subsolenoids A and B, with 2aA =10 cm; 2aB =12 cm; 2b=25 cm.
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Solution to PROBLEM 3.14

Table 3.7: Values of Appropriate Complete Elliptic Integrals for b) and e)

k2 K(k) E(k) k2 K(k) E(k)

0.137931 1.62961 1.51514 0.390244 1.77081 1.40400

0.160858 1.64041 1.50558 0.432822 1.80099 1.38373

0.187256 1.65325 1.49445 0.479600 1.83717 1.36084

c2 k Π(c2, k) c2 k Π(c2, k)

0.991736 0.401071 18.7227 0.991736 0.657892 22.3701

a) Applying Eq. 3.111d we have:

Bz(0, 0) =
μ◦NI

2b
(3.111d)

=
(4π×10−7 H/m)(1.5×106 A)

(0.25 m)
= 7.5 T

Equation 3.109 for this solenoid of α = 1.4 and β = 2.5, gives Bz(0, 0) = 6.8 T.
Equation 3.111d thus errs by ∼10%, not too bad considering its simplicity.

b) Equation 3.41a is given here once more.

Fz(0) = −μ◦
2

(
NI

2b

)2 {
2b

√
4a2+b2

[
K(kb)−E(kb)

]
− 2b

√
4a2+4b2

[
K(k2b)−E(k2b)

]}
(3.41a)

with moduli given by:

k2
b =

4a2

4a2 + b2
=

4(5 cm)2

4(5 cm)2 + (12.5 cm)2
� 0.390244

k2
2b =

4a2

4a2 + (2b)2
=

4(5 cm)2

4(5 cm)2 + (25 cm)2
� 0.137931

With values of appropriate K(k) and E(k) given in Table 3.7:

Fz(0) = − (4π×10−7 H/m)
2

(
1.5×106 A

0.25 m

)2

×
{

(0.25 m)
√

4(0.05 m)2+(0.125 m)2 (1.77081−1.40400)

− (0.25 m)
√

4(0.05 m)2+4(0.125 m)2 (1.62961−1.51514)
}

= −(2.262×107 N/m2)(14.680×10−3 m2 − 7.705×10−3 m2)

� −157.8 kN

Fz(0)�−157.8 kN is 84% of −187.8 kN computed by a code.
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Solution to PROBLEM 3.14 (continuation)

c) Equation 3.41b is given by:

Fz(0) � −μ◦
2

(
NI

2b

)2

πa2 (3.41b)

Applying Eq. 3.41b with a=5 cm and a=6 cm, we obtain:

1) Fz(0) � − (4π×10−7 H/m)
2

(
1.5×106 A

0.25 m

)2

π(5×10−2 m)2 = −177.7 kN

2) Fz(0) � − (4π×10−7 H/m)
2

(
1.5×106 A

0.25 m

)2

π(6×10−2 m)2 = −255.8 kN

Equation 3.41b underestimates the code value by ∼5% with a = 5 cm, while it
overestimates the code value by 36% with a = 6 cm. These results appear to
suggest that it is better to equate 2a with the solenoid i.d. However, this may not
be valid for other values of α.

d) Apply Eq. 3.111d to each subsolenoid; we find that Bz(0, 0) remains the same.

Bz(0, 0) = BzA(0, 0) + BzB(0, 0)

= (4π×10−7 H/m)
[
(0.75×106 A)

(0.25 m)
+

(0.75×106 A)
(0.25 m)

]
= 7.5 T

e) Equation 3.54 is given below once again:

FzT(0) = −μ◦
2

(
NI

4b

)2

×
(

2b
√

4a2
A +b2

[
K(kbA)−E(kbA)

]
−2b

√
4a2

A +4b2
[
K(k2bA)−E(k2bA)

]
+ 2b

√
4a2

B +b2
[
K(kbB)−E(kbB)

]
−2b

√
4a2

B +4b2
[
K(k2bB)−E(k2bB)

]
− 4b√

a2
T +b2

{
(a2

T +b2)
[
K(kb)−E(kb)

]
−Υ(c2, kb)

}

+
4b√

a2
T +4b2

{
(a2

T +4b2)
[
K(k2b)−E(k2b)

]
−Υ(c2, k2b)

})
(3.54)

with c2 and the other moduli given by:

c2 =
4aAaB

(aA + aB)2
=

4(5 cm)(6 cm)
(5 cm + 6 cm)2

� 0.991736

k2
bA =

4a2
A

4a2
A + b2

=
4(5 cm)2

4(5 cm)2 + (12.5 cm)2
� 0.390244

k2
2bA =

4a2
A

4a2
A + (2b)2

=
4(5 cm)2

4(5 cm)2 + (25 cm)2
� 0.137931

k2
bB =

4a2
B

4a2
B + b2

=
4(6 cm)2

4(6 cm)2 + (12.5 cm)2
� 0.479600
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Solution to PROBLEM 3.14 (continuation)

k2
2bB =

4a2
B

4a2
B + (2b)2

=
4(6 cm)2

4(6 cm)2 + (25 cm)2
� 0.187256

k2
b =

4aAaB

(aA + aB)2 + b2
� 0.432822 =⇒ kb � 0.657892

k2
2b =

4aAaB

(aA + aB)2 + 4b2
� 0.160858 =⇒ k2b � 0.401071

Inserting these and other appropriate values into Eq. 3.54, we obtain:

Fz(0) = − (4π×10−7 H/m)
2

(
1.5×106 A

0.5 m

)2

×
[
(0.25 m)

√
4(0.05 m)2+(0.125 m)2 (1.77081−1.40400)

− (0.25 m)
√

4(0.05 m)2+4(0.125 m)2 (1.62961−1.51514)

+ (0.25 m)
√

4(0.06 m)2+(0.125 m)2 (1.83717−1.36084)

− (0.25 m)
√

4(0.06 m)2+4(0.125 m)2 (1.65325−1.49445)

+
4(0.125 m)√

(0.11 m)2+(0.125 m)2

{
[(0.11 m)2+(0.125 m)2](1.80099−1.38373)

− (0.05 m−0.06 m)2(22.3701−1.8010)
}

− 4(0.125 m)√
(0.11 m)2+4(0.125 m)2

{
[(0.11 m)2+4(0.125 m)2](1.64041−1.50558)

− [(0.05 m−0.06 m)2(18.7227−1.6404)
}]

= −(5.655×107 N/m2)×
(
14.680×10−3 m2−7.705×10−3 m2

+20.634×10−3 m2−11.009×10−3 m2

+34.739×10−3 m2−6.177×10−3 m2

−18.413×10−3 m2+3.127×10−3 m2
)

� −(5.655×107 N/m2)×(29.875×10−3 m2)

� −168.9 kN

The computation still underestimates the code value (−187.8 kN), but now it is
90%. Although Eq. 3.54 gives a value more accurate than Eq. 3.41a, as seen
here, it is extremely tedious and thus not recommended as a means to make a
quick estimate of the force. Clearly, dividing a solenoid into two subsolenoids and
applying Eq. 3.54 is the limit of manual computation with a pocket calculator.

Note that the remarkable result of Eq. 3.41b with a = 5 cm seen above is most
likely coincidental rather than a general rule.
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Solution to PROBLEM 3.14 (continuation)

f) Applying Eq. 3.55 with aA =5 cm and aB =6 cm, we obtain:

Fz(0) � −(4π×10−7 H/m)
(

1.5×106 A
0.5 m

)2

π[(0.05 m)2 + (0.06 m)2]

×
{

1 − (0.05 m−0.06 m)2(2×22.3701 − 18.7227)
π[(0.05m)2 + (0.06 m)2]

}

� −(216.7 kN)(1 − 0.136) = −187.3 kN

Equation 3.55, which is much simpler to compute than Eq. 3.54, also turns out to
give, at least in this particular example, a better result than Eq. 3.54.

g) The differential force acting on one complete turn at z ≥ 0 carrying a differ-
ential current of dI is given by:

dFz(z≥0) = −2πaBr(z) dI

The negative sign indicates this force is directed towards the midplane. Substi-
tuting dI = (NI/2b) dz and integrating over the entire half length of the solenoid,
from z=0 to z=b, we have:

Fz(0) = −
∫ b

0

2πaBr(z)
NI

2b
dz = −NI

2b

∫ b

0

2πaBr(z) dz (S14.1)

The integral
∫ b

0
2πaBr(z)dz is the total radial flux leaving this half of the solenoid.

From ∇· �B =0 this is equal to the difference between the total axial flux entering
into this half of the solenoid over the circular plane at the midplane (z = 0) and
that leaving the solenoid over the circular plane at z=b. Namely,∫ b

0

2πaBr(z) dz = πa2[Bz(0) − Bz(b)] (S14.2)

Note that it is assumed that for a “long” coil (k2 � 1 or β � 1), for which
Eq. 3.41b is valid, Bz(0, 0) and Bz(0, b) may be assumed constant over the circular
plane of area πa2. For this long solenoid, it is also true that Bz(0, b) � 0.5Bz(0, 0)
(see DISCUSSION 3.4 ), thus Eq. S14.2 may be given by:∫ b

0

2πaBr(z) dz � πa2

2
Bz(0) (S14.3)

For a long coil, Bz(0, 0)=μ◦NI/2b (Eq. 3.111), thus:∫ b

0

2πaBr(z) dz � πa2

2
×μ◦NI

2b
(S14.4)

Combining Eqs. S14.1 and S14.4, we have:

Fz(0) � −NI

2b
× πa2

2
×μ◦NI

2b
� −μ◦

2

(
NI

2b

)2

πa2 (3.41b)
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Solution to PROBLEM 3.14 (continuation)

h) For a “long” solenoid, Bz(z) is constant with z, and from the requirement of
∇· �B=0 the radial component Br(z) is virtually zero. Because Fz(z) is generated
by Br(z) (Eq. S14.1), dFz(z)=0 over most of the coil length. Fz(z) thus remains
constant until z approaches z =b, at which point flux lines begin to diverge away
from the magnet axis, giving rise to Br(z), which generates Fz(z). For 4b2�4a2

and (b+z)2�4a2, it can be shown that the 2nd and 3rd lines within the braces in
Eq. 3.40 cancel out, leaving only the first term for Fz(z�b), given by:

Fz(z�b) � −μ◦
2

(
NI

2b

)2 {
(b−z)

√
4a2+(b−z)2

[
K(kb−)−E(kb−)

]}
(S14.5)

Because z is close to b, k2
b− = 4a2/[4a2 +(b−z)2] /� 1 and thus K(kb−)−E(kb−)

cannot be approximated in k2
b−. Let us simply guess the location of z near b at

which point Fz(z∼b) is close to that given by Eq. 3.41b. If we guess z=b−2a, then:

Fz(z=b−2a) � −μ◦
2

(
NI

2b

)2 {
2a

√
4a2+4a2

[
K(kb−)−E(kb−)

]}
(S14.6)

where k2
b− =4a2/8a2 =0.5, which gives, from Table 3.1, K(kb− =0.7071)=1.8541

and E(kb−)=1.3506. Inserting these values into Eq. S14.6, we obtain:

Fz(z=b−2a) � −μ◦
2

(
NI

2b

)2

4a2
√

2(0.5035)

= −μ◦
2

(
NI

2b

)2

2.85a2 (S14.7)

Because 2.85 is ∼ 90% of π, Fz(z) indeed approaches the midplane force at a
distance within ∼ 2a from each end of a long solenoid. This constant Fz(z) over
most of the axial length of a long solenoid also implies that Bz(z) remains nearly
Bz(0, 0) over the same axial length, ∼(2b−4a), of the solenoid.

Help from Van (Part 3 of 5 Parts)

—Passage from Francis Bitter’s Magnets: The Education of a Physicist

It was too late for us to do any more about it that night, but we had made some
progress although we had not reached the maximum power input into that magnet by
a big factor. Then came a period of taking the magnet apart, finding out what had
gone wrong, putting it together, trying again. Finally it became clear that there was
nothing fundamentally wrong with the design, but that many little details hard to
foresee had to be looked after. The usual expression for this sort of thing is getting
the ‘bugs’ out of the apparatus. When we got the bugs out, the magnet behaved just
as had been calculated. It was a success.
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PROBLEM 3.15: Midplane axial forces in a nested 2-coilmagnet

In this problem we compute the axial compressive forces of Solenoids A and B that
comprise a nested 2-coil magnet, as shown in Fig. 3.44; the axial fields of both
solenoids point in the z-direction. The coil parameters are as follows: 2aA =10 cm;
2bA = 50 cm; NAIA = 3×106 A; 2aB = 14 cm; 2bB = 100 cm; NBIB = 8×106 A. Each
solenoid has a radial winding build of 1 cm.

a) Treating each solenoid “thin-walled” (α = 1) and “long” (β � 1), compute
the center field generated by each solenoid, BzA(0, 0) and BzB(0, 0). Show
that the center field of this nested magnet is ∼17.5 T (exact value: 17.31 T).

b) Using Eq. 3.57b, compute FzA(0), the total midplane axial force on Solenoid
A. A code gives FzA(0)=−200.9 kN.

c) Using Eq. 3.57a, recompute FzA(0). The computed value should be closer to
−200.9 kN than that computed in b) with Eq. 3.57b.

d) Using Eq. 3.59a compute FzB(0), the total midplane axial force on Solenoid
B. A code gives FzB =−1207.5 kN.

e) Explain why the maximum total field within the winding of Solenoid A,
BTA =

√
B2

zA + B2
rA , is likely to be at r=aA (winding’s innermost radius) and

z=0.

f) Explain why the maximum total field within the winding of Solenoid B,
BTB =

√
B2

zB + B2
rB , likely will not be at or even near z = 0. Where will it

likely be?

Table 3.8 on next page gives values of Π(c2, k)

2bB

SOLENOID B

SOLENOID A

2bA

z 2aA 2aB

Fig. 3.44 Drawing of a nested 2-coil magnet comprised of two “thin-walled” (α=1)
solenoids. Solenoid A (inner) 2aA =10 cm; 2bA =50 cm. Solenoid B (outer) 2aB =14 cm;
2bB =100 cm.
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Solution to PROBLEM 3.15

Table 3.8: Values of Π(c2 =0.992222, k) for c) and d)

k Π(c2, k) k Π(c2, k) k Π(c2, k)

0.155782 9.5245 0.230109 9.6468 0.426679 10.2692

a) From Bz(0, 0)=μ◦Hz(0, 0) and Eq. 3.111d, we have:

BzA(0, 0) = (4π×10−7 H/m)
(3×106 A)

(0.5 m)
� 7.5 T

BzB(0, 0) = (4π×10−7 H/m)
(8×106 A)

(1.0 m)
� 10.0 T

Bz(0, 0) = BzA(0, 0) + BzB(0, 0) � 17.5 T

As noted in the question statement, the exact central field value is 17.32 T.

b) Equation 3.57b is given below:

FzA(0) �FzAA(0) � −μ◦
2

(
NAIA

2bA

)2

πa2
A (3.57b)

Inserting appropriate values into Eq. 3.57b, we have:

FzA �− (4π×10−7 H/m)
2

(
3×106 A

0.5 m

)2

π(0.05 m)2 � −177.7 kN

Thus Eq. 3.57b gives a value that is 88% of that computed by a code; some of the
discrepancy is because Eq. 3.57b does not include the FzAB(0) contribution.

c) Equation 3.57a is given below:

FzA(0) �− μ◦
2

{(
NAIA

2bA

)2

πa2
A +

(
NBIB

2bB

)(
NAIA

2bA

)
×

(aA−aB)2
[
Π(c2, kD)+Π(c2, kT)−2Π(c2, kB)

]]}
(3.57a)

where

c2 =
4aAaB

(aA + aB)2
=

4(5 cm)(7 cm)
(5 cm+7 cm)2

=0.972222

k2
B =

4aAaB

a2
T + b2

B

=
4(5 cm)(7 cm)

(12 cm)2+(50 cm)2
=0.052950 =⇒ kB � 0.230109

k2
D =

4aAaB

a2
T + b2

D

=
4(5 cm)(7 cm)

(12 cm)2+(25 cm)2
=0.182055 =⇒ kD � 0.426679

k2
T =

4aAaB

a2
T + b2

T

=
4(5 cm)(7 cm)

(12 cm)2+(75 cm)2
=0.024268 =⇒ kT � 0.155781
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Solution to PROBLEM 3.15 (continuation)

Inserting appropriate values into Eq. 3.57a, we have:

FzA �− (4π×10−7 H/m)
2

{(
3×106 A

0.5 m

)2

π(0.05 m)2 +

[(
8×106 A

1.0 m

)(
3×106 A

0.5 m

)

×(0.05 m−0.07 m)2(10.2692+9.5245−2×9.6468)

]}

�− (177.7 kN + 6.0 kN) � −183.7 kN

This is 91% of −200.9 kN; as expected, an improvement from b), though not
enough to justify the increased complexity.

d) Equation 3.59a is given by:

FzA(0) �− μ◦
2

{(
NBIB

2bB

)2

πa2
B +

(
NBIB

2bB

)(
NAIA

2bA

)[
π(a2

A +a2
B )

− (aA−aB)2
[
2Π(c2, kA)+Π(c2, kD)−Π(c2, kT)

]]}
(3.59a)

where c2, k2
D , and k2

T are given above; for this case, because bA =bD, k2
A =k2

D . Thus:

FzB �− (4π×10−7 H/m)
2

{(
8×106 A

1.0 m

)2

π(0.07 m)2

+
(

8×106 A
1.0 m

)(
3×106 A

0.5 m

)[
π[(0.05 m)2+(0.07 m)2]

− (0.05 m−0.07 m)2(2×10.2692+10.2692−9.5245)

]}

�− (619.0 kN + 444.4 kN) � −1063.4 kN

This is 88% of the code value.

e) Because (2bB)2 � (2bA)2, within the bore of Solenoid A the fields generated
by Solenoid B and Solenoid A are both uniform and point only axially. Thus the
maximum field within Solenoid A, close to 17.5 T, occurs at its innermost radius at
z=0. According to the same code, a maximum field of 17.32 T occurs at (r=5 cm,
z=0).

f) Again because (2bB)2 � (2bA)2, the radial field component of Solenoid A im-
pinges on Solenoid B away from its center point where the axial field of Solenoid
B is still essentially the same as that at its midplane. Therefore, it is quite likely
that the field maximum in Solenoid B can exceed 10.0 T, the midplane field of
Solenoid B (9.94 T by code), and occur at an axial distance ∼±bA from the center.
The code shows that the maximum field in Solenoid B is 9.96 T (Br = ±1.70 T;
Bz =9.81 T) and it occurs at (r=7 cm, z=±25 cm). Note that bA =25 cm.
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PROBLEM 3.16: Stresses in an epoxy-impregnated solenoid*

This problem deals with simple but approximate stress computations applicable for
epoxy-impregnated magnets. We will use a 500-MHz (12 T) NMR superconduct-
ing magnet built in the late 1970s at FBNML as an example [3.57]. The magnet
consists of a high-field insert, a main coil, and several correction and shim coils.
The main coil’s winding inner radius (a1) is 72.6 mm, the winding outer radius
(a2) is 102 mm, and the winding length (2b) is 488 mm. The main coil is wound
with a Nb-Ti multifilamentary conductor; the volumetric ratio of copper to Nb-Ti
is 2.1. The composite wire has diameters of 0.63 mm bare (Dcd) and 0.71 mm insu-
lated (Dov). The winding has a close-packed hexagonal configuration. The space
between the wires is filled with epoxy resin. Figure 3.45 shows three neighboring
wires in a close-packed hexagonal winding configuration.

When all the coils are energized, the axial (z) component of the magnetic induc-
tion, Bz, decreases linearly with radial distance (r) through the build of the main
coil. At the midplane (z = 0) of the main coil, Bz varies from 8.22 T at r = a1

to −0.21 T at r = a2. This linear decrease of Bz is quite accurate at z = 0. The
overall operating current density (λJ) in the main coil is 248 MA/m2.

The analytic solution for an anisotropic cylinder loaded with body forces was used
to calculate the stresses at the midplane of the main coil. The hoop stresses at
the inner and outer radii were found to be, respectively, 105 MPa and 65 MPa; the
hoop stress decreases roughly linearly from the inner radius to the outer radius.

a) Using simple force equilibrium considerations, show that these stress values
are consistent with the loading situation.

b) Assuming the winding pattern is a close-packed (wires touching) hexagonal
configuration, compute the area fraction for each of the three constituents,
Nb-Ti, copper, and organic materials (epoxy plus insulation).

c) Based on these area fractions and approximate Young’s moduli for these
materials at 4.2 K (Esc = 85GPa; Ecu = 100 GPa; Ein = 30 GPa), find the
hoop stresses in the Nb-Ti and copper at the innermost layer of the winding.

Dov

Dcd

Fig. 3.45 Three neighboring conductors in a close-packed hexagonal winding.

* Problem3.17 in the 1st Edition (Plenum, 1994).
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Solution to PROBLEM 3.16

a) The average hoop stress in the winding is given by:

σ̃ =
σi + σo

2
=

105 MPa + 65 MPa
2

(S16.1)

= 85 MPa

The mean winding radius, R̃ = (a1 + a2)/2 is 87.3 mm; the mean magnetic induc-
tion, B̃z = (Bi + Bo)/2, is 4.0 T. The mean hoop stress in the winding may thus
be given by:

σ̃ = R̃(λJ)B̃z = (87.3×10−3 m)(248×106 A/m2)(4.0 T) (S16.2)

= 86.6 MPa

which is nearly identical to σ̃, the mean of σi and σo, computed above (Eq. S16.1).

b) See Fig. 3.45 for the close-packed hexagonal configuration. The triangular
area, Atr, defined by the dotted lines is given in terms of the overall conductor
diameter, Dov, by: Atr =

√
3D2

ov/4. The conductor area, Acd, within the triangle
is given by: Acd = πD2

cd/8, of which 2.1/3.1 is copper area, Acu, and 1/3.1 is
Nb-Ti area, Asc. The epoxy and insulation area, Ain, within the triangle is given
by: Ain = Atr − Acd. Thus:

fcu =
Acu

Atr
=

2.1
3.1

πD2
cd

8√
3

4 D2
ov

=
(2.1)(π)(4)(0.63 mm)2

(3.1)(
√

3)(8)(0.71 mm)2
= 0.484 (S16.3a)

fsc =
Asc

Atr
= 1

2.1
Acu

Atr
= 0.230 (S16.3b)

fin =
Ain

Atr
= 1 − Acu + Asc

Atr
= 1 − 0.484 − 0.230 = 0.286 (S16.3c)

c) The Young’s modulus for the composite, Ẽ, may be given from the parallel
mixture rule:

Ẽ = fcuEcu + fscEsc + finEin (S16.4)

= (0.48)(100 GPa) + (0.23)(85 GPa) + (0.29)(30 GPa)

� 76 GPa

We may calculate the stress of each component at the innermost winding radius:

σcu = σi
Ecu

Ẽ
= (105 MPa)

100 GPa
76 GPa

� 137 MPa (S16.5a)

σsc = σi
Esc

Ẽ
= (105 MPa)

85 GPa
76 GPa

� 117 MPa (S16.5b)

σin = σi
Esc

Ẽ
= (105 MPa)

30 GPa
76 GPa

� 41 MPa (S16.5b)

These values ignore residual stresses, which in fact may be very large.
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PROBLEM 3.17: Stresses and axial force in an HTS magnet

We present here a stress analysis performed on an 1.75-T (75 MHz) HTS “insert”
solenoid, a stack of 48 double-pancake (DP) coils [3.58], each DP coil wound with
high-strength HTS tape. The HTS insert, operated at 86.7 A, is combined with a
14.1-T (600 MHz) all-LTS background NMR magnet to form a 675 MHz LTS/HTS
NMR magnet—later the insert was operated at 115.95 A to achieve a combined
field of 16.26 T (692.2 MHz) [3.59]. Table 3.9 gives key parameters of the insert
and the HTS tape, a composite of Bi2223/Ag and two stainless steel strips. The
mixture rules used are based on the mechanical properties of silver and stainless
steel. The axial field values, Bz and Br, in the table are for the DP coils, flanking
the midplane (z=0), that experience the largest stresses and hoop strains.

Stress & Strain Equations

The stresses, radial, σr(r, z); hoop, σθ(r, z); axial, σz(r, z); and shear, τrz(r, z) in
the winding of a solenoid are found from the equilibrium equations of Eq. 3.62:

∂σr

∂r
+

σr − σθ

r
+

∂τrz

∂z
= −λ JBz(r, z) (3.62a)

∂τrz

∂r
− τrz

r
+

∂σz

∂z
= −λ JBr(r, z) (3.62b)

with boundary conditions: σr(r = a1, z) = 0; σr(a2, z) = 0; σz(r, z = ± b) = 0;
τrz(r,± b)=0; τrz(a2,± b)=0. The HTS composite may be considered orthotropic,
and Hooke’s law, with no thermal strains included, is given by:

εr =
1

Er
σr −

νrh

Eh
σθ −

νrz

Ez
σz (3.171a)

εθ = −νhr

Er
σr +

1
Eh

σθ −
νhz

Ez
σz (3.171b)

εz = −νzr

Er
σr −

νzh

Eh
σθ +

1
Ez

σz (3.171c)

where νξη is the Poisson’s ratio that gives εξ due to ση, where ξ and η can be,
respectively, θ- (hoop-), r-, or z-direction.

Table 3.9: Parameters of 48-Double-Pancake-Coil Solenoid [3.32, 58]

Winding i.d.(2a1); o.d.(2a2); length (2b) [mm] 78.2; 126.6; 406.6

Interturn insulation thickness/pancake-pancake space [mm] 0.038/0.178

Total number of turns 6816

Operating current (Iop); λJop [A; A/mm2] 86.7; 66.31

Bz(r=a1); Bz(r=a2) @86.7A [T] 15.86; 13.97

Tape overall width; thickness [mm] 4.10; 0.30

Thickness: Stainless steel (ss) strips; solder lamination [μm] 40 (×2); 10 (×2)

Volumetric ratio (without ss strips): Ag/non-Ag [mm] 1.5

Equivalent Young’s Moduli (mixture rule): Er; Eθ; Ez [GPa] 62.8; 81.3; 70.6

Equivalent Poisson’s Ratios (mixture rule): νrh; νhr; νzr 0.31; 0.29; 0.26
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PROBLEM 3.17: Stresses & axial force in an HTS magnet (continuation)

Table 3.10: Stresses (σ) & Strains (ε) in HTS Insert Midplane Pancake Coil [3.32]

(Operating at 86.7A in a Background Field of 14.1T)

Average Silver Steel Silver Silver Tape

r [mm] σr σ̄θ [MPa] σθ [MPa] σθ [MPa] σz [MPa] σT
∗[MPa] εθ [%]

39.10 0 62.3 54.3 152.9 −2.1 56.4 0.030

51.19 2.6 44.9 39.2 110.3 −2.1 41.3 0.028

63.29 0 33.6 29.3 82.4 −2.1 31.4 0.026

* Tresca stress: σT =σθ−σz.

Table 3.10 gives values of stresses and hoop strains at three radial locations, in-
nermost, midpoint, and outermost, in one of the midplane pancakes [3.32]. The
midplane axial force is −16 kN. Note that the highest stresses occur at the in-
nermost (a1 =39.10 mm) winding. The maximum combined stress, Tresca stress,
σT (= σθ −σz), in silver is 56.4 MPa, which is less than the allowable stress,
σallow =2σ/3 (0.2%): for silver at 77 K, σallow � 120 MPa.

Stresses and strains may be computed by solving Eqs. 3.62 and 3.171. However,
some of the equations derived in 3.5 may be applied to estimate the midplane axial
force. As noted above, the HTS magnet at its midplane will have a computed axial
force of −16.2 kN (i.e., compressive), which as discussed in 3.5, arises from the
self field of the HTS magnet and from the interaction of the HTS and the LTS
magnet. Here, we compute approximate values of the midplane force in the HTS
magnet by its own field alone. The above analysis gives a value of −8.6 kN [3.32].

a) Treating the HTS magnet as “thin-walled,” apply Eq. 3.41a to compute
Fz(0). Choose a=39.1 mm, b=203.3 mm, and NI =5.91×106 A.

b) Apply Eq. 3.41b to compute Fz(0) with 1) a=39.1 mm, the “a1” of the HTS
magnet and 2) a=51.2 mm, which is the average winding radius.

c) Now treat the HTS magnet as two “thin-walled” and “long” subsolenoids, A
and B, of the same winding thickness, and apply Eq. 3.55 to compute FzT(0).
Choose aA =39.1 mm and aB =51.2 mm.

d) The 14.1-T LTS magnet that surrounds this HTS insert consists of nested
coils. Model the LTS magnet as a thin-walled solenoid of aB = 191.3 mm;
bB = 337.5 mm; NBIB = 7.535 MA; the HTS insert as a thin-walled solenoid
of aA = 51.2 mm; bA = 203.3 mm; NAIA = 0.591 MA. By applying Eq. 3.57a,
compute the total midplane axial force for the HTS insert magnet: FzA(0),
which is −16.2 kN. Explain why Eq. 3.57a does not give the correct value.

e) Using the same models for both magnets and applying Eq. 3.60, compute
an axial restoring force on the HTS insert when it is off-center by 5 mm
(ρ=5 mm in Eq. 3.60). A code gives a value of −2.1 kN.

In the following pages, appropriate elliptic integral values are given, Tables 3.11
through 3.14.
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Solution to PROBLEM 3.17

Table 3.11: Values of K(k) and E(k) for a)

k2 K(k) E(k)

0.128888 1.625445 1.518888

0.035670 1.585092 1.556694

a) We have Eq. 3.41a:

Fz(0) = −μ◦
2

(
NI

2b

)2 {
2b

√
4a2 + b2

[
K(kb) − E(kb)

]

− 2b
√

4a2 + 4b2
[
K(k2b) − E(k2b)

]}
(3.41a)

where kb and k2b are the moduli determined by a and b. For this case, in which
a=39.1 mm and b=203.3 mm, we have:

k2
b =

4a2

4a2 + b2
=

4(39.1 mm)2

4(39.1 mm)2 + (203.3 mm)2
= 0.128888

k2
2b =

4a2

4a2 + (2b)2
=

4(39.1 mm)2

4(39.1 cm)2 + (406.6 mm)2
= 0.035670

Appropriate complete elliptic integral values are given in Table 3.11. By applying
Eq. 3.38c up to the k6 term, we may compute K(k)−E(k) for k2�1. Thus:

K(k2b)−E(k2b) �
π

4
[
(0.128888)+ 3

8 (0.128888)2+ 15
64 (0.128888)3

]
= 0.106515

which is essentially identical (0.04% error) to the K(k)−E(k)=0.106557, computed
from values of K(k) and E(k) given in Table 3.11.

With NI =0.591×106 A, and other values inserted in Eq. 3.41a, we have:

Fz(0) = −(2π×10−7 H/m)
[
(0.591×106 A)

(0.4066 m)

]2

×
{

[(0.4066 m)
√

4(0.0391 m)2+(0.2033 m)2 (1.625445−1.518888)

−(0.4066 m)
√

4(0.0391 m)2 + 4(0.2033 m)2 (1.585092−1.556694)
}

= −(2π×10−7 H/m)(2.11×1012 A2/m2)(9.44×10−3 m2 − 4.78×10−3 m2)

= −6.2 kN

This computation underestimates the code value by 28%.
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Solution to PROBLEM 3.17 (continuation)

Table 3.12: Values of Π(c2, k) for c)

c2 k Π(c2, k)

0.982045 0.402269 12.66889

0.982045 0.214848 11.96934

b) Equation 3.41b is given by:

Fz(0) � −μ◦
2

(
NI

2b

)2

πa2 (3.41b)

� − (4π×10−7 H/m)
2

[
(5.91×105 A)

0.4066 m

]2
π(0.0391 m)2

= −6.4 kN

This is 74% of the code value. The average radius of 51.2 mm instead of 39.1 mm
results in a force of 10.9 kN, 27% greater than the code value.

c) If the magnet is modeled by two “thin-walled” and “long” solenoids, Eq. 3.55
applies:

FzT(0) � −μ◦

(
NI

4b

)2

π(a2
A +a2

B )
{

1 − (aA−aB)2

π(a2
A +a2

B )
[2Π(c2, kb)−Π(c2, k2b)]

}
(3.55)

The moduli, kb, k2b, and c2, with aT = aA +aB, aA = 39.1 mm, aB = 51.2 mm, b =
203.3 mm, aT =90.3 mm, are given by:

c2 =
4aAaB

a2
T

=
4(39.1 mm)(51.2 mm)

(90.3 mm)2
=0.982045

k2
b =

4aAaB

a2
T +b2

=
4(39.1 mm)(51.2) mm

(90.3 mm)2+(203.3 mm)2
=0.161820 ⇒ kb = 0.402269

k2
2b =

4aAaB

a2
T +4b2

=
4(39.1 mm)(51.2) mm

(90.3 mm)2+4(203.3 mm)2
=0.046160 ⇒ k2b = 0.214848

Thus:

Fz(0) = −(4π×10−7 H/m)
[
(0.591×106 A)

(0.8132 m)

]2

π[(0.0391 m)2 + (0.0512 m)2]

×
{

1 − (0.0391 m − 0.0512 m)2

π[(0.0391 m)2 + (0.0512 m)2]
[2(12.66889) − 11.96934]

}

= −(4π×10−7 H/m)(5.28×1011 A2/m2)(1.304×10−2 m2)(1 − 0.150)

= −7.4 kN

This underestimates the code by 15%.
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Solution to PROBLEM 3.17 (continuation)

Table 3.13: Values of Π(c2, k) for d)

c2 k Π(c2, k)

0.666226 0.333965 2.822156

0.666226 0.476278 2.046996

0.666226 0.714162 3.382637

d) Equation 3.57a is given below:

FzA(0) �− μ◦
2

{(
NAIA

2bA

)2

πa2
A +

(
NBIB

2bB

)(
NAIA

2bA

)
×

(aA−aB)2
[
Π(c2, kD)+Π(c2, kT)−2Π(c2, kB)

]]}
(3.57a)

Parameter values other than those given in question d) are: aT =aA+aB =242.5 mm;
bT =bA+bB =540.8 mm; bD =bA−bB =−134.2 mm; and

c2 =
4aAaB

a2
T

=
4(51.2 mm)(191.3 mm)

(242.5 mm)2
=0.666226

k2
D =

4aAaB

a2
T +b2

D

=
4(51.2 mm)(191.3) mm

(242.5 mm)2+(−134.2 mm)2
=0.510028 ⇒ kD = 0.714162

k2
T =

4aAaB

a2
T +b2

T

=
4(51.2 mm)(191.3) mm

(242.5 mm)2+(540.8 mm)2
=0.111533 ⇒ kT = 0.333965

k2
B =

4aAaB

a2
T +b2

B

=
4(51.2 mm)(191.3) mm

(242.5 mm)2+(337.5 mm)2
=0.226841 ⇒ kB = 0.476278

Inserting appropriate values into Eq. 3.57a, we have:

FzA(0) �− (4π×10−7 H/m)
2

{(
5.91×105 A
0.4066 m

)2

π(0.0512 m)2

+

[(
7.535×106 A

0.675 m

)(
5.91×105 A
0.4066 m

)

×(0.0512 m−0.1913 m)2(3.3826+2.8222−2×2.0470)

]}

�− (1.09 kN + 42.2 kN) � −43.3 kN

This is 2.7 times the code value of 16.2 kN. The major source of error comes from
the approximation of Eq. 3.57a involving the interaction force, FzAB. In order
for Eq. 3.57a to be valid, as remarked in its derivation, the conditions b2

A � 4a2
A ,

b2
B �a2

T , b2
D �a2

T , must be satisfied. In this particular case, we have: b2
A /4a2

T =0.176;
b2
B /a2

T = 1.94; and b2
D /a2

T = 0.306. That is, none of the conditions necessary for
Eq. 3.57a to be valid is satisfied in this particular case.
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Solution to PROBLEM 3.17 (continuation)

Table 3.14: Values of K(k), E(k), and Π(c2, k) for e)

k2 K(k) E(k) k2 K(k) E(k)

0.109834 1.616815 1.526733 0.113269 1.618355 1.525324

0.501110 1.855016 1.350085 0.518925 1.870449 1.341054

c2 k Π(c2, k) c2 k Π(c2, k)

0.666226 0.331412 2.820467 0.666226 0.336555 2.823887

0.666226 0.707891 3.364664 0.666226 0.720364 3.400959

e) Equation 3.60 is given below:

FzR(ρ) = − μ◦
2

(
NAIA

2bA

)(
NBIB

2bB

)
×

(
bT−ρ√

a2
T +(bT−ρ)2

{
[a2

T +(bT−ρ)2]
[
K(kT−)−E(kT−)

]
−Υ(c2, kT−)

}

+
bD+ρ√

a2
T +(bD+ρ)2

{
[a2

T +(bD+ρ)2]
[
K(kD+)−E(kD+)

]
−Υ(c2, kD+)

}

− bT+ρ√
a2

T +(bT+ρ)2

{
[a2

T +(bT+ρ)2]
[
K(kT+)−E(kT+)

]
−Υ(c2, kT+)

}

− bD−ρ√
a2

T +(bD−ρ)2

{
[a2

T +(bD−ρ)2]
[
K(kD−) − E(kD−)

]
−Υ(c2, kD−)

})

(3.60)

Parameter values other than those given in question e) are: aT =aA+aB =242.5 mm;
bT =bA+bB =540.8 mm; bD =bA−bB =−134.2 mm; and

c2 =
4aAaB

a2
T

=
4(51.2 mm)(191.3 mm)

(242.5 mm)2
=0.666226

k2
T + =

4aAaB

a2
T +(bT+ρ)2

=
4(51.2 mm)(191.3) mm

(242.5 mm)2+(545.8 mm)2
=0.109834 ⇒ kT+ = 0.331412

k2
T − =

4aAaB

a2
T +(bT−ρ)2

=
4(51.2 mm)(191.3) mm

(242.5 mm)2+(535.8 mm)2
=0.113269 ⇒ kT− = 0.336554

k2
D + =

4aAaB

a2
T +(bD+ρ)2

=
4(51.2 mm)(191.3) mm

(242.5 mm)2+(−129.2 mm)2
=0.518925 ⇒ kD+ = 0.720364

k2
D − =

4aAaB

a2
T +(bD−ρ)2

=
4(51.2 mm)(191.3) mm

(242.5 mm)2+(−139.2 mm)2
=0.501110 ⇒ kD− = 0.707891
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Solution to PROBLEM 3.17 (continuation)

Table 3.15: Values of Terms in Eq. 3.60 for e)

bT−ρ√
a2

T +(bT−ρ)2
(0.5358m)√

(0.2425m)2+(0.5358m)2
0.911035

a2
T +(bT−ρ)2 (0.2425m)2+(0.5358m)2 0.345888m2

K(kT−)−E(kT−) 1.618355−1.525324 0.093031

(aA−aB)
2 (0.0512m−0.1913m)2 0.019628m2

(aA−aB)
2[Π(c2, kT−)−K(kT−)] (0.019628m2)(2.823887−1.618355) 0.023662m2

bD+ρ√
a2

T +(bD+ρ)2
(−0.1292m)√

(0.2425m)2+(−0.1292m)2
−0.470210

a2
T +(bD+ρ)2 (0.2425m)2+(−0.1292m)2 0.075499m2

K(kD+)−E(kD+) 1.870449−1.341054 0.529395

(aA−aB)
2[Π(c2, kD+)−K(kD+)] (0.019628m2)(3.400959−1.870449) 0.030041m2

bT+ρ√
a2

T +(bT+ρ)2
(0.5458m)√

(0.2425m)2+(0.5458m)2
0.913860

a2
T +(bT+ρ)2 (0.2425m)2+(0.5458m)2 0.356704m2

K(kT+)−E(kT+) 1.616815−1.526733 0.090082

(aA−aB)
2[Π(c2, kT+)−K(kT+)] (0.019628m2)(2.820467−1.616815) 0.023625m2

bD−ρ√
a2

T +(bD−ρ)2
(−0.1392m)√

(0.2425m)2+(−0.1392m)2
−0.497833

a2
T +(bD−ρ)2 (0.2425m)2+(−0.1392m)2 0.078183m2

K(kD−)−E(kD−) 1.855016−1.350085 0.504931

(aA−aB)
2[Π(c2, kD−)−K(kD−)] (0.019628m2)(3.364664−1.855016) 0.029632m2

Applying these values in Table 3.15 into Eq. 3.60, we compute:

FzR(ρ) = −2.2 kN

This overestimates the code value (2.1 N) by ∼4%; the − sign implies that the
force is restoring. The “spring constant” between the magnets is ∼400 kN/m.

Formula for Radial Build of a Close-Packed Hexagonal Winding

With a round-wire conductor, many solenoids are wound in a close-packed hexago-
nal configuration. Figure 3.45, with three neighboring round wires of overall diam-
eter Dov, is a cross sectional view of such a winding. The radial build, a2−a1, of a
solenoid (i.d. 2a1 and o.d. 2a2) with a close-packed hexagonal winding containing
N� layers is given by:

a2 − a1 =

[
1 +

√
3

2
(N� − 1)

]
Dov (3.172)

Note that when N� =1, as expected, a2−a1 =Dov.
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DISCUSSION 3.12: Magnetic Force on an Iron Sphere*

For safety considerations, it is very important to keep ferromagnetic objects away
from a large magnet. Using the 45-T hybrid as an example, we derive here magnetic
force expressions for an iron sphere (Fig. 3.46) “far” from the hybrid. The fringing
(far) field of a solenoid, as discussed in PROBLEM 3.11, is given by a dipole field:

�Hf = H0

(
Re

r

)3

(cos θ�ır + 1
2 sin θ�ıθ) (3.163)

When a magnetic object, such as an iron sphere, is in a spatially varying magnetic
field, it will be subjected to a magnetic force density, �fm, given by:

�fm(r, θ) = ∇em (3.173)

where ∇ is the grad operator in spherical coordinates and em is the magnetic
energy density stored in the iron due to its magnetization. For a ferromagnetic
sphere with μ/μ◦�1, the magnetic induction inside the sphere, �Bsp, is three times
the “uniform” applied magnetic induction: �Bsp � 3μ◦ �Hf = 3 �Bf (PROBLEM 2.1).
For a sphere of a diameter much smaller than the distance from the magnet center
to the sphere, �Bf may be assumed uniform over the sphere. Thus:

em =
�Bsp · �Bf

2μ◦
=

3| �Bf |2
2μ◦

(3.174)

When the iron is saturated with magnetization �Msa, its magnetic induction is
approximately equal to �Bsa (= μ◦ �Msa), which is constant and aligned with �Bf .
Its energy density ems is thus given by:

ems �
�Bsa · �Bf

2μ◦
(3.175)

In Eqs. 3.174 and 3.175, it is assumed that the impinging field is “uniform” for
energy density computation, but nonuniform for force density computation.

z

fmr
y0.1g

45-T Hybrid Platform fmy

fmθ

IRON SPHERE1m rθ

Iop

“45-T HYBRID MAGNET”

2Re

Fig. 3.46 Iron sphere on the 45-T hybrid platform.

* Based on Problem3.13 in the 1st Edition (Plenum, 1994).
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DISCUSSION 3.12: Magnetic Force on an Iron Sphere (continuation)

A. Force on Unsaturated Sphere

To derive an expression of �fm(r, θ) for an unsaturated iron sphere, we first compute
| �Bf |2 from Eq. 3.163:

| �Bf |2 = μ2
◦H

2
0

(
Re

r

)6

(cos2θ + 1
4 sin2θ)

Combining the above expression with Eq. 3.174 and using the grad operator in
spherical coordinates (Eq. 2.36a) on Eq. 3.173, we obtain:

�fm(r, θ) =
3μ◦H2

0

2

[
(cos2θ + 1

4 sin2θ)
∂

∂r

(
Re

r

)6

�ır

+
1
r

(
Re

r

)6
∂

∂θ

(
cos2θ + 1

4 sin2θ

)
�ıθ

]

=
3μ◦H2

0

2Re

(
Re

r

)7 [
−6(cos2θ+ 1

4 sin2θ)�ır − 3
2 sin θ cos θ�ıθ

]

which may be simplified to:

�fm(r, θ) = −9μ◦H2
0

4Re

(
Re

r

)7

[(1 + 3 cos2θ)�ır + sin θ cos θ�ıθ] (3.176a)

Note that �fm(r, θ) varies as 1/r7 and, as expected for any ferromagnetic object,
the r-component of �fm(r, θ) is directed towards the magnet center.

B. Force on Saturated Sphere

The magnetic energy density of Eq. 3.175 is given by:

ems = μ◦MsaH0

(
Re

r

)3√
cos2θ + 1

4 sin2θ

Performing a similar grad operation on em, we obtain:

�fms(r, θ) = −3μ◦MsaH0

2Re

(
Re

r

)4

×
(√

1 + 3 cos2θ �ır +
sin θ cos θ√
1 + 3 cos2θ

�ıθ

)
(3.176b)

The magnetic force thus varies as 1/r4 when the iron sphere is saturated. Note
also that because it is −r-directed, as in the unsaturated case, the iron sphere is
attracted to the magnet center.
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DISCUSSION 3.12: Magnetic Force on an Iron Sphere (continuation)

Illustration For the 45-T hybrid magnet (only the SCM field is considered), for
which B0 = 14 T and Re = 0.67 m (see PROBLEM 3.11), we may compute y0.1g,
the y-axis distance from the magnet center on the platform (z=2.75 m) at which
fmy, the y-component of the magnetic force density on an unsaturated iron sphere
of density �, is 0.1�g (an acceleration of 0.1 that of gravity) fmy is given by:

fmy = fmr sin θ + fmθ cos θ (3.177)

where fmr and fmθ are, respectively, the r- and θ-components of the magnetic
force. Combining Eqs. 3.176a and 3.177, we have:

fmy =
9μ◦H2

0

4Re

(
Re

r

)7

[−(1 + 3 cos2 θ) sin θ − sin θ cos2 θ]

= −9μ◦H2
0

4Re

(
Re

r

)7

(1 + 4 cos2 θ) sin θ (3.178)

The minus sign in Eq. 3.178 indicates fmy actually points in the direction opposite
from that indicated in Fig. 3.46. r, sin θ, and cos θ for the case x=0 are given by:

r =
√

y2
0.1g + z2; sin θ =

y0.1g√
y2
0.1g + z2

; cos θ =
z√

y2
0.1g + z2

Combining the above expressions and Eq. 3.178, and with fmy =0.1�g we have:

0.1�g =
9(μ◦H0)2R6

e

4μ◦

(
1

y2
0.1g + z2

)3.5(
1 +

4z2

y2
0.1g + z2

)
y0.1g√

y2
0.1g + z2

By inserting appropriate values in the above expression, with z=2.75 m, we have:

0.1(8000 kg/m3)(9.81 m/s2) =
9(14 T)2(0.67 m)6

4(4π×10−7 H/m)

[
1

y2
0.1g+(2.75 m)2

]3.5

×
[
1+

4(2.75 m)2

y2
0.1g+(2.75 m)2

]
y0.1g√

y2
0.1g+(2.75 m)2

Solving the above equation for y0.1g, we find: y0.1g � 2.42 m.

We may compute the total field on the sphere and see if the sphere is indeed un-
saturated as assumed in the computation. With r0.1g =

√
(2.42 m)2+(2.75 m)2 �

3.66 m and θ = tan−1(2.42 m/2.75 m) = 41.3◦ substituted into Eq. 3.163, we have:

|μ◦ �Hf | = (14.0 T)
(

0.67 m
3.66 m

)3 √
cos2 41.3◦ + 1

4 sin2 41.3◦

= (14.0 T)(6.1×10−3)(0.82) = 0.070 T ( �M = 3μ◦ �Hf = 0.21 T )
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DISCUSSION 3.13: Radial Force in Two-Coil Magnet

Figure 3.47 shows an arrangement of a two-coil magnet, in which the axis of Coil
1 (inner) is displaced radially in the plane normal to the z-axis—+Δx in the x-
direction in the figure—with respect to Coil 2 (outer). The axial field of each coil
points upward (+z direction) and the midplane of each coil is at z=0.

When Coils 1 and 2 are concentric, i.e., Δx=0 and Δy=0, the Jθ×Bz interaction
force on a unit winding volume is r-directed and from symmetry it cancels out:
the net radial force is zero. If Coil 1 is displaced, as shown in the figure, by +Δx,
then Bz2 on one half (180◦ arc on the +x side of the x-y plane) of its winding
volume is on average greater than Bz2 on the other half (180◦ arc mostly on the
−x side of the x-y plane) of the winding volume. The resulting net unbalanced
force, Fx1, may be given approximately by:

Fx1 � 4πΔx

∫ b

0

∫ a2

a1

Jθ1
∂Bz2(r, z)

∂r
r dr dz (3.179)

where Bz2 is the axial field generated by Coil 2. As indicated by Eq. 3.12b and also
by Eqs. 3.117a–3.117c (PROBLEM 3.2 ), Bz2 increases with displacement in the x-
y plane, i.e., ∂Bz2/∂r>0. Thus, Fx1 is positive and increasing in the x-direction;
Coil 1’s displacement gets even greater: the system is unstable.

Another way of looking at this is to recognize that an energized coil is always
attracted to the highest field region. Thus, if Coil 1 is displaced radially, it contin-
ues to move radially towards Coil 2 because, as noted above, Bz2 increases with
displacement in the x-y plane; Bz2 is maximum at the innermost winding radius
of Coil 2. The same argument may be used to explain why displacement in the z-
direction, on the other hand, is stable: if Coil 1 is displaced axially by Δz, because
the axial field of each coil is maximum at the midplane (z = 0), Coil 1 seeks to
align its maximum field region with that of Coil 2, resulting in a stable condition
for displacement in the z-direction.

z2

Coil 2 z1

Coil 1

x

Δx

Fig. 3.47 Two nested solenoidal coils, one displaced radially from the other.

Answer to TRIVIA 3.5 Eastward. The current must point westward to make
a resultant magnetic force on the electron directed toward the earth center.
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DISCUSSION 3.14: Mechanical Support in the 45-T Hybrid*

The 45-T Hybrid was designed with potential for upgrade later to 50-T operation
with higher power resistive inserts—35 MW vs. 24 MW. A key element in the
design is the structure for transmitting fault forces between the insert and the
SCM. Especially critical is the structural component that provides thermal stand-
off inside the cryostat. In the 45-T Hybrid, this component is a single cylindrical
steel column, coaxial to the SCM, with heat intercepts at ∼80 K and ∼20 K. To
compute an upper bound on the potential fault load on the support column during
an insert failure, the analysis described below was carried out for a 50-T upgrade.

1. This analysis was performed by taking the dimensions of the 45-T resistive
insert, with uniform current density in each sub-coil at the peak value, and
adjusting the current level in each sub-coil to the 50 T field. The analysis gives
an insert that has inherently higher magnetic energy and higher misalignment
forces relative to the SCM than coils with 1/r current distribution.

2. Based on this configuration, a worst-case fault was postulated corresponding
to a short suddenly appearing at the midplane of each sub-coil, resulting in
doubling the current (constant voltage assumption) and an axial shift of each
sub-coil’s magnetic center by a distance bi (the half-height of the ith coil). For
the sub-coil geometries assumed, this hypothetical fault resulted in forces in
Coils A, B, and C, respectively, of ∼1.7 MN, ∼1.8 MN, and ∼2.5 MN, i.e., a
total of ∼6 MN on the SCM. The wall thickness of the support column was
chosen so that the mean stress during a fault would not exceed 2/3 yield. The
wall thicknesses of the 1.8–20 K, 20–80 K, and 80–300 K sections were graded
to match the temperature-dependance of the yield stress of austenitic steel.
The resultant conduction heat input is a small portion of the system’s total
cryogenic load. The resultant support-column design has the added advantage
of being very stiff against both axial and transverse loads. Consequently,
relative deflection between insert and outsert for typical misalignment forces
are quite minimal.

* John Miller (NHMFL, 2004).

Help from Van (Part 4 of 5 Parts)

—Passage from Francis Bitter’s Magnets: The Education of a Physicist

The Edison Company was getting rather fed up with the time-consuming exper-
iments. While they were willing enough to make it possible to test out a brand-new
piece of equipment, they were not exactly eager to go on interrupting their own
schedules and having their people work overtime on a project of no interest to them.
So we called a halt to these tests, and Van set out to find some money for me to
get a power station of my own at M.I.T. and to construct some new magnets us-
ing the experience gained in the preliminary tests. In due course the money was
made available. The sum was perhaps a tenth of what was required ten or fifteen
years later to duplicate the installation, but luckily in those days (the mid-1930’s)
secondhand equipment could be had.
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DISCUSSION 3.15: Stresses in Composite Nb3Sn Conductor*

Here we shall discuss the stress state in a composite Nb3Sn conductor, focusing on
the stress relationships among bronze, copper, and Nb3Sn—the three major con-
stituents of the composite [3.60]. Because the critical current densities of supercon-
ductors (LTS and HTS), are degraded when strained, particularly in tension, the
maximum strain level on the superconductor is a key magnet design specification.
Effects of strain, particularly on Nb-Ti and Nb3Sn composite superconductors, are
quite well documented [3.61, 3.62]; data are now also available for HTS [3.63, 3.64].

When a Nb3Sn composite is cooled to 4.2 K, each constituent experiences a tem-
perature reduction of ∼1000 K, from the reaction temperature of ∼1000 K to the
operating temperature of 4.2 K. Because each constituent has a different coefficient
of thermal contraction, residual stress arises in each constituent.

Figure 3.48 shows, schematically, strain states for three cases of interest: a) the
composite at a reaction temperature ∼1000 K, b) at 4.2 K if the three constituents
can contract individually, c) the composite at 4.2 K. Though exaggerated, the fig-
ure indicates the relative sizes of the individual thermal contractions of bronze,
copper, and Nb3Sn, given respectively by εbr0 , εcu0 , εs0 , after cooldown from
∼1000 K to 4.2 K. Correspondingly, their residual strains, εbrr , εcur , εsr , in the
composite at 4.2 K are as shown in the figure. That is, both bronze and copper
will be in tension, while Nb3Sn will be in compression. In the figure E and A re-
fer, respectively, to Young’s modulus and cross section, with subscripts indicating
constituents. Here, these strains as drawn in Fig. 3.48 are scalar quantities.

Bronze Copper Nb3Sn

εs0εbr0 εcu0

εsr

Ebr Ecu Es

Abr Acu As

εbrr εcur

Composite at ∼1000K Individual Constituents at 4.2K Composite at 4.2K

(a) (b) (c)

Fig. 3.48 Schematic strain states in the Nb3Sn composite after cooldown.

* Problem3.18 in the 1st Edition (Plenum, 1994).
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DISCUSSION 3.15: Stresses in Composite Nb3Sn Conductor (continuation)

A. Equilibrium Equations

The stress and strain equilibrium equations for the composite at 4.2 K are:

εbrr
AbrEbr + εcur

AcuEcu − εsr
AsEs = 0 (3.180a)

+εbrr + εsr = εbr0 − εs0 (3.180b)
−εcur

+ εsr
= εcu0 − εs0 (3.180c)

−εcur + εbrr = εcu0 − εbr0 (3.180d)

Equation 3.180a states that the net internal force is zero. Equations 3.180b –3.180d
give the strain compatibilities for, respectively, the bronze/Nb3Sn, copper/Nb3Sn,
and copper/bronze. Be aware that Eq. 3.180 implicitly assumes that each con-
stituent is in its elastic range, which usually is not the case.

B. Residual Strains

From Eqs. 3.180b and 3.180c, we may obtain expressions for εsr and εcur :

εsr = εbr0 − εs0 − εbrr

εcur = εbrr − εbr0 + εcu0

Combining the above expressions with Eq. 3.180, we obtain:

εbrr
AbrEbr + (εbrr

− εbr0 + εcu0)AcuEcu + (εbrr
− εbr0 + εs0)AsEs = 0

Solving the above equation for εbrr
, we have:

εbrr =
(εbr0 − εcu0)AcuEcu + (εbr0 − εs0)AsEs

AcuEcu + AbrEbr + AsEs
(3.181a)

Similarly, from Eqs. 3.180b–3.180d we may obtain expressions for εsr and εbrr :

εsr = εcu0 − εs0 − εcur

εbrr
= εbr0 − εcu0 + εcur

Thus,

(εbr0 − εcu0 + εcur
)AbrEbr + εcur

AcuEcu + (εcur
− εcu0 + εs0)AsEs = 0

Solving for εcur from the above equations, we have:

εcur
=

(εcu0 − εbr0)AbrEbr + (εcu0 − εs0)AsEs

AcuEcu + AbrEbr + AsEs
(3.181b)

Also,

εbrr
= εbr0 − εs0 − εsr

εcur
= εcu0 − εs0 − εsr

Thus,

(εbr0 − εs0 − εsr )AbrEbr + (εcu0 − εs0 − εsr )AcuEcu − εsrAsEs = 0

Solving for εsr from the above equations, we have:

εsr
=

(εcu0 − εs0)AcuEcu + (εbr0 − εs0)AbrEbr

AcuEcu + AbrEbr + AsEs
(3.181c)
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DISCUSSION 3.15: Stresses in Composite Nb3Sn Conductor (continuation)

Numerical Values By using Eqs. 3.181a — 3.181c and the values given in Table
3.16 for each constituent, we may compute values of εbrr

, εcur
, and εsr

.

εbrr
=

(1.66−1.62)(0.62)(100 GPa)+(1.66−0.72)(0.14)(165 GPa)
(0.24)(100 GPa)+(0.62)(100 GPa)+(0.14)(165 GPa)

=
(

24.19 GPa
109.1 GPa

)
% � 0.22% (from Fig. 3.48, tensile )

εcur
=

(1.62−1.66)(0.24)(100 GPa)+(1.62−0.72)(0.14)(165 GPa)
62.9 GPa

=
(

19.83 GPa
109.1 GPa

)
% � 0.18% (from Fig. 3.48, tensile )

εsr =
(1.62−0.72)(0.62)(100 GPa)+(1.66−0.72)(0.24)(100 GPa)

62.9 GPa

=
(

78.36 GPa
109.1 GPa

)
% � 0.72% (from Fig. 3.48, compressive )

Note that both matrix materials are in tension, while Nb3Sn is in compression; εsr

of 0.72% is too severe and would certainly damage the conductor. However, when
the magnet is energized, the conductor is subjected mostly to a tensile stress, which
tends to place εsr towards zero strain; usually, the Lorentz stresses are sufficient
to put Nb3Sn in tensile strain when the magnet is energized.

C. Stresses in Bronze and Copper

From εbrr and εcur computed above, we may compute the corresponding stresses
in the bronze and copper. We have:

σbrr = εbrrEbr � (2.2×10−3)(100×109 Pa) � 220 MPa

σcur = εcurEcu � (1.8×10−3)(100×109 Pa) � 180 MPa

The yield stresses of annealed bronze, σbry , and annealed copper, σcuy , are both
only ∼100 MPa; both bronze and copper thus yield plastically during cooldown.

Table 3.16: Properties of Bronze, Copper, and Nb3Sn at 4.2K

—Approximate Values—

Constituent ε∗0 [%] E [GPa] A†

bronze 1.66 100 0.24

copper 1.62 100 0.62

Nb3Sn 0.72 165 0.14

* Thermal contraction strain from ∼1000 to 4.2K.

† Fraction of the total composite cross section.
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PROBLEM 3.18: Self inductances of selected systems

Derive the “low” frequency self inductance formulas given in 3.7.3.

a) Equation 3.83, for the interior of the wire of radius a per unit length:

L =
μ◦
8π

(3.83)

b) Equation 3.84c, for a “very long” (β�α) and thin coil with N total turns:

L = μ◦a1N
2

(
π

2β

)
(3.84c)

c) Equation 3.87, for the unit length of an “ideal” dipole with N total turns:

L = 1
8μ◦πN2 (3.87)

Derive Eq. 3.87 using two expressions: 1) L = 2Em/I2; and 2) L=NΦ.

d) For the unit length of an “ideal” quadrupole with N total turns, Eq. 3.88:

L = 1
16μ◦πN2 (3.88)

Derive Eq. 3.88 using two expressions: 1) L = 2Em/I2; and 2) L=NΦ.

e) Equation 3.89a, for an “ideal” toroidal coil of major radius R and circular
section of radius a with N total turns.

L = μ◦RN2

[
1 −

√
1 −

(a

R

)2
]

(3.89a)

f) Equation 3.89b, for the ideal toroidal coil of e) in the limit a�R.

L = μ◦aN2
( a

2R

) [
1 + 1

4

(a

R

)2

+ 1
8

(a

R

)4

· · ·
]

(3.89b)

g) Equation 3.90a, for an ideal toroid of major radius R and rectangular section
of width (r-axis) 2a, height (z-axis) 2b, and N total turns.

L = μ◦bN
2

[
1
π

ln
(

R + a

R − a

)]
(3.90a)

h) Equation 3.90b, for the ideal toroidal coil of g) in the limit a�R.

L = μ◦bN
2

(
2a

πR

) [
1 + 1

3

(a

R

)2

+ 1
5

(a

R

)4

· · ·
]

(3.90b)
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Solution to PROBLEM 3.18

a) For a wire of radius a carrying current I distributed uniformly over its cross
section, the interior magnetic field is given by:

Hθ(r) =
I

2πa2
r (S18.1)

Magnetic energy per unit wire length stored in the wire interior, em, is given by:

em = 1
2μ◦

∫ a

0

2πH2
θ (r)r dr (S18.2)

Combining Eqs. S18.1 and S18.2, we obtain:

em =
μ◦
16π

I2 (S18.3)

Combining Eqs. 3.79 (Em =LI2/2; em =LI2/2 on a unit length basis) and S18.3
and solving for the self inductance of the wire interior, L, we have:

L =
μ◦
8π

(3.83)

b) From Eq. 3.111d, the center field, Bz(0, 0), of a long solenoid (β�α) is given
by μ◦NI/2b. As may be inferred from Eq. 3.117c, the field in a “thin-walled” and
“long” solenoid is uniform in both axial and radial directions and equal to the
center field. Thus the total flux linked by N turns of the solenoid is given by:

Φ =
∫ a1

0

2πrHz(0, 0) dr = N

(
πa2

1μ◦NI

2b

)
(S18.4)

Combining Eqs. 3.78 (Φ=LI) and S18.4, we obtain:

L = μ◦a1N
2

(
π

2β

)
(3.84c)

c) Method 1: Energy The total ampere-turns (NI) in an ideal dipole, as
studied in PROBLEM 3.8, is given by:

NI =
∫ π/2

−π/2

KfR dθ (S18.5)

where R is the dipole radius. Combining Eqs. 3.140 (for �Kf ) and S18.5, we have:

NI =
∫ π/2

−π/2

2H0R cos θ dθ = 4H0R (S18.6)

The total magnetic energy Em per unit length of the dipole is given by Eq. 3.143:

Em =
πR2B2

0

μ◦
(3.143)

From S18.6, we compute H0R=NI/4. Now combining this, Eqs. 3.143 and 3.79,
and solving for L� (L per unit length), we have:

L� = 1
8μ◦πN2 (3.87)
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Solution to PROBLEM 3.18 (continuation)

Method 2: Flux Linkage First, because the surface current density, �Kf , is
not uniform over the dipole winding, i.e., �Kf = −2H0 cos θ�ız (Eq. 3.140), for a
“uniform” I in the winding, the “turn density,” n(θ), must vary with θ as:

n(θ) = 1
2N cos θ (S18.7)

Because the dipole has a uniform field of H0, the total flux linkage by the N turns
of the dipole is given by:

NΦ =
∫ π/2

−π/2

n(θ)μ◦H0(2R cos θ) dθ = μ◦NH0R

∫ π/2

−π/2

cos θ2 dθ

= 1
2μ◦πNH0R = 1

8μ◦πN2I (S18.8)

Combining Eqs. S18.8 and 3.78, we obtain:

L� = 1
8μ◦πN2 (3.87)

d) Method 1: Energy The total ampere-turns (NI) in an ideal quadrupole
(PROBLEM 3.9 ) is given by:

NI = 2×
∫ π/4

−π/4

KfR dθ (S18.9)

R is the quadrupole radius. The integral is multiplied by 2 because, as may be
seen from Fig. 3.35(b), the current distribution is divided in two regions—we are
considering only one polarity. Combining Eqs. 3.146 (for �Kf ) and S18.9, we have:

NI = 2×
∫ π/4

−π/4

2H0R cos 2θ dθ = 4H0R (S18.10)

The total magnetic energy Em per unit length of the quadrupole is obtained by
integrating μ◦|H(r, θ)|2/2 over the entire surface. |H(r, θ)|2, from Eq. 3.145, is
independent of θ, because sin22θ+cos22θ=1.

Em = 1
2μ◦

(
H0

R

)2∫ R

0

2πr3 dr + 1
2πμ◦H

2
0R6

∫ ∞

R

2π dr

r5

= 1
2μ◦πH2

0R2 (S18.11)

Combining Eqs. 3.79, S18.10, and S18.11, we obtain:

L� = 1
16μ◦πN2 (3.88)

That Em of an ideal quadrupole is 1/2 that of an ideal dipole is reasonable because
the quadrupole field varies from 0 to H0 within the bore rather than uniform as
for a dipole and decays as 1/r3 outside rather than as 1/r2 for a dipole field.
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Solution to PROBLEM 3.18 (continuation)

Method 2: Flux Linkage As with the dipole treated above, the “turn density,”
n(θ), in the quadrupole also must vary with θ, here, as:

n(θ) = 1
2N cos 2θ (S18.12)

Note that the integral of Eq. S18.12 over one quadrant, e.g., from to −45◦ to
+45◦, gives, as it must, the total number of turns in that quadrant: N/2. For the
ideal quadrupole, the total flux linkage, Φ, is given by:

NΦ = 2×
∫ π/4

−π/4

n(θ)φ(R, θ) dθ (S18.13a)

Because H1r = H0(r/R) sin 2θ (Eq. 3.145a), we have:

φ(R, θ) = 2μ◦H0R

∫ θ

0

sin 2ω dω = μ◦H0R cos 2θ (S18.13b)

Therefore:

NΦ = μ◦NH0R

∫ π/4

−π/4

cos22θ dθ

= 1
4μ◦πNH0R = 1

16μ◦πN2I (S18.14)

Combining Eqs. 3.78 and S18.14, we obtain:

L� = 1
16μ◦πN2 (3.88)

e) As discussed in PROBLEM 3.10, the field within the circular section of an
ideal toroid, H(r), is in the azimuthal (ϕ) direction and, from Eq. 3.161, given by:

Hϕ(r) =
NI

2πr
(S18.15)

The total flux linked by the toroid, Φ, is thus given by:

Φ = μ◦N

∫ R+a

R−a

∫ z=+a

z=−a

H(r) dz dr (S18.16)

The equation of the circle that defines the cross section is given by:

z2 + (R − r)2 = a2 (S18.17)

Solving z from Eq. S18.17 for the limits of z in the integral of Eq. S18.16 in terms
of r and constants, and after combining with Eq. S18.15, we have:

Φ =
μ◦N2

2π

∫ R+a

R−a

∫ √
a2−(R−r)2

−
√

a2−(R−r)2

dz dr

r

=
μ◦N2I

π

∫ R+a

R−a

√
a2−R2+2Rr−r2

r
dr (S18.18)
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Solution to PROBLEM 3.18 (continuation)

Φ =
μ◦N2I

π

∣∣∣∣∣R sin−1

(
2r − 2R

2a

)
+

(a2 − R2)√
R2 − a2

sin−1

(
2Rr + 2a2 − 2R2

2ra

)∣∣∣∣∣
R+a

R−a

=
μ◦N2I

π

(
Rπ + π

a2 − R2

√
R2 − a2

)
= μ◦N

2RI

[
1 −

√
1 −

(a

R

)2
]

(S18.19)

Combining Eqs. 3.78 and S18.19, we obtain:

L = μ◦RN2

[
1 −

√
1 −

(a

R

)2
]

(3.89a)

f) For a�R, we have:√
1 −

(a

R

)2

= 1 − 1
2

(a

R

)2

− 1
8

(a

R

)4

− 1
16

(a

R

)6

· · · (S18.20)

From Eqs. 3.89a and S18.20,

L = μ◦RN2

[
1
2

(a

R

)2

+ 1
8

(a

R

)4

+ 1
16

(a

R

)6

· · ·
]

Thus:

L =
μ◦a2N2

2R

[
1 + 1

4

(a

R

)2

+ 1
8

(a

R

)4

· · ·
]

(3.89b)

g) The field within the rectangular section of this ideal toroid is the same as that
in the circular section of the toroid studied above. Thus:

NΦ =
μ◦N2I

2π

∫ R+a

R−a

∫ z=+b

z=−b

1
r

dz dr

=
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π
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(
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R − a

)
(S18.21)

Combining Eqs. 3.78 and S18.21, we obtain:

L =
μ◦bN2

π
ln

(
R + a

R − a

)
(3.90a)

h) For a � R, we may expand ln(1±a/R) as:
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Combining Eqs. 3.90a and S18.22, we obtain:
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DISCUSSION 3.16: Mutual Inductance of Rogowski Coil

The Rogowski coil was studied in PROBLEM 2.11 and an expression was derived
for total flux linked to the Rogowski coil:

Φ(t) � μ◦Nc2

2R
I(t) (2.69)

where R is the radius of the Rogowski coil and c is the radius of each of N loops.
Equation 2.69 is valid for (c/R)4�1, which is generally satisfied by most Rogowski
coils. The mutual inductance, Mri, between the current element and the Rogowski
coil is thus given by:

Mri ≡
Φ
I

� μ◦Nc2

2R
(3.182)

DISCUSSION 3.17: Force vs. Mutual Inductance

From �fm(r, θ)=∇em (Eq. 3.173) given in DISCUSSION 3.12 (p. 200), we may re-
derive an expression, e.g., for the axial force between two “ring” coils FzA(ρ) from
the mutual inductance between them, M

AB
, or vice versa. Here, we study a simple

case in which two “ring” coils are “far apart” in which case, FzA(ρ) is given by
Eq. 3.39c and M

AB
is given by Eq. 3.97. Thus:

FzA(ρ) =
3μ◦
2π

(
πa2

A NAIA

ρ2

)(
πa2

B NBIB

ρ2

)
(3.39c)

and

MAB � μ◦
2π

[
(πa2

A NA)(πa2
B NB)

ρ3

]
(3.97)

For this system, we have:
em =IAIBMAB

(3.183)

Applying Eq. 3.173 in the ρ-direction and combining Eqs. 3.97 and 3.182, we have:

FzB(ρ) = IAIB

dM
AB

dρ
(3.184a)

= IAIB

d

dρ

{
μ◦
2π

[
(πa2

A NA)(πa2
B NB)

ρ3

]}
(3.184b)

= −3μ◦
2π

(
πa2

A NAIA

ρ2

)(
πa2

B NBIB

ρ2

)
(3.184c)

Note that in the d/dρ operation in Eq. 3.184a, it is Coil B (right-hand side of two
coils in Fig. 3.5, p. 83) that is moved by a distance of ∂ρ, and thus FzB(ρ) points
in the negative direction of ρ. That is,

FzA(ρ) = −FzB(ρ)

=
3μ◦
2π

(
πa2

A NAIA

ρ2

)(
πa2

B NBIB

ρ2

)
(3.39c)
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DISCUSSION 3.17: Force vs. Mutual Inductance (continuation)

Clearly, the above process may be reversed to obtain an expression of M
AB

from a
known expression of FzA(ρ). Again, we must watch out for the sign.

M
AB

= − 1
IAIB

∫ ρ

0

FzA(y) dy (3.185)

=
μ◦
2π

[
(πa2

A NA)(πa2
B NB)

ρ3

]
(3.97)

Help from Van (Part 5 of 5 Parts)

—Passage from Francis Bitter’s Magnets: The Education of a Physicist

After inquiring here and there, I found that the place to look for big secondhand
generators was in New Jersey, out beyond Jersey City. It was a peculiar feeling,
going shopping for big secondhand electrical machinery, about which I knew very
little. But I found something that looked suitable. It had a central motor, and on
each end of the shaft a generator capable of delivering up to 5000 amps at 170 volts.
It was an impressive object—much bigger than any magnet I had seen—about 12
feet (∼4m) high and 20 feet (∼6m) long. When I reported my findings to Van, he
suggested that we employ a firm of consulting engineers to check on the condition of
the motor generator and then to design a proper installation . . . and before long we
had a 1.7 megawatt (million-watt) motor generator which could deliver power at any
voltage from zero to 170 volts. This was very valuable, since gradual starting and
stopping were necessary. By means of the voltage control we were able to connect
the magnet to the power line without drawing current, and then slowly build up the
current and increase the power drawn from the power mains.

For about three years we had three or four magnets in more or less continuous
operation, providing facilities for a considerable range of experiments. There were
first of all some low-temperature experiments which, as I pointed out in Chapter III,
might be expected to lead to particularly interesting results in high magnetic fields . . .

. . .Some years after the war was over, and we were continuing work with our
battered twenty-year old magnets, a colleague asked what I felt about the possibility
of making even better and stronger magnets. I told him that it seemed to me that
our experiments with heat transfer were inconclusive, . . . That is, it seemed possible
to remove heat from the copper not at the rate of 200 watts per square centimeter,
as I had designed it, but at approximately 2000 watts per square centimeter. The
design of such a magnet would lead to even more critical cooling conditions, and in
the event that something went wrong the magnet might literally explode. But such
magnets are being built. The bugs are being taken out of the new designs, and more
and more powerful magnets are becoming available for scientific investigations.*

* In the 1930s Francis Bitter (1902–1967) built 10-T “Bitter” magnets [3.65] to perform
research in high magnetic fields [3.66]. His magnet laboratory in the basement of an M.I.T.
physics building led to the establishment in 1960 of the National Magnet Laboratory
(NML) at M.I.T., the first major facility in the world dedicated to high magnetic field
sciences and technologies. The NML in turn led to the creation of high magnetic field
facilities in Europe (England, Netherlands, France, Germany, Poland, Russia) and Asia
(Japan, China). Currently, the largest and most extensive is the National High Magnetic
Field Laboratory, in operation since 1995 on the campus of Florida State University. In
1995 the NML, by then the Francis Bitter National Magnet Laboratory, named in his honor
in 1968, became the Francis Bitter Magnet Laboratory, as before, an M.I.T. laboratory.
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CHAPTER 4

CRYOGENICS

4.1 Introduction

Cryogenics is essential for superconductivity. This reliance of superconductivity
on cryogenics has been a major hindrance to the widespread use of superconduc-
tivity for applications such as electric power. It is, however, important to put
cryogenics in perspective and not overemphasize its role. From cryogenics alone,
it is clearly more efficient to operate a superconducting magnet at the highest
permissible temperature, but if this superconducting magnet is a part of a system,
the impact of this operating temperature on the overall system must be evaluated.
The question of “What is the best operating temperature for a superconducting
magnet?” becomes a real, and extremely important, design/operation issue, par-
ticularly with HTS magnets. To generate the same field an HTS magnet operating
at 77 K, for example, unquestionably requires considerably more superconductor
than one at 20 K; the savings in cryogenics may be insufficient to offset the in-
creased superconductor cost.

Also not to be overlooked is the mandatory requirement of thermal insulation for
every superconducting system: the best thermal insulation is vacuum. A thermally
“effective” vacuum is relatively easy to achieve in a cryostat when the cold temper-
ature is below 20 K, at which point hydrogen condenses. Hydrogen, outgassed from
the “evacuated” cryostat surfaces, is the primary heat transfer medium within the
cryostat. Thus, for the overall HTS magnet system it might be more cost effec-
tive to operate the magnet below, rather than above, 20 K. Alternatively, if we
can select an operating temperature high enough, e.g., above ∼70 K, arguably
most people’s preferred option, we may be able to eliminate vacuum insulation
altogether from the cryogenic system, making it one step closer to less intrusive.

In this introductory section, the cryogenic design/operation issues of superconduct-
ing magnets are briefly discussed : 1) two cooling methods for superconducting
magnets, “wet” and “dry;” 2) cooling sources, heating sources, and cryogenic mea-
surements; 3) cryogens for wet magnets; and 4) solid cryogens that may become
useful for dry magnets. Details of some of these topics are further studied and
covered in PROBLEMS &DISCUSSIONS which follow this section.

4.2 “Wet” and “Dry” Magnets

Until around 1990, all superconducting magnets were operated “wet,” i.e., cooled
by liquid helium. The discovery of HTS, coupled with advances in cryocooler tech-
nology, spurred, beginning in the early 1990s, development of “dry” (cryogen-free)
magnets “cryocooled,” i.e., cooled by a cryocooler, with both LTS [4.1–4.11] and
HTS [4.12–4.18]. Because a dry cryogenic system is less cumbersome to operate
and maintain, and equally important, because it is easier to make it less intrusive
than its “wet” counterpart, the dry magnet is the preferred option in most appli-
cations, provided that the magnet generates virtually no dissipations of its own,
e.g., AC losses, under normal operating conditions.

© Springer Science + Business Media, LLC 2009
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Cooling Methods for Superconducting Magnets

As summarized in Table 4.1, superconducting magnets can employ any of five
cooling methods, four wet and one dry. Although the terms “cryostable,” “adia-
batic,” and “quasi-stable” used here are discussed in more detail in CHAPTER 6,
qualitatively these terms should be understandable to the reader. Each method is
briefly discussed below in the context primarily of cryogenics.

Bath-Cooled Cryostable Magnets built before the early 1980s were chiefly
bath-cooled and cryostable. A key cryogenic feature of these magnets is “ventila-
tion” of the windings to facilitate cryogen penetration, making virtually every part
of the winding exposed to liquid cryogen. Here, convective heat transfer, discussed
qualitatively below, is important; some data are presented in CHAPTER 6.

Bath-Cooled Adiabatic To achieve high performance, bath-cooled “adiabatic”
magnets began to be developed in the early 1980s. Here, the winding pack is
dense, with virtually no cryogen penetration, resulting in overall current densities
in the winding that are significantly greater than those of bath-cooled cryostable
magnets. The winding pack is cooled only at its outer surfaces.

Force-Cooled Cryostable To keep cryogen in one phase, which is not generally
the case in bath-cooled magnets, and more importantly to reinforce winding with
conductor itself, the so-called “cable-in-conduit” (CIC) conductor was developed
in the early 1970s, particularly for “large” magnets. Cooling and winding are
well-coupled here. Important heat transfer data are those of forced convective
flow, typical heat transfer data for which are presented in CHAPTER 6.

Force-Cooled Quasi-Stable Here, to make it robust, the winding is not venti-
lated. To achieve better stability than in bath-cooled adiabatic magnets, however,
the coolant is forced through the winding, not through the conductor, but only
in close proximity to the conductor pack. As in the adiabatic winding the bulk of
the conductor is cooled by conduction.

Cryocooled Here the magnet is connected to a cryocooler; cooling within the
winding is primarily by conduction. As discussed in more detail in CHAPTER 6,
LTS magnets operate quasi-stably, while, HTS magnets operate quite stably. As
pointed out in DISCUSSION 4.7 (p. 247), a “cryocirculator” is actually preferable
to a cryocooler for the cooling source of a dry magnet, particularly LTS.

Table 4.1: Cooling Methods for Wet and Dry Superconducting Magnets

Wet Magnets

Cooling Method Cooling-Conductor Coupling Heat Transfer

Bath-cooled, “cryostable” Good; entire conductor Convective

Bath-cooled, “adiabatic” Essentially nonexistent Conductive*

Force-cooled, “cryostable” Good; entire conductor Convective

Force-cooled, “quasi-stable” Close proximity, but indirect Conductive

Dry Magnets

Cryocooled, “quasi-stable” Indirect Conductive

* To the surfaces of the magnet winding pack.
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4.3 Cryogenics Issues—Cooling; Heating; Measurement

For superconducting magnet technology, three basic cryogenics issues are relevant:
1) cooling sources; 2) heat sources; and 3) measurement. These issues are briefly
discussed in this introductory section, with more detailed discussion on specific
topics in PROBLEMS &DISCUSSIONS, as well as in later chapters.

4.3.1 Cooling Sources

As summarized in Table 4.1, a superconducting magnet is cooled to and maintained
at its operating temperature by either a cryogen or a cryocooler. Cryogens are
briefly discussed below. As for the cryocooler only the basic thermodynamics
(PROBLEM 4.1) and performance data (DISCUSSION 4.1) are presented.

4.3.2 Heat Sources

Generally there are five principal sources of heat in the cold environment of a cryo-
stat housing a superconducting magnet: 1) radiation between the cryostat walls;
2) convection in the “evacuated” space between the cryostat walls; 3) conduction
through the magnet support and cryostat structural elements; 4) combination of
conduction and Joule dissipation of current leads; 5) dissipation within the mag-
net. Radiation, convection, and current leads are discussed later in the PROBLEMS

&DISCUSSIONS. Dissipation in magnets is discussed in CHAPTER 7.

4.3.3 Measurement

In the operation of superconducting magnets, cryogenic parameters generally mea-
sured include: 1) temperature; 2) pressure (cryostat vacuum or cryogen pressure);
3) cryogen flow rate (force-cooled wet magnets); and 4) vapor flow rate (current
leads in wet magnets). In this book, only temperature measurement is discussed
briefly in DISCUSSION 4.13 (p. 264).

4.4 Liquid Cryogens—for “Wet” Magnets

Until the early 1990s, only liquid helium (LHe) was suitable for operation of super-
conducting magnets. Liquid nitrogen (LN2) is used to intercept heat in some LHe
cryostats; it also precools LHe-cooled magnets to economize on LHe consumption
as the magnet is cooled down from room temperature to 4.2 K (DISCUSSION 4.2 ).

Six cryogens with atmospheric saturation (boiling) temperatures below 100 K are
oxygen (90.18 K); argon (87.28 K); nitrogen (77.36 K); neon (27.09 K); hydrogen
(20.39 K); and helium (4.22 K). For “wet” HTS magnets and devices, cryogens
called upon, in order of likelihood, are nitrogen, neon, and possibly hydrogen.
For wet LTS magnets and LTS/HTS magnets, e.g., high-field NMR magnets that
consist of both LTS and HTS coils, liquid helium still dominates. Boiling heat
transfer parameters of five liquids—helium, hydrogen, neon, nitrogen, and, for
comparison, water—are briefly discussed below.

TRIVIA 4.1 Of the important events below for helium, which is said to
have been achieved for the first time on February 29?

i) Discovery; ii) Liquefaction; iii) Solidification; iv) Superfluidity.
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Table 4.2: Boiling Heat Transfer Parameters

Liquid Ts [K] h� [J/cm3] qpk [W/cm2] ΔTpk [K] qfm [W/cm2]

Helium 4.22 2.6 ∼1 ∼1 ∼0.3

Hydrogen 20.39 31.3 ∼10 ∼5 ∼0.5

Neon 27.09 104 ∼15 ∼10 ∼1

Nitrogen 77.36 161 ∼25 ∼15 ∼2

Water 373.15 2255 ∼100 ∼30 ∼10

Boiling Heat Transfer Parameters

In a wet superconducting magnet, particularly bath-cooled and cryostable, cooling
relies on nucleate boiling heat transfer. Because in nucleate boiling heat trans-
fer, cooling is achieved by vaporization of liquid, the liquid’s volumetric heat of
vaporization, h�, is a key parameter. It also implies that a plot of boiling heat
transfer flux, gq vs. temperature, shown in Fig. 4.1 with both axes generally in log
scales, looks similar for most liquids. Here the x-axis is the difference between the
surface temperature, T , of the object exposed to liquid and the liquid saturation
temperature, Ts: T −Ts(= ΔT ). Other key parameters of the plot are: qpk, the
peak nucleate boiling heat transfer flux; ΔTpk, the ΔT at which qpk occurs; and
qfm, the minimum film boiling heat flux. Table 4.2 presents values of Ts under
atmospheric pressure and h�, together with typical values of qpk, ΔTpk, and qfm

for helium, hydrogen, neon, nitrogen, and, for comparison, water.

From Table 4.2, we can easily conclude that liquid helium, the only cryogen suit-
able for LTS magnets, is the least effective coolant, absorbing the least energy
density when vaporized. Although an HTS magnet is best operated dry, if it is to
be operated wet, hydrogen, neon, or nitrogen can cover the temperature range for
most HTS magnets. One outcome of fuel cell application in the automotive indus-
try is advancement in liquid hydrogen (LH2) technology, including safety aspects,
that may prove useful for LH2-cooled HTS magnets.

gq

qpk

qfm

ΔT (= T−Ts)
ΔTpk

Fig. 4.1 Boiling heat transfer flux vs. temperature (difference between the
surface temperature and liquid saturation temperature, Ts) for a typical liquid.
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4.5 Solid Cryogens—for “Dry” Magnets

As stated earlier, dry LTS magnets, particularly those with operating currents be-
low ∼1 kA, are likely to gradually replace wet, low-current LTS magnets. With one,
two, or even all three of the HTS currently being developed (i.e., BSCCO, coated
YBCO, and MgB2) expected to become full-fledged “magnet-grade-conductors”
in the near future, dry HTS magnets may not only replace dry LTS magnets but
also find other applications that are possible only with HTS magnets.

4.5.1 “Wet” LTS Magnets vs. “Dry” HTS Magnets—Heat Capacities

One positive aspect of a “wet” LTS magnet often overlooked is the large heat
capacity of the “cold body,” provided by a volume of liquid helium that is an
integral part of every wet LTS magnet. The “large” enthalpy density of liquid he-
lium at 4.2K of 2.6 J/cm3—“large” in comparison with copper’s enthalpy density,
say, from 4.2K to 4.5K of ∼0.0003 J/cm3, ∼10,000 times greater than copper’s—
essentially “anchors” the magnet at its operating temperature most of the time.

Every “dry” magnet also should be provided with a large temperature-anchoring
heat capacity: solid cryogen is an excellent candidate for this purpose. Figure 4.2
presents heat capacity, Cp, vs. T plots of solid cryogens—neon (SNe), nitrogen
(SN2), and argon (SAr)—and metals, lead (Pb), silver (Ag), and copper (Cu).
(Solid hydrogen is excluded because of its low heat capacity, ∼0.2 J/cm3 K at
13.96K.) Lead is used often as a heat capacity enhancer in cryogenic equipment,
copper is the most widely used matrix metal in LTS, and silver is the matrix metal
associated with BSCCO.

Phase transition (35.61 K)
8.2 J/cm3
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Fig. 4.2 Heat capacity, Cp, vs. temperature, T , plots for SNe, SN2 and SAr (solid
lines); and Pb, Ag, and Cu (dashed lines). Note that SN2 has a solid-to-solid phase
transition at 35.61 K, absorbing an energy density of 8.2 J/cm3.
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4.5.2 Solid Cryogens—Neon, Nitrogen, and Argon

Three solid cryogens—neon, nitrogen, and argon—that are likely to be used with
dry HTS magnets are briefly described below. Selected thermodynamic properties
of helium, nitrogen, neon, and argon are given in APPENDIX II.

Although high heat capacity is what makes solid cryogens excellent impregnant
materials, there are two other properties that make solid cryogens, in some appli-
cations, preferable to epoxy: 1) thermal conductivity; and 2) mechanical strength.
Over the temperature range 10–15 K, for example, SN2 is more effective than
epoxy to make the temperature over an HTS winding uniform. Also SN2 makes
the winding more robust than epoxy.

Solid Nitrogen (SN2) Because it remains solid up to 64.2 K and is inexpensive,
lighter (∼1/10 the density of lead), and electrically insulating, solid nitrogen (SN2)
can be an effective heat capacity enhancer for a dry HTS magnet that operates in
the temperature range below 64 K. For example, a BSCCO or YBCO magnet may
operate anywhere in the range 20–60 K. For an MgB2 magnet this could be 10-15 K
or even 20–30 K. As seen in Fig. 4.2 SN2 undergoes a solid-solid phase transition
at 35.61 K, absorbing an additional energy density of 8.2 J/cm3. Because its heat
capacity is ∼1.5 J/cm3 K near this transition temperature, an additional 8.2 J/cm3

energy absorption is equivalent to more than 5 K in temperature rise, a significant
“temperature reserve” for an HTS magnet operating in this range.

Solid Neon (SNe) The heat capacity data of Fig. 4.2 show that solid neon
(SNe), which on a volume basis is ∼200 times more expensive than SN2, would
be the best heat capacity enhancer, among those in the figure, for applications
in the range 4–10 K. However, above ∼10 K, SN2 should suffice for most cases.
Although there are other substances, e.g., Er3Ni, that enhance the system heat
capacity better than solid neon in the temperature range 4–24 K, for magnets, solid
neon, like solid nitrogen and solid argon, is more suitable. The only drawback,
aside from cost, is its relatively (compared with SN2) low melting temperature of
24.6 K, which limits the operating range of SNe systems to below this temperature.

Solid Argon (SAr) Being the most abundant inert gas in the atmosphere,
argon is at least an order of magnitude less expensive than neon, though still more
expensive than nitrogen. Solid argon will likely be used only for dry magnets
operating in the temperature range above 64.2 K (melting point of SN2) and below
83.8 K (melting point of SAr).

In the PROBLEMS &DISCUSSIONS that follow this introductory section, cryogenic
topics relevant to wet and dry magnets are studied; they are followed by a brief
discussion on temperature measurement. In the last section, a rather extensive
treatment is given, by means of PROBLEMS &DISCUSSIONS, on current leads, all
vapor-cooled, except one “dry” lead. This is because “large” magnet systems,
particularly those operating at currents above 1 kA, are still dominated by wet
LTS magnets that require vapor-cooled current leads.

“The perpetual motion? Nonsense! It can never be discovered. It is a dream that may
delude men whose brains are mystified with matter, but not me.”—Owen Warland
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PROBLEM 4.1: Carnot refrigerator

Because superconductivity occurs at very low temperatures, refrigeration is re-
quired to achieve and maintain the cryogenic environment. Using a Carnot refrig-
erator, shown schematically in Fig. 4.3, we study the most efficient thermodynamic
cycle for cooling. The Carnot cycle is composed of two reversible adiabatic (isen-
tropic) and two reversible isothermal processes, in which a working fluid operates
between two thermal reservoirs to produce refrigeration (or work) with the highest
efficiency. Although Carnot efficiency can never be attained in practice, it sets an
upper bound on what is possible.

a) Draw a Carnot cycle on a T vs. S plot. Use the following notation indicated in
Fig. 4.3—Top: the cold reservoir temperature, which is generally equal to the
magnet operating temperature; Scl: the entropy of the mass flow leaving the
cold reservoir; Twm: the warm reservoir temperature; and Swm: the entropy
of the mass flow entering the warm reservoir. Both reservoir temperatures,
Top and Twm, are maintained constant.

b) Show that for an ideal Carnot refrigerator, the work input Wca required to
extract heat Q from the reservoir at Top and release it to the reservoir at
Twm is given by:

Wca = Q

(
Twm

Top
− 1

)
(4.1)

c) Show that for a Carnot refrigerator with Twm = 300 K, Wca/Q � 70 for
Top =4.2 K and Wca/Q � 3 for Top =77 K.

Twm

Swm Qwm

Wca

Scl Q

Top

Fig. 4.3 Carnot refrigerator operating between two heat reservoirs.

* Based on Problem4.1 in the 1st Edition (Plenum, 1994).
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Solution to PROBLEM 4.1

a) The Carnot refrigerator operates between two reservoirs, the lower one at Top

and the higher one at Twm, extracting heat Q at Top and releasing heat Qwm at
Twm. As illustrated in Fig. 4.3, work Wca is needed to run the refrigerator.

The Carnot refrigeration cycle consists of four reversible processes performed on
a working fluid, as shown in the T vs. S plot of Fig. 4.4:

• An isentropic compression of working fluid, starting at State 1 (Swm, Top);

• An isothermal compression, starting at State 2 (Swm, Twm);

• An isentropic expansion, starting at State 3 (Scl, Twm);

• An isothermal expansion, starting at State 4 (Scl, Top) and ending at State 1.

b) From the first law of thermodynamics, we have:
Qwm = Q + Wca = 0 (S1.1)

Wca is the work input to the refrigerator, equal to the area enclosed on the T -
S diagram. (When the directions of Wca, Q, and Qwm in Fig. 4.3 are reversed,
this Carnot cycle represents an ideal working machine and the area enclosed on
the T -S diagram represents the work output.) Because each process is reversible,
Q=Top(Swm−Scl) and Qwm =Twm(Swm−Scl), and thus:

Swm − Scl =
Q

Top
(S1.2a)

Swm − Scl =
Qwm

Twm
(S1.2b)

Equating Eqs. S1.2a and S1.2b, we obtain:
Q

Top
=

Qwm

Twm
(S1.3)

T

Twm (3) (2)

Top (4) (1)

0 S
0 Scl Swm

Fig. 4.4 Temperature vs. entropy plot for the Carnot refrigerator.
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Solution to PROBLEM 4.1 (continuation)

Combining Eqs. S1.1 and S1.3, we have:
Q

Top
=

Q + Wca

Twm
(S1.4)

By solving Eq. S1.4 for Wca, we obtain:

Wca = Q

(
Twm

Top
− 1

)
(4.1)

c) Temperature range 4.2–300 K: With Top = 4.2 K and Twm = 300 K,
Wca/Q � 70 from Eq. 4.1; i.e., for each 1 W of cooling at 4.2 K, the cryocooler
requires 70 W of work input. In real cryocoolers, the “performance” ratio, Wcp/Q,
where Wcp is the compressor work, improves with Q, from ∼10,000 for small units
(Q=1 W) to ∼300 for large units (Q∼100 kW)—see DISCUSSION 4.1 below.

Temperature range 77∼300 K: With Top = 77 K and Twm = 300 K inserted
into Eq. 4.1, we find Wca/Q � 3. In real cryocoolers, the performance ratio ranges
from ∼50 for small (1 W) units to ∼10 for large (100 kW) units.

DISCUSSION 4.1: Cryocooler Performance

Here, we shall briefly examine the cryocooler’s performance in two different ways:
1) cryocoolers rated at one refrigeration power and at different operating tempera-
tures (Q/Top); and 2) a cryocooler rated at one combination of refrigeration power
and operating temperature but operating at different temperatures.

A. Specific Cooling Powers at Specific Temperatures

Figure 4.5 shows Wcp/Q vs. Top plots for cryocoolers of specific cooling powers, Q
in [W], listed in the figure legend [4.19]; the symbol ⊗ is the Carnot cycle.

10,000

1,000

100
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1
0 10 20 30 40 50 60 70 80

1 W

10W

100W

1 kW

100 kW

⊗

⊗

⊗
⊗

Top [K]

Wcp

Q

Fig. 4.5 Wcp/Q vs. Top plots for cryocoolers at specified levels of Q [W] (inset) [4.19].
The symbol ⊗ is for the Carnot cycle at selected Top, computed for Twm =300K.
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DISCUSSION 4.1: “Cryocooler” Performance (continuation)

Fig. 4.6 Performance data of a 2-stage cryocooler.

Thus, 1-W cryocoolers (solid circles) have Wcp/Q ratios, for example, of 7500 for a
unit designed for Top =4.2 K and 600 for a 1-W unit with Top =20 K. As discussed
below, its Wcp/Q ratios at different levels of Top are different from a cryocooler
optimized at specific temperatures of 4.2K and 20K.

B. Operation at Temperatures Other Than the Design Temperature

Figure 4.6 shows performance (1st- and 2nd-stage refrigeration powers) data for a
2-stage cryocooler (Sumitomo Heavy Industries: Model RDK-408D2), as functions
of the 1st-stage and 2nd-stage operating temperatures. Its nominal lowest 2nd-stage
operating temperature is 4.2K at a cooling power (Q) of 1W with a compressor
power (Wcp) of 7.5 kW: Wcp/Q=7500. The data show that the cryocooler’s 2nd-
stage power/temperature rating—for this same compressor power—ranges from
0 W at 3K, i.e., Wcp/Q=∞, to 15W at 20K, i.e., Wcp/Q=500. (Note that Fig. 4.5
indicates a 15-W/20-K unit optimized at 20K has a Wcp/Q ratio of ∼350.) The
nearly horizontal 2nd-stage cooling lines, each at a given 2nd-stage temperature of
up to ∼20 K, indicate that the 2nd-stage cooling power is almost independent of
the 1st-stage temperature over a range from ∼25 K to ∼60 K.

Because this cryocooler runs at the same compressor power of 7.5 kW irrespective
of the 1st- and 2nd-stage loads, to keep the 2nd-stage temperature at a desired level,
the total heat load, at least at the 2nd-stage, must match its cooling power. Thus,
if a 2nd-stage operating temperature of 20 K is desired—at a 1st stage operating
condition of 40W/42 K—and if the actual heat load at the 2nd stage is, for example,
5 W, an additional heat load of 10W must be supplied to the 2nd stage, because,
as seen from Fig. 4.6, the 2nd stage provides a cooling power of 15W at 20K.
This extra heating load of 10 W is generally supplied by a heater, attached to the
2nd-stage coldhead, making this system even less efficient.
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DISCUSSION 4.2: Cooling Modes for Wet Magnets*

Because on a volume basis LHe not only is at least one order of magnitude more
expensive than LN2 but also has only ∼1/60 the latent heat of vaporization, a
LHe-cooled magnet often undergoes a two-step cooldown procedure: 1) with LN2,
cool down the magnet to 77 K; and 2) flush out the LN2 from the cryostat and
immediately start cooling down with LHe. For a large magnet (>1 ton), the liquid
nitrogen in Step 2 may be pumped down to a pressure of 109 torr (0.14 atm) to
bring its temperature, and thus the magnet’s, to 64 K.

A. “Perfect” Cooldown Mode

Under a “perfect” cooldown mode, the magnet is cooled by a series of infinitesimal
perfect energy exchanges with cold helium. At the nth step, the magnet at tem-
perature Tn is cooled to Tn−ΔT by helium of mass ΔMhe, which is vaporized and
heated to Tn. Note that the available enthalpy of helium vapor between Tn and
room temperature is not used in cooling the magnet. If Mhe is the mass of helium
required to cool a magnet of mass Mmg from Ti to 4.2 K, Mhe/Mmg is given by:

Mhe

Mmg
=

∫ Ti

4.2 K

ccu(T ) dT

hhe(T ) − hhe(4.2K, liq.)
(4.2)

where ccu(T ) is the specific heat of copper (representing all the materials in the
winding) and hhe(T ) is the specific enthalpy of helium.

This cooling mode may be approached, but never realized in practice, by having
liquid helium introduced in the cryostat space underneath the magnet at a very
slow rate. However, the cooling rate cannot be arbitrarily slow, because it would
take too long, consuming lots of LHe to cope with heat leakage into the cryostat.

B. “Dunk” Mode

An extreme mode of cooldown is to “dunk” the whole magnet initially at Ti into
a bath of liquid helium boiling at 4.2 K. [Mhe/Mmg]dk to cool down the magnet
from Ti to 4.2 K by this “dunk” mode is given by:[

Mhe

Mmg

]
dk

=
[hcu(Ti) − hcu(4.2 K)]

hL
(4.3)

where hL [kJ/kg] is the specific heat of vaporization of LHe at 4.2 K. hcu(Ti) and
hcu(4.2 K) are the specific enthalpies of copper, respectively, at Ti and 4.2 K.

C. Cooldown with Liquid Neon (LNe) or Liquid Nitrogen (LN2)

With a cryocooled HTS magnet operating at Top≥10 K, sometimes it is required
to initially cool down the magnet from room temperature to Top much faster than
would be possible with the cryocooler alone. We may meet this requirement in
two steps: 1) by deploying liquid neon (LNe) to reach 27 K, if Top <27 K, or LN2

to 77 K, if 27 K < Top < 77 K; and 2) with the cryocooler to Top. The required
amount of LNe or LN2, by either cooling mode, may be computed with Eq. 4.2 or
Eq. 4.3 with the enthalpies of Ne or N2 in the equations.

* Based on Problem4.2 in the 1st Edition (Plenum, 1994).
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DISCUSSION 4.2: Cooling Modes for Wet Magnets (continuation)

Table 4.3 presents liquid cryogen (LHe, LNe, LN2) volumes (in liters) required,
by “Perfect” and “Dunk” modes, to cool a 1000-kg copper block from Ti to 4.2 K
(LHe), 27 K (LNe), or 77 K (LN2). Copper specific enthalpy (hpcu) data are also
included. From Table 4.3 it is clear that for a LHe-cooled magnet, LN2 precooling
results in a great saving of LHe. The large differences in volumetric heats of
vaporization among these cryogens—2.6 [J/cm3] for LHe; 104 [J/cm3] for LNe;
161 [J/cm3] for LN2—are evident in the volume requirements.

Table 4.3: Liquid Cryogens (LHe, LNe, LN2) Required to Cool
a 1000-kg Copper Block from Ti to 4.2K (LHe), 27K LNe), and 77K (LN2)

LHe Required [liter] LNe Required [liter] LN2 Required [liter]

Ti hpcu “Perfect” “Dunk”* “Perfect” “Dunk”* “Perfect” “Dunk”*

[K] [kJ/kg] (Eq. 4.2) (Eq. 4.3) (Eq. 4.2)† (Eq. 4.3)† (Eq. 4.2)† (Eq. 4.3)†
300 79.6 800 30,000 290 770 300 460

280 72.0 760 28,000 270 700 270 420

240 56.9 670 22,000 230 550 230 320

200 42.4 570 16,000 190 410 170 230

180 35.3 520 14,000 170 340 150 190

160 28.5 460 11,000 140 280 120 140

140 22.1 390 8,500 120 210 90 100

120 16.1 320 6,200 90 160 60 66

100 10.6 240 4,100 66 100 31 33

90 8.22 200 3,200 53 78 17 17

77 5.90 150 2,100 37 51 0 0

70 4.13 130 1,600 29 39 — —

60 2.58 90 1,000 19 24 — —

50 1.40 57 550 11 12 — —

40 0.61 31 240 4.4 4.8 — —

30 0.196 13 77 0.7 0.7 — —

27 0.124 9.0 50 0 0 — —

20 0.034 3.4 13 — — — —

15 0.0107 1.3 4.0 — — — —

10 0.0024 0.4 0.9 — — — —

* Rounded to two significant figures.

† Eqs. 4.2 and 4.3 applied to neon for Ti between 27K and 300K; and to nitrogen for Ti

between 77K and 300K.

Answer to TRIVIA 4.1 iii). In 1928 (a leap year), by a colleague of Kamerlingh Onnes,
the Dutch physicist Willem Keesom (1876–1956), who in 1927 also discovered the phe-
nomenon of superfluidity in liquid helium. The element was first observed in 1868 by
the French astronomer Pierre Jules César Janssen (1824–1907) as a spectral line in the
sun (hēlios) during a total eclipse in India. The Scottish chemist Sir William Ramsay
(1852–1916) in 1895 discovered the element on earth in America from samples of gas
obtained from a uranium mineral.
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DISCUSSION 4.3: “Cryocooling” HTS Magnet

In this discussion we study a dry HTS magnet as it is “cryocooled” (cooled by a
cryocooler) from an initial temperature Ti to its operating temperature Top over a
total cooldown period of τcn. The cooling power of the 2nd stage of this cryocooler,
Qr(T ), vs. its temperature, T , is shown in Fig. 4.7. Note that the cooling power
of this cryocooler is rated 10 W at 10 K. (Its 1st stage is used to cool the radiation
shields that surround the magnet.)

To simplify the discussion, let us consider an adiabatic control volume consisting
only of the magnet and the cryocooler with no additional heat input to the system
during the cooldown. Also let us assume that the magnet mass is represented
by copper mass Mcu. A plot of copper heat capacity, Ccu(T ) [kJ/m3], is given in
APPENDIX III, based on a constant copper density, �cu, of 8960 kg/m3. Assume
furthermore that the cooling rate is sufficiently slow to make the copper (magnet)
temperature, Tcu, uniform over the entire winding and equal to the cryocooler
temperature, T , at all times during the cooldown, i.e., Tcu =T .

Applying the 1st law of thermodynamics on the control volume containing the
cryocooler and the copper mass Mcu, and noting Tcu =T , we have:

−Qr(T ) =
(

Mcu

�cu

)
Ccu(T )

dT

dt
(4.4)

The minus sign for Qr(T ) in Eq. 4.4 signifies that the cryocooler is providing
refrigeration: the magnet (copper mass) is cooling, i.e., dT/dt < 0.
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Fig. 4.7 Qr(T ) curve for the magnet cryocooler.
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DISCUSSION 4.3: “Cryocooling” an HTS Magnet (continuation)

Table 4.4: Qr(T ), Ccu(T ), and K(T )≡Ccu(T )/Qr(T )

T [K] Qr(T ) [W] Ccu(T ) [J/m3 K] K(T ) [s/m3 K]

300 100 3.44×106 3.44×104

250 87 3.32×106 3.82×104

200 75 3.17×106 4.23×104

150 63 2.87×106 4.56×104

100 50 2.26×106 4.52×104

77 40 1.75×106 4.38×104

50 28 0.88×106 3.14×104

30 19 0.24×106 1.26×104

20 15 0.69×105 0.46×104

10 10 0.08×105 0.08×104

Table 4.4 lists Qr(T ), Ccu(T ), and K(T )≡Ccu(T )/Qr(T ) at selected temperatures.
We may integrate Eq. 4.4 to solve for τcn for a set of Ti, Top, Qr(T ), and Mcu:

τcn =
Mcu

�cu

∫ Ti

Top

Ccu(T )
Qr(T )

dT =
Mcu

�cu

∫ Ti

Top

K(T ) dT (4.5a)

Mcu =
�cuτcn∫ Ti

Top

K(T ) dT

(4.5b)

In some applications, τcn is the primary design specification, which, as may be
seen from Eq. 4.5b, limits the copper mass (here representing the magnet mass),
M̃cu, to be cooled within τcn. Note that for a given combination of Ti and Top,
M̃cu is proportional to τcn. Table 4.5 lists M̃cu for combinations of τcn, Ti, and
Top, with Qr(T ) given by Fig. 4.7. Thus, if a magnet is to be cooled down from
300 K to 30 K in a time period of 4 h, for example, its mass is limited to 11.6 kg.

The results shown in Table 4.5 clearly indicate that for a given τcn we may dra-
matically increase M̃cu by first cooling down the mass to 77 K. Table 4.3 may be
used to estimate the amount of LN2 required to accomplish this.

Table 4.5: M̃cu for τcn, Ti, Top, with Qr(T ) given by Fig. 4.7

Ti [K] Top [K] M̃cu [kg]

τcn [hour/day]→ 1 2 4 12 1 2 10 20

300 77 3.4 6.8 13.6 41 82 164 820 1640*

50 3.0 6.1 12.1 36 73 147 735 1470*

30 2.9 5.8 11.6 35 70 140 700 1400*

10 2.9 5.7 11.5 34 69 139 695 1390*

77 50 29 58 118 352 704 1410* 7040* 14100*

30 20 40 80 242 484 968 4840* 9680*

10 19 38 76 227 453 906 4530* 9060*

* Up to 3 significant figures.
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DISCUSSION 4.4: Superfluidity

Figure 4.8 shows the phase diagram of ordinary helium (He4), in which two forms
of liquid are present, He I and He II [4.20]. Because of its unique properties of
extremely high effective thermal conductivity (k) and low viscosity (ν), He II is
known as superfluid helium; superfluidity has been compared to superconductiv-
ity. As may be inferred from the phase diagram, ordinary liquid helium (He I)
boiling at 4.22K can readily be transformed to He II simply by pumping on the
liquid. When the saturation pressure of 5 kPa (37.8 torr) is reached, the liquid, at
2.18K, becomes “superfluid.” The temperature 2.18K is known as the λ-point and
designated by Tλ. According to the “two-fluid” model, the fraction of superfluid,
zero at Tλ, increases monotonically as temperature is lowered. The extraordinary
thermal conductivity and viscosity of superfluid helium may be appreciated by
comparing these properties of He II with those of common materials (Table 4.6).

A. Transport Properties

Because of its extremely high thermal conductivity superfluid helium is some-
times used as a coolant for superconducting magnets, generally operated at ∼1.8K
(<Tλ). (Although we use the classical definition of thermal conductivity here, i.e.,
heat conduction ∝ temperature difference, in He II the smaller the temperature
difference, the greater becomes the “equivalent” conductivity, which also varies
with heat flux.) The high thermal conductivity of He II does not allow a tem-
perature gradient in the liquid sufficient for creation of vapor. Thus, unlike the
winding of a 4.2-K He I cooled cryostable magnet, the “bubbleless” winding of
a 1.8-K He II cooled cryostable magnet does not require ventilation. However,
this does not mean that He II can transport unlimited heat fluxes through narrow
channels. Analogous to the critical current density in superconductors, He II has
a critical heat flux.
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Fig. 4.8 Phase diagram of ordinary helium (He4) [4.20].



234 CHAPTER 4—PROBLEMS & DISCUSSIONS

DISCUSSION 4.4: Superfluidity (continuation)

Table 4.6: Thermal Conductivities and Viscosities of
He II, He I, Copper, Water, Air

Material k [W/mK] ν [μPa s]

He II ∼100,000* 0.01∼0.1

He I (4.2K, liq.) 0.02 ∼3

Copper (4.2K) ∼400 —

Water (293K) ∼1 ∼1,000

Air (293K) ∼0.05 ∼20

* “Equivalent” k at a specified temperature difference and heat flux.

Bon Mardion, Claudet, and Seyfert studied heat flux in He II through narrow
channels [4.21]. Figure 4.9 presents their results in the form of a parameter X(T )
defined by them; it is given by:

X(Tcl) − X(Twm) = q3.4L (4.6a)

where Tcl [K] is the cold-end temperature and Twm [K] is the warm-end tempera-
ture. q [W/cm2] is the heat flux through a channel L [cm] long between the two
ends, one end at Tcl and the other at Twm. Equation 4.6a is applicable for the
case with no additional heating introduced to the liquid from the channel itself.
Under normal operating conditions, Tcl = Tb, where Tb is the bath temperature;
Twm is the liquid temperature adjacent to a heated region within the winding,
which cannot exceed Tλ. When Twm = Tλ, from Fig. 4.9, X(Twm) = 0, and we
can simplify Eq. 4.6a to:

X(Tb) = q3.4
c L (4.6b)
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Fig. 4.9 Bon Mardion-Claudet-Seyfert plot of X(T ) for a channel of length
L [cm] filled with 1-atm, superfluid helium conducting heat flux q. [4.21].
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For Twm > Tλ the heat flux from the surface of the heated region will be limited
by qpk which, for He I as given in Table 4.2, is ∼1 W/cm2. The limit implied by
Eq. 4.6b will exceed 1 W/cm2 in magnets whose characteristic size is less than 1 m
as long as Tb < 2 K. In designing channel configuration and dimensions, we must
make sure that the operating heat flux, qop, through the channel does not exceed
qc given by Eq. 4.6b.

Heated Channel

When heating is uniformly introduced over the entire length L of the channel,
rather than at the hot end as discussed above, Eq. 4.6b is modified [4.22]:

X(Tb) =
q3.4
c

4.4
L (4.6c)

B. Heat Transfer—Kapitza Resistance

Heat transfer between a metal or other thermally conductive material and He II
is limited by Kapitza resistance. Heat transfer flux, qk [W/cm2], between a metal
whose surface is at Tcd [K] and liquid helium at Tb [K] is given by:

qk = ak(Tnk

cd − Tnk

b ) (4.7)

Table 4.7 gives typical values of ak and nk.

Table 4.7: Approximate Values for Kapitza Resistance*

Metal (surface) ak [W/cm2 Knk ] nk

Aluminum (polished) 0.05 3.4

Copper (polished) 0.02 4.0

Copper† (polished) 0.02 3.8

Copper (as-received) 0.05 2.8

Copper (solder-coated) 0.08 3.4

Copper (varnish-coated) 0.07 2.1

Silver (polished) 0.06 3.0

* Based on values given in references [4.23, 4.24].

† Annealed.

TRIVIA 4.2 Of the four contemporary chemists (born 1870–1881) below,
who first produced neon lights?

i) Claude; ii) Fischer; iii) Hahn; iv) Langmuir.
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DISCUSSION 4.5: Subcooled 1.8-K Cryostat*

Here we discuss a cryostat for a superconducting magnet operated in a bath of
subcooled superfluid helium at 1 atm and 1.8 K. Performance of a magnet improves
significantly as the operating temperature is decreased from 4.2 K to 1.8 K, partic-
ularly in bath-cooled NbTi magnets [4.25], because of significant improvements in:
1) critical current density; and 2) heat transfer between conductor and coolant.

Figure 4.10 shows a schematic of the subcooled 1.8-K cryostat for the Hybrid III
magnet system [4.26]. A pump, located outside the cryostat, drives the helium flow,
at a mass flow rate of ṁh, required by the 1.8-K evaporator (“ice cube”) housed
in the magnet vessel. The 1.8-K/1-atm magnet vessel is connected hydraulically
to the 4.2-K/1-atm reservoir located above through a narrow channel sufficient
both to keep the magnet vessel at 1 atm (subcooled) and to minimize conduction
heat input by helium from the reservoir to the magnet vessel. The current leads
pass through the 4.2-K reservoir and then enter the magnet vessel through current
links connecting the two liquid vessels. Components such as structural elements
not directly related to the refrigeration cycle are not included in Fig. 4.10.

ṁh

4 5
Pump

Vapor-cooled current leads

Poppet valve

Relief valve Transfer tube

Filter
Reservoir (4.2K)

Pumping
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Feed
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J-T heat
exchanger

Vacuum

boundary
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2 3

1

vertical motion of tube

Bottom fill tube

Fig. 4.10 Schematic of a subcooled 1.8-K cryostat [4.26].

* Based on Problem4.6 in the 1st Edition (Plenum, 1994).
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DISCUSSION 4.5: Subcooled 1.8-K Cryostat (continuation)

From Point 1, just outside the reservoir, filtered 4.2-K/1-atm (760 torr) liquid he-
lium is cooled by the J-T heat exchanger and then flows through the J-T valves.
The valves reduce the helium pressure isenthalpically from 760 torr to 12.3 torr—
more about Joule-Thomson (J-T) process in DISCUSSION 4.6—and creates a mix-
ture of liquid and vapor, both at 1.8 K and 12.3 torr. The 1.8-K liquid enters the
evaporator and cools the 1-atm liquid in the magnet vessel, as would an ice cube
in a glassful of water. On its return path the 1.8-K vapor leaves the evaporator
and cools the incoming 4.2-K liquid in the J-T heat exchanger.

Upon leaving the pump, the helium gas is purified and stored in a pressure tank.
The exhaust helium gas from the 4.2-K reservoir is funneled through the vapor-
cooled current leads, and it too is stored in the tank. Helium from the tank is
liquefied and transferred into a 500-liter storage dewar, from which it is contin-
uously transferred to the 4.2-K reservoir to maintain the reservoir’s liquid level.
This 1.8-K cryostat thus is a closed system.

Under normal operating conditions, the 1.8-K/12.3-torr superfluid helium in the
evaporator is kept at a nearly constant level. The total combined heat load on the
magnet vessel, Q1.8, is thus matched by refrigeration produced by the evaporator.
Q1.8 enters into the evaporator from the vessel through the evaporator wall.

A. Refrigeration Power at 1.8 K

Refrigeration power at 1.8 K, Q1.8, provided by the evaporator may be derived from
the first law of thermodynamics applied to the control volume (c.v.) enclosing the
evaporator, schematically shown in Fig. 4.11. In the figure, ṁh is the mass flow
rate entering and leaving the control volume. Under the steady-state condition,
the difference between the total heat output, Qout and total input, Qin, to the
evaporator, is equal to Q1.8. Thus:

Qout − Qin = Q1.8 (4.8)

Qin Qout

ṁh ṁh

• 2 • 3

Q1.8

J-T valve −−−−−→
c.v.

Fig. 4.11 Heat balance for the evaporator. See Fig. 4.10
for locations of Points 2 and 3 in the cryostat.



238 CHAPTER 4—PROBLEMS & DISCUSSIONS

DISCUSSION 4.5: Subcooled 1.8-K Cryostat (continuation)

Note that Q1.8 is also equal to the refrigeration load to the evaporator. Q1.8

consists principally of:

• Dissipation within the magnet—splice losses and AC losses during field change;
these losses are discussed in CHAPTER 7.

• Heat input to the magnet vessel—conduction: through structural supports and
by current leads between the 4.2-K reservoir and the 1.8-K vessel; superfluid
conduction through the pressure communication channel; radiation as well as
residual convection on the vessel surfaces.

Heat output, Qout, from the control volume is given by Qout = ṁhh3, where h3

is the helium (vapor) enthalpy at Point 3. Similarly, Qin =ṁhh2, where h2 is the
helium (liquid) enthalpy at Point 2. Solving Eq. 4.8 for Q1.8, we obtain:

Q1.8 = ṁh(h3 − h2) (4.9)

Point 1 is at 4.2 K, while Point 3 is at 1.8 K. To maximize Q1.8 at a given helium flow
rate, as seen from Eq. 4.9, (h3 − h2) must be maximized: the helium temperature
at Point 2 must be as close to 1.8 K as possible. The J-T heat exchanger cools
down the incoming 4.2-K/760-torr liquid with the outgoing 1.8-K/12.3-torr vapor.

Illustration We may determine ṁh [g/s] to make Q1.8 = 20 W for the follow-
ing parameters: P2 = 1 atm; T2 = 3.0 K; P3 = 12.3 torr and T3 = 1.8 K. From
APPENDIX II, h3(1.8 K, 12.3 torr; vapor)=24.02 J/g and h2(3.0 K, 1 atm; liquid)=
5.64 J/g, and solving for Q1.8 (Eq. 4.9), we obtain:

Q1.8 = ṁh(24.02 J/g − 5.64 J/g) = 20 W

Solving the above equation for ṁh, we obtain ṁh =1.09 g/s, which corresponds to
a supply rate of liquid helium (at 4.2 K, 1 atm) of 31 liter/h. Note that in addition
to this 31 liter/h liquid replenishment rate, it is necessary to transfer liquid into
the reservoir to remove the heat from current leads and other sources.

B. Refrigeration Pumping Power Requirement

Assuming the pumping process to be isentropic and helium vapor to be a per-
fect gas, we may compute the minimum input power (between Points 4 and 5 in
Fig. 4.10) required to pump helium at a mass flow rate ṁh = 1 g/s from Point 4
(12.3 torr/300 K) to Point 5 (760 torr). For an isentropic pump, the pump power
requirement, Ps, is given by:

Ps = ṁh

(
γ

γ − 1

)
(P4v4)

[(
P5

P4

)γ−1
γ

− 1

]
(4.10)

γ =Cp/Cv for a perfect gas is 5/3; v4 is the specific volume at Point 4, which for
helium at 300 K and 12.3 torr is 371 m3/kg. With P4 = 12.3 torr = 1.64×103 Pa,
P5/P4 = 61.8, and ṁh = 0.001 kg/s (1 g/s), we obtain: Ps = 6400 W (or ∼9 hp,
horsepower). Note that this is for an ideal case; the power requirement for a real
pump is roughly 20 kW.
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Line Pressure Drop It is important to keep the pressure drop between Points 3
and 4 much less than 12.3 torr, the operating pressure at Point 3. Note that the
lower P4 gets—below 12.3 torr to keep P3 =12.3 torr—the more Ps is needed. For
the Hybrid III system, the plumbing outside the cryostat consists of a pipe of 15-
cm i.d. and 13-m length, having five 90◦ bends and one shut-off valve. It handles
a mass flow rate up to ∼2 g/s with a total pressure drop less than 1 torr.

Also, precautions should be taken not to introduce contaminants into the evapo-
rator. Such contaminants tend to freeze out at the narrowest passage areas, e.g.,
J-T valves, and block the line. In Hybrid III each J-T valve has a heater attached
to melt away frozen contaminants.

C. Heat Leakage Through Hydraulic Communication

For the Hybrid III cryostat, the hydraulic communication has an effective area of
2.6 mm2 to keep the magnet vessel at 1 atm. Its effective length, L, connecting
the helium in the reservoir and that in the magnet vessel is 10 cm. Using the Bon
Mardion-Claudet-Seyfert plot of X(T ) given in Fig. 4.9, and assuming the helium
temperature at the bottom of the reservoir to be Tλ and at the magnet vessel to
be 1.8 K, we may compute the heat input into the 1.8-K magnet vessel from the
4.2-K reservoir, conducted by the superfluid helium in the channel.

For narrow channels filled with 1-atm superfluid helium, as discussed in 4.4 A, we
may apply Eq. 4.6a which relates X(T ) for two end temperatures, Twm (warm)
and Tcl (cold), to conduction heat flux q [W/cm2], and channel length L [cm]. With
Twm = Tλ, Tcl = 1.8 K, and L = 10 cm, we have, from Fig. 4.9: X(Tλ) = 0, and
X(1.8)=360 (in appropriate units). Inserting these values into Eq. 4.6a, we obtain:
360 = q3.410, which results in: q = 2.87 W/cm2. With the channel cross sectional
area of 2.6 mm2, total conduction heat input to the 1.8-K magnet vessel through
the hydraulic communication channel becomes ∼75 mW.

Carbon resistors are placed in the bottom area of the reservoir to measure liquid
temperature in that area. Although measurement indicated that the liquid tem-
perature in this particular reservoir bottom was ∼3 K, generally in this type of
1.8-K cryostat, the liquid at the reservoir bottom would be closer to Tλ(= 2.18 K).
Because 2.6 mm2 is an insufficient flow area to limit the overpressure in the 1.8-K
vessel in the event of a magnet quench, the cryostat has a “poppet” valve of 40-
mm2 cross section. Under normal conditions the poppet valve is kept shut by a
spring; the valve is opened when pressure builds up in the magnet vessel.

D. Replenishment of 4.2-K Liquid

One of the final steps in the “cool-down mode” of the Hybrid III magnet involves
cooling the liquid helium in the magnet vessel from 4.2 K to 1.8 K. The cooling
is provided by the evaporator, which is continuously fed with liquid, initially at
4.2 K in the reservoir and cooled by the J-T heat exchanger before entering the
evaporator, and then pumped. For a liquid volume in the magnet vessel of 250
liters, we may estimate the total volume of “replenishment” liquid for the magnet
vessel as the liquid is cooled from 4.2 K to 1.8 K.
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The liquid densities at 1 atm are 125 kg/m3 at 4.2 K and 147 kg/m3 at 1.8 K. Thus
for Hybrid III, the 250-liter vessel starts with about 31 kg of liquid at 4.2 K and
ends up with about 37 kg of liquid at 1.8 K. That is, about 6 kg of liquid must be
supplied to the vessel. In terms of volume at 4.2 K, this translates to ∼50 liters.

Although the cross section of 2.6 mm2 provided by the hydraulic communication
channel is adequate to transport this additional mass of liquid over a cooldown
period of ∼2 hr, the poppet valve with a total flow passage area of 40 mm2 is kept
open until the liquid in the vessel reaches Tλ.

E. Current Leads Between 4.2-K Reservoir and 1.8-K Vessel

The current leads must reach from the bottom of the reservoir to the terminals of
the magnet in the 1.8-K vessel. It is customary to use a composite superconductor
for current leads. In this application the cross section occupied by normal metal
(copper) must be small enough to minimize heat conduction by the metal from the
reservoir to the vessel but sufficient to stabilize the composite superconductor. The
“dry” lead criterion, to be studied in DISCUSSION 4.15 (p. 274), is applicable here,
because between the two ends the lead is essentially insulated—in the Hybrid III
cryostat, the vertical gap separating the reservoir and 1.8-K vessel is in vacuum.

We may show that the peak steady-state temperature in the normal-state lead
carrying It occurs at the lead’s reservoir end. By choosing the “current-sharing
temperature” (Tcs) of composite superconductor in the lead to be well above Tλ,
the helium temperature at the reservoir bottom, we may ensure stable operation
of the current leads—see CHAPTER 6 for discussion of Tcs.

An expression for the steady-state temperature profile along the normal-state lead
is derived from Eq. 4.52 given in DISCUSSION 4.15:

T (z) = − ρ̃I2
t

2A2k̃
z2 +

[
(T� − T0)

�
+

ρ̃I2
t �

2A2k̃

]
z + T0 (4.11)

In Eq. 4.11, the composite’s z=0 is at the 1.8-K vessel and z=� is at the reservoir.
ρ̃ and k̃ are, respectively, the composite normal metal’s resistivity and thermal
conductivity. A and � are the lead’s cross sectional area and length separating
the cold and warm ends, respectively, at T0 (1.8 K) and T� (� Tλ). According to
DISCUSSION 4.15, a dry lead rated at It =I◦ satisfies the following condition:(

I◦�

A

)
dr

=

√
2k̃(T� − T0)

ρ̃
(4.12)

Combining the above two equations and defining a new variable ξ ≡ z/�, we have:

T (ξ) = −(T� − T0)ξ2 + 2(T� − T0)ξ + T0 (4.13)

At ξ =1, where dT/dξ =0, the temperature peak occurs. Since this location is at
ξ=1, it implies that the peak temperature is T� � Tλ. That is, even if the lead is
driven normal, if the lead satisfies the criterion given by Eq. 4.12, the conduction
cooling is sufficient to limit the peak lead temperature to Tλ, no greater than the
warm-end temperature of the lead when it is superconducting.
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DISCUSSION 4.6: Joule-Thomson Process

In the Joule-Thomson (J-T) process, a gas expands adiabatically with no work
involved (isenthalpic) through a restricted passage, e.g., a J-T (needle) valve to a
lower pressure, changing its temperature in the process. Whether the change is
positive, negative, or zero depends on the gas properties, the starting temperature,
and initial and final pressures. For helium at initial and final pressures of 10 atm
and 1 atm, respectively, liquefaction results if the initial temperature is below
∼7.5 K. Because the process is irreversible, liquefaction by the J-T process always
results in a smaller portion of liquid produced than if the gas had been expanded
isentropically. For example, at a starting temperature of 6 K and a pressure of
10 atm—typical values for liquefiers—the following isenthalpic relationship may
be used to compute the fraction of helium liquefied (x�) at 4.2 K and 1 atm:

hg(6K, 10 atm) = x�h�(4.2K, 1 atm) + (1 − x�)hg(4.2K, 1 atm) (4.14)

From Eq. 4.14 we find x� = 0.47. If the same gas is expanded isentropically, an
entropy relationship similar to the enthalpy relationship of Eq. 4.14 gives x� = 0.85.
Despite this reduction in liquid production efficiency, the J-T expansion, because
of its mechanical simplicity, is used in the final stage of many helium liquefiers.

James Prescott Joule (1818–1889)

—Passage from Isaac Asimov’s Asimov’s Biographical Encyclopedia of Science and
Technology [4.27]

Joule was son of a wealthy brewer, which meant he had the means to devote him-
self to a life of research . . . Joule was almost a fanatic on the subject of measure-
ment, and even on his honeymoon he took time out to devise a special thermometer
to measure the temperature of the water at the top and bottom of a scenic waterfall
his wife and he were to visit . . . He went on to devote a decade to measuring the
heat produced by every process he could think of . . . Even his honeymoon measure-
ment of the waterfall temperature was based on the thought that the energy of falling
water should be converted to heat once it was stopped so that the temperature at the
bottom of the waterfall should be higher than that at the top . . .

In all those cases he calculated the amount of work that had entered the system
and the amount of heat that came out and he found, as Rumford had maintained
fully half a century before, that the two were closely related. A particular quantity of
work always produced a particular quantity of heat. In fact, 41,800,000 ergs of work
produced one calorie of heat. This is called the “mechanical equivalent of heat.”

His original statement of this discovery was rejected by various learned journals
and he was forced to present it at a public lecture in Manchester and then get his
speech published in full by a reluctant Manchester newspaper. A few months later
he finally managed to present it before an unsympathetic scientific gathering and
his presentation would have passed almost unnoticed but for a twenty-three-old in
the audience. His name was William Thomson, and he was later to be known as
Lord Kelvin. His comments on Joule’s work were shrewd enough and logical enough
to rouse interest and even enthusiasm, and Joule’s reputation was made.

* Although for many years until his death a faculty member of Boston University, the biochemist
Isaac Asimov (1920–1992) devoted his life writing for the general public on virtually every
subject conceivable. In the sci-fi genre his books include the Galactic Empire series (Pebble in
the Sky, 1950) and the Robot series (I, Robot, 1950).
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PROBLEM 4.2: Cryocooler-based “mini” helium liquefier

With proliferation of cryocoolers, as stated at the outset of this chapter, most “DC”
superconducting magnets, LTS and HTS, will likely be operated “dry” (cryogen-
free) with cooling provided by a cryocooler. In some applications, unlike most
cryocooled magnets in which the cryocooler/magnet assembly is housed within
the same cryostat, the magnet and its cryocooler are housed in separate cryostats.
A schematic drawing of one such system is shown in Fig. 4.12 for a slow “magic
angle spinning” (MAS) NMR magnet. In such a magnet, its principal field is
directed 54.73◦ from the magnet axis (see PROBLEM 2.5) as the magnet is spun
about its axis. As indicated in Fig. 4.12, the primary cooling source for the magnet
may be provided by a stationary cryocooler placed ∼1 m away from the magnet.
Each numbered component of the system is given in the figure caption.

Stated briefly, the system permits the magnet/cryostat assembly (component 2
in Fig. 4.12) to be spun as a flow of liquid helium is continuously transferred to
the magnet cryostat, through the spinning shaft, at a mass flow rate of ṁhe from
a “mini” helium liquefier, whose primary source of refrigeration is a cryocooler
housed in the second cryostat (14). The thermodynamics of this cryocooler-based
mini liquefier is the focus of this problem.

1

2

3

4
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7

6

8
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11 10

12
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14 ∼1.5m

75-mmφ
RT bore

Fig. 4.12 Schematic of a superconducting magnet system that incorporates
a cryocooler-based “mini” helium liquefier, here, as applied to a slow MAS
(magic angle spinning) NMR system, in which a persistent-mode superconduct-
ing magnet that generates a magnetic field directed 54.73◦ (magic angle) from
the axis of rotation is cooled by liquid helium, continuously transferred, from
the cryocooled-based mini liquefier, to the rotating magnet/cryostat assembly.
1: earth field compensation coils (stationary); 2: magnet/cryostat assembly;
3: driving motor; 4: bearing(s); 5: shaft; 6: swivel joint(s); 7: slip ring; 8:
supporting triple; 9: LHe transfer line; 10: He recovery line; 11: warm helium
return; 12: compressor; 13: cold trap; 14: cryocooled-based mini liquefier.
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PROBLEM 4.2: Cryocooler-based “mini” helium liquefier (continuation)

a

a′ j j′

Heat Exchanger 1

b i′

Q1
c i

Heat Exchanger 2
d hQ2

e

J-T Valve
f g

1st Stage

2nd Stage

Cryocooler

Fig. 4.13 Schematic drawing of a cryocooler-based mini helium liquefier.

Figure 4.13 shows schematic details of the mini liquefier, comprising the warm-to-
cold stream (mass flow rate ṁhe; pressure 10 atm) and cold-to-warm helium vapor
stream (ṁv; 1 atm), and the 1st and 2nd stages of a cryocooler as cooling sources.
The processes are assumed “ideal,” e.g., no pressure drop; perfect heat exchange
with no temperature difference between the two streams.

Warm-to-Cold Helium Stream—Indicated by solid arrows in Fig. 4.13

Point a. Mini Liquefier entrance, from Cold trap (13 in Fig. 4.12): Ta = 295 K;
Pa =10 atm (1 MPa).

Point a′. Heat Exchanger 1 entrance: thermodynamically identical to Point a.

Point b. Heat Exchanger 1 exit (1st Stage entrance): Tb.

Point c. Heat Exchanger 2 entrance (1st Stage exit): Tc. Between Points b and
c, the 1st Stage extracts Q1 from the helium stream.

Point d. Heat Exchanger 2 exit (2nd Stage entrance): Td.

Point e. 2nd Stage exit (J-T Valve entrance): Te. Between Points d and e, the 2nd

Stage extracts Q2 from the helium stream.

Point f. J-T Valve exit: Tf = 4.22 K; Pf = 1 atm; ṁv; ṁ�p (liquefaction mass
rate). LHe to Point g, indicated by the dotted arrow.

Cold-to-Warm Helium Stream—Indicated by dashed arrows in Fig. 4.13

Point g. To LHe transfer line (9 in Fig. 4.12): Tg =4.22 K; Pg =1 atm; ṁ�.

Point h. Heat Exchanger 2 entrance: Th = 4.22 K; Ph = 1 atm; ṁv and ṁ�r =
ṁ�p−ṁ� (LHe return mass rate).

Point i. Heat Exchanger 2 exit: Ti =Tc; Pi =1 atm.

Point i′. Heat Exchanger 1 entrance: thermodynamically identical to Point i.

Point j. Heat Exchanger 1 exit: Tj =295 K; Pj =1 atm.

Point j′. To warm helium exit line (10 in Fig. 4.12).
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PROBLEM 4.2: Cryocooler-based “mini” helium liquefier (continuation)

a) Show that to achieve a helium liquefaction rate, ṁ�p�0.202 g/s with ṁhe =
1.0 g/s through the J-T process, Te =7 K (and Pe =10 atm) at Point e.

b) For Td =8 K (and Pd =10 atm), compute Q2 (at 7 K), the 2nd stage refriger-
ation power of the cryocooler. Note that Te =7 K (and Pe =10 atm).

c) For a cryocooler with Q2 (at 7 K), what would its Q2 at 4.22 K be?

d) For Tb = 46 K and Tc = 30 K (and Pb = Pc = 10 atm), compute Q1 (at 30 K),
the 1st stage refrigeration power.

e) Assuming that Heat Exchanger 2 is “ideal,” i.e., no heat loss to its envi-
ronment and the heat transfer between the warm-to-cold stream (of ṁhe =
1.0 g/s) and the cold-to-warm stream (of ṁv and ṁ�r) is perfect, show that
ṁ�r =0.158 g/s and hence ṁ� =0.044 g/s. Assume Tc =Td =30 K.

f) Similarly, show that the perfect heat transfer in Heat Exchanger 1 between
the two streams is consistent with ṁ�r = 0.158 g/s. Assume that Tb = 46K,
Ti′ =30 K, and Ta′ =Tj =295 K.

g) Applying Eq. 4.10, compute the isentropic (constant entropy) power require-
ment, Ps, of Compressor (12, Fig. 4.12) to boost the warm helium flow of
ṁhe =1.0 g/s from Pj =1 atm to Pa =10 atm.

Sir James Dewar (1842–1923)

— Passage from Isaac Asimov’s Asimov’s Biographical Encyclopedia of Science and
Technology [4.27]

His interest (in the field of extremely low temperatures) was kindled in the
1870s, when Cailletet and Pictet simultaneously and independently announced the
liquefaction of gasses such as oxygen, nitrogen, and carbon monoxide and attained
temperatures less than eighty degrees above the absolute zero.

In 1892 he constructed double-walled flasks with a vacuum between the walls.
The vacuum would not transmit heat by conduction or by the convection of air
currents. It would do so only by radiation. By silvering the walls so that radiation
heat would be reflected rather than absorbed, Dewar cut down on that variety of heat
transmission as well. . . .Such flasks are called Dewar flasks and have been adapted
to everyday uses, for keeping hot coffee hot during trips, for instance, or keeping
cold milk cold (since heat transfer is barred in either direction). The home variety
of the Dewar flask is better known as a Thermos bottle.

Dewar then began to experiment with hydrogen, which still resisted liquefaction.
He made use of the Joule-Thomson effect (see DISCUSSION 4.6), first discovered by
Joule and Kelvin to produce low temperatures, as Cailletet and Pictet had done, but
used the system of regeneration that Linde had introduced. He built a large-scale
machine in which this process could be carried out more extensively and efficiently
than ever before. . . .hydrogen was liquefied in 1898 and solidified in 1899. In this
way Dewar reached a temperature of only fourteen degrees above absolute zero.

At this temperature, all substances were reduced to a solid state, except for a
new gas, helium, that had just been discovered (on earth) by Ramsay and that, at
that temperature, was not even liquefied. It resisted all efforts at liquefaction for
another decade, when Kamerlingh-Onnes finally succeeded (in 1908).
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Solution to PROBLEM 4.2

a) Because in a J-T process, enthalpy remains constant, the following enthalpy
equality relationship holds:

hhe(7 K,10 atm) = x�h�(4.22 K,1 atm) + (1 − x�)hv(4.22 K,1 atm) (S2.1)

where hhe(7 K,10 atm) = 26.00 J/g is helium enthalpy at 7 K and 10 atm; x� is
the liquid mass fraction at 4.22 K and 1 atm; h�(4.22 K,1 atm)=9.71 J/g is liquid
helium enthalpy at 4.22 K and 1 atm; and hv(4.22 K,1 atm) = 30.13 J/g is vapor
helium enthalpy at 4.22 K and 1 atm. Solving Eq. S2.1, we find:

x� =
hhe(7 K,10 atm) − hv(4.22 K,1 atm)
h�(4.22 K,1 atm) − hv(4.22 K,1 atm)

=
(26.00 J/g − 30.13 J/g)
(9.71 J/g − 30.13 J/g)

= 0.202 (S2.2)

With x� =0.202, ṁ�p =0.202 g/s and ṁv =0.798 g/s for ṁhe =1.0 g/s.

b) The following power equation applies between Points d and e:

ṁhehhe(8 K,10 atm) = Q2 + ṁhehhe(7 K,10 atm) (S2.3)

Solving Eq. S2.3 for Q2, we find:

Q2 = ṁhe[hhe(8 K,10 atm) − hhe(7 K,10 atm)]

= (1 g/s)(33.44 J/g − 26.00 J/g) = 7.44 W

c) The performance data of a 2-stage cryocooler shown in Fig. 4.6, indicate that
this cryocooler with a refrigeration capacity of 1 W at 4.2 K delivers a cooling
power of 4 W at 7 K. Thus a cryocooler with a capacity of 7.44 W at 7 K would
most likely deliver a cooling power of ∼2 W at 4.2 K. Cryocoolers with a cooling
power of ∼2 W at 4.22 K are expected to be commercially available by ∼2010.

d) An equation similar to Eq. S2.3 may be applied between Points b and c:

ṁhehhe(46 K,10 atm) = Q1 + ṁhehhe(30 K,10 atm) (S2.4)

From Eq. S2.4 we find:

Q1 = ṁhe[hhe(46 K,10 atm) − hhe(30 K,10 atm)]

= (1 g/s)(252 J/g − 168 J/g) � 84 W

The performance data of Fig. 4.6 indicate that Q1�84 W is not achievable with a
cryocooler having the performance data of Fig. 4.6 even if its 4.22-K performance
is increased to 2 W. A cryocooler with an enhanced 2nd stage refrigeration power
will be required.

e) The total enthalpy decrease of the warm-to-cold stream from Points c to d
must be equal to the total enthalpy increase of the cold-to-warm stream from
Points h to i:

ṁhe[hhe(30 K,10 atm) − hhe(8 K,10 atm)]

= (ṁv + ṁ�r)hv(30 K,1 atm) −
[
ṁvhv(4.22 K,1 atm) + ṁ�rhl(4.22 K,1 atm)

]
(S2.5)
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Solution to PROBLEM 4.2 (Continuation)

Solving Eq. S2.5 for ṁ�r, we find:

ṁ�r =

ṁhe[hhe(30 K,10 atm)−hhe(8 K,10 atm)]
−ṁv[hv(30 K,1 atm)−hv(4.22 K,1 atm)]
hv(30 K,1 atm)−hl(4.22 K,1 atm)

=
(1 g/s)(168.4 J/g−33.44 J/g)−(0.798 g/s)(170.2 J/g−30.13 J/g)

(170.2 J/g − 9.71 J/g)
�0.144 g/s

{ }

Because ṁ� = ṁ�p−ṁ�r, we find: ṁ� � 0.202 g/s−0.144 g/s = 0.058 g/s, which
translates to a liquid volume rate of ∼1.7 liters/h and a cooling power of 1.2 W.

f) The thermal power loss of the warm-to-cold stream from Points a′ to b equals
the thermal power increase of the cold-to-warm stream from Points i′ to j:

ṁhe[hhe(295 K,10 atm) − hhe(46 K,10 atm)]

= (ṁv + ṁ�r)
[
hv(295 K,1 atm) − hv(30 K,1 atm)

]
(S2.6)

The left-hand side of Eq. S2.6 is given by:

ṁhe[hhe(295 K,10 atm) − hhe(46 K,10 atm)] = (1 g/s)(1550.0 J/g − 253.9 J/g)

� 1296 W (S2.7a)

Similarly, the right-hand side of Eq. S2.6 is given by:

(ṁv + ṁ�r)[hhe(295 K,1 atm) − hhe(30 K,1 atm)]

� (0.798 g/s + 0.144 g/s)(1547.0 J/g − 170.2 J/g)

� 1297 W/s (S2.7b)

Equations. S2.7a and S2.7b are equal, within round-off errors of ∼0.1 %.

g) Applying Eq. 4.10, we obtain an ideal compressor power requirement, Ps:

Ps = ṁh

(
γ

γ − 1

)
(Pjvj)

[(
Pa

Pj

)γ−1
γ

− 1

]
(S2.8)

γ=Cp/Cv for a perfect gas is 5/3; vi is the specific volume at the compressor inlet
of Pj =1 atm, which for helium at 295 K is � 6 m3/kg. With Pj =1 atm�1×105 Pa,
Pa/Pj = 10, and ṁh = 0.001 kg/s (1 g/s), we obtain: Ps = 2.3 kW (or ∼3 hp,
horsepower). Note that this is for an ideal case; the power requirement for a real
pump would be roughly 7 kW.

Of course in a real mini helium liquefier, the liquid yield, because chiefly of “imper-
fection” of the heat exchangers and pressure drops in both the warm-to-cold and
cold-to-warm helium streams, would be smaller than that of an “ideal” liquefier:
ṁ�p (and thus ṁ�) will be off by a factor of perhaps as much as two, respectively,
from 0.202 g/s (∼6 liters/h) and 0.058 g/s (∼1.7 liter/h) computed above.



CRYOGENICS—PROBLEMS & DISCUSSIONS 247

DISCUSSION 4.7: Cryocooler vs. “Cryocirculator”

CRYOCOOLER
COLDHEAD

1st STAGE
RADIATION SHIELDS

2nd STAGE
MAGNET CHAMBER

Top

MAGNET

Top+ΔTop

Fig. 4.14 Schematic drawing of a
cryocooled dry magnet.

Two cooling sources for “dry” (cryogen-free)
magnets are discussed here.

Cryocooler Currently, all dry (cryogen-
free) magnets, LTS or HTS, are cryocooled,
i.e., cooled by a cryocooler, whose coldhead
is attached to one end of the cryostat as-
sembly of the magnet. Figure 4.14 shows a
schematic drawing of a cryocooled dry mag-
net: the 1st stage of the coldhead is ther-
mally attached to the radiation shield and
the 2nd stage to the magnet chamber. For
“large” dry LTS magnets, it will be a chal-
lenge to satisfy the tenet of LTS magnet
stability, i.e., ΔTop/Top � 0, where ΔTop

is the temperature difference between the
coldest spot (near the 2nd stage) and the
warmest spot (furthest from the 2nd stage).

“Cryocirculator” To keep the magnet temperature uniform, ΔTop/Top � 0, a
“cryocirculator” is preferable to a cryocooler for dry superconducting magnets.
As illustrated schematically in Fig. 4.15, a cryocirculator is a 2-stage cryocooler
equipped with a cold helium circulator for each stage. Each circulator forces a
stream of cold, high-pressure helium through a cooling coil (sometimes embossed,
as illustrated in Fig. 4.15) over the surface of a radiation shield wall or magnet
chamber walls. The cryocirculator has two advantages over the cryocooler: 1)
it provides cooling over most of the magnet chamber surface area, enabling a
magnet, regardless of its size, to satisfy the condition of ΔTop/Top � 0, though
for HTS magnets, ΔTop may easily exceed 1 K; and 2) the cooling source and the
magnet cryostat, connected by flexible helium lines, may easily be decoupled.

One early application of a cryocirculator is the Hybrid III magnet [3.14]. The
radiation shields of its cryostat are maintained at their operating temperatures,
one circulator keeping one set of embossed radiation shields at 90 K and the other
circulator keeps another set—for the 1.8-K magnet cryostat—at 20 K.

MAGNET CRYOCIRCULATOR

CIRCULATOR
RADIATION
SHIELDLOAD

1st STAGE

ΔTop/Top �0
CIRCULATOR

MAGNET
CHAMBERLOAD

2nd STAGE

EMBOSSED RADIATION SHIELD WALLS
EMBOSSED MAGNET CHAMBER WALLS

Fig. 4.15 Schematic drawing of a cryocirculator-cooled magnet.
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DISCUSSION 4.8: Radiative Heat Transfer*

Here, we discuss heat input to a cryostat by radiation. The Hybrid III cryostat
is used as an example. The theory of radiative heat transfer begins with the
Stefan-Boltzmann equation:

qr = εrσT 4 (4.15)

qr is the radiative heat flux [W/m2] from a surface at temperature T [K]. εr is the
total emissivity at T . σ is the Stefan-Boltzmann constant, 5.67×10−8 W/m2 K4.
What makes computation of radiation heat input to a cryostat usually less straight-
forward than suggested by Eq. 4.15 is the task of determining the correct value
of εr for each of the two surfaces that are radiating heat. For a configuration of
parallel plates with emissivities of εcl and εwm, respectively, with one surface at
cold temperature Tcl and the other at warm temperature Twm, the effective total
emissivity, εr, is given by:

εr =
εclεwm

εcl + εwm − εclεwm
(4.16)

Although theory distinguishes among “parallel-plate,” “cylindrical,” and “spheri-
cal” configurations, in most cryostat applications the parallel-plate equations suf-
fice for all three geometries. (Nonparallel-plate configurations usually have surfaces
of different areas.) This is because: 1) in most cryostats, the distance separating
the two surfaces is generally much less than dimensions along the surface; and 2)
the error that would be introduced in an estimate of radiative heat input through
this geometric approximation is still likely to be considerably less than that intro-
duced by uncertainties associated with the emissivities of the surfaces in question.
Equation 4.15 is thus modified to:

qr = εrσ(T 4
wm − T 4

cl) (4.17)

Table 4.8 gives “typical” values of εr and qr for combinations of materials and two
temperature ranges, from Twm to Tcl: Twm→ Tcl.

Illustration Here we first compute the total heat input to the Hybrid III magnet
vessel at 4.2 K by radiation from the 20-K and 80-K shields. The magnet vessel
surface areas, both of mechanically polished stainless steel, are: 1) 7.3 m2 facing
the 20-K radiation shields; 2) 2.8 m2 facing the 80-K radiation shields.

To simplify the computation, we apply the parallel-plate model of Eq. 4.17 and use
the same cold-temperature surface areas for respective warm-temperature areas.
Using appropriate values of qr given in Table 4.8 for the mechanically polished
stainless steel surface, we have:

20-K panels to vessel: Qr � (0.4×10−3 W/m2)(7.3 m2) � 3 mW

80-K panels to vessel: Qr � (162×10−3 W/m2)(2.8 m2) = 454 mW

* Based on Problem4.8 in the 1st Edition (Plenum, 1994).
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DISCUSSION 4.8: Radiative Heat Transfer (continuation)

Table 4.8: Typical Values of Radiative Heat Flux [4.28]

Material Twm → Tcl εr qr

[K] [mW/m2]

Copper

as received 20 → 4 0.03 0.3

80 → 4 0.06 140

300 → 80 0.12 55,000

mechanically 20 → 4 0.01 0.1

polished 80 → 4 0.02 46

300 → 80 0.06 27,000

Stainless steel

as received 20 → 4 0.06 0.54

80 → 4 0.12 280

300 → 80 0.34 155,000

mechanically 20 → 4 0.04 0.4

polished 80 → 4 0.07 162

300 → 80 0.12 55,000

electropolished 20 → 4 0.03 0.3

80 → 4 0.06 140

300 → 80 0.10 46,000

Aluminum

as received 20 → 4 0.04 0.4

80 → 4 0.07 162

300 → 80 0.49 224,000

mechanically 20 → 4 0.03 0.3

polished 80 → 4 0.06 140

300 → 80 0.10 46,000

electropolished 20 → 4 0.02 0.2

80 → 4 0.03 70

300 → 80 0.08 37,000

Superinsulation 20 → 4 ≤10* 2†‡
80 → 20 40* 40†

300 → 80 60* 2,500†
* Number of layers in a 25-mm “vacuum” gap.

† Measured values (Bascuñán [4.19]).

‡ In the 4–20K range, layers of superinsulation are not effective—in comparison,
see qr = 0.2mW/m2 for electropolished aluminum listed 3 lines above. A 250-
Å thick aluminum coating on each side of superinsulation is too thin compared
with the wave lengths of radiation in the 4–20K range for superinsulation layers
to be effective. Instead, one layer of aluminum foil, ∼100-μm thick, may be used
to emulate an electropolished aluminum surface.

Answer to TRIVIA 4.2 The French chemist Georges Claude (1870–1960) showed that
electric discharge through inert gases could produce light, the start of neon lights, making
him rich; now more well-known as the developer of an eponymous refrigeration cycle.
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DISCUSSION 4.8: Radiative Heat Transfer (continuation)

We may also compute the heat input to the 80-K radiation shield facing the 300-
K surface; the total area of the 80-K panels facing the 300-K surface is 11.7 m2.
Again, we assume the parallel-plate geometry, i.e., the total 300-K surface facing
the 80-K panels is also 11.7 m2.

Using appropriate values of qr given in Table 4.8 for the mechanically polished
stainless steel surface, we have:

300-K to 80-K panels: Qr � (55 W/m2)(11.7 m2) = 644 W

A. Effect of Superinsulation Layers

As may be noted from Table 4.8, the largest radiative heat load to a cryostat is from
the 80-K shield, which receives heat from the 300-K surface. Thus, it is customary
to place a number of 0.5-μm aluminum coated Mylar sheets—superinsulation—
in the vacuum space (< 10−4 torr) between the 80-K and 300-K surfaces. The
presence of Ni superinsulation layers modifies Eq. 4.17 roughly to:

qr =
εr

Ni + 1
σ(T 4

wm − T 4
cl) (4.18)

Equation 4.18 indicates that even one superinsulation layer reduces qr by a factor
of two. A rule of thumb is to use about 10–20 layers for each 1-cm spacing. Also,
to minimize solid conduction paths, each superinsulation sheet should be installed
either crinkled or, if smooth, with thin insulating spacers between adjacent layers
of superinsulation. (The bottom three rows of Table 4.8 give measured values of
qr for layers of superinsulation in the three temperature ranges.)

B. Practical Considerations of Emissivity

It is important to note that radiation is an electromagnetic phenomenon: emissiv-
ity εr increases with “surface” electrical resistivity of the material. The material’s
emissivity is thus affected in the same way as the material’s surface electrical
resistivity. Thus, we may list the following rules of thumb on emissivity:

• For the same temperature range, εr values of copper are smaller than those
of aluminum, which in turn are smaller than those of stainless steel.

• For the same surface, εr decreases with temperature; εr for copper decreases
more markedly than for stainless steel.

• εr of metal is more sensitive to surface contamination than that of noncon-
ductive material. Contamination includes oxidation and alloying.

• Mechanical polishing sometimes improves (decreases) εr and sometimes de-
grades (increases) εr. If an oxide layer on a conductive metal’s surface is re-
moved by mechanical polishing, the result is an improvement. If the metal’s
resistivity is increased by work-hardening, the result is degradation.

“We may not arrive at our port within a calculable period,
but we would preserve the true course.” —Henry D. Thoreau
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DISCUSSION 4.9: Convective Heat Transfer by Residual Gas*

Residual gas transfers heat within the “vacuum” space of a cryostat. In cryostats
for LTS magnets, the only residual gas is helium. In cryostats for HTS magnets
operating above 20 K, hydrogen, outgassed from the surfaces of the structural
components of the cryostats, metals and nonmetals, is the chief residual gas.

A. “High” Pressure Limit

When the pressure of a gas is sufficiently high, its mean free path (λg) is much
shorter than the typical distance (d) separating the two surfaces at different tem-
peratures in a cryostat. Under this condition of λg 
d, the thermal conductivity
of a gas (kg), according to the kinetic theory, is proportional only to the mean
velocity (v̄) of the molecules, which in turn varies as

√
T . The important point

here is that when λg 
d, kg is independent of gas pressure, Pg.

The kinetic theory also shows that λg ∝ η/Pg, where η is the gas viscosity. At
T = 300 K and Pg = 760 torr (1 atm), λg � 0.2 μm for helium and � 0.1 μm for
hydrogen. Thus, the condition λg 
 d is clearly satisfied in this “high” pressure
limit. At a “vacuum” pressure of Pg <∼10−4 torr, however, the condition λg 
d
is violated by both gases.

B. “Low” Pressure Limit

At Pg of ∼10−4 torr or less, kg becomes directly proportional to Pg. For a parallel-
plate configuration of a cold plate at Tcl and a warm plate at Twm, the heat flux,
qg, by a “residual” gas at pressure Pg may be given by [4.29]:

qg = ηgPg(Twm − Tcl) (4.19)

ηg depends not only on Twm and Tcl but also on accommodation coefficients, which
range from 0.3 for He and H2 at 300 K to 1 for He at 4.2 K and 0.6 for H2 at 20 K.
Table 4.9 presents values of ηg and qg for He and H2 at Pg =10−5 torr (1.33 mPa)
across two parallel plates at Tcl and Twm [4.29].

Illustration The principal surface areas, approximated at 4.2 K (Tcl), of the
magnet vessel of Hybrid III are 7.3 m2 facing the 20-K (Twm) radiation shields,
and 2.8 m2 facing the 80-K (Twm) radiation shields. Using the “parallel-plates”
approximation, we may compute the total heat input into the Hybrid III magnet
vessel by residual helium gas of pressure 10−5 torr in the vacuum space.

For a magnet vessel surface at 4.2 K exposed to 20-K radiation shields, qg at
Pg = 10−5 torr is, from Table 4.9, 27 mW/m2. Thus, for a surface area of 7.3 m2

under the parallel-plates approximation, the total heat input becomes ≈300 mW.
Similarly, for a magnet vessel surface at 4.2 K exposed to 80-K radiation shields, qg

is, from Table 4.9, 86 mW/m2, or a total heat input of ≈240 mW for a surface area
of 2.8 m2. Thus the combined heat input to the magnet vessel becomes ≈540 mW,
which for this system would be excessive; a vacuum level of 10−6 torr should be
maintained. It is therefore important to keep the cryostat vacuum pressure to
better (i.e., less) than ∼10−5 torr.

* Based on Problem4.7 in the 1st Edition (Plenum, 1994).
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DISCUSSION 4.9: Convective Heat Transfer by Residual Gas (continuation)

Table 4.9: Heat Conduction by
Residual He and H2 Gases at Pg of 10−5 Torr [4.29]

Helium Hydrogen

Twm→ Tcl ηg qg Twm→ Tcl ηg qg

[K] [W/m2 PaK] [mW/m2] [K] [W/m2 PaK] [mW/m2]

20 → 4 1.27 27 — — —

80 → 4.2 0.85 86 80 → 20 2.20 176

300 → 4.2 0.64 251 300 → 20 1.32 494

300 → 80 0.44 129 300 → 80 1.02 298

DISCUSSION 4.10: Vacuum Pumping System

Figure 4.16 shows a schematic diagram of a typical vacuum system used in the
operation of a superconducting magnet. The cryostat vacuum space outlet is
connected to a turbomolecular pump, which in the past decade has begun replacing
the once widely used diffusion pump/cold trap combination. The turbomolecular
pump is the only purely mechanical vacuum pump that can function down to a
pressure range of 10−10 torr without requiring a trap. Although the “turbo” pump
is equipped with its own mechanical pump, in most magnet applications where the
cryostat vacuum space can be quite large, a separate mechanical pump is added,
as shown in the figure. The procedure used to evacuate the cryostat vacuum space
is to start with the mechanical pumps(s) to reach a vacuum of ∼5 torr, and then
to turn on the turbo pump (or a diffusion/cold trap), to reach 10−5–10−6 torr.

VACUUM GAUGE

TURBO-
MOLECULAR CRYOSTAT

PUMP

MECHANICAL
PUMP

Fig. 4.16 Schematic diagram of a typical pumping vacuum system used in
the operation of a superconducting magnet.
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DISCUSSION 4.10: Vacuum Pumping System (continuation)

Vacuum Gauges

Two types of vacuum gauges are commonly used for cryostats: 1) thermocouple;
and 2) ionization. Below is a brief description of each type.

Thermocouple: The thermocouple gauge relies on the pressure dependance of
the gas thermal conductivity, valid in the “low” pressure limit discussed above.
The thermocouple junction is situated in a tube connected to the vacuum space
to be measured, and its temperature is set by a heater. The gas provides cooling,
which varies with the gas pressure; the change in the induced current through
the junction circuit is a measure of the vacuum pressure. The gauge’s range of
applicability is 10−3∼1 torr, the range covered by mechanical pumps.

Ionization: For the vacuum range between ∼10−6 and ∼10−3 torr, the operating
range in most cryostats, the ionization gauge is used most widely. There are two
versions: 1) hot-cathode; and 2) cold-cathode.

Hot-Cathode: This gauge consists of a heated filament (hot cathode), an anode,
and a negatively biased ion collector plate, all housed in a tube that connects to
the vacuum space to be measured. The electrons flowing from the filament to the
anode collide with gas molecules, creating ionized molecules that are drawn to
the collector plate and measured as a current through the measurement circuit.
Because the molecules are ionized by electrons, the ion current depends also on the
number of electrons bombarding the molecules: accurate pressure measurement
thus requires careful control of filament current. The hot-cathode gauge used in
the Hybrid III cryostat is turned off during magnet operation to minimize “filament
fatigue” caused by the filament’s oscillating motion that results from the Lorentz
interaction of the filament supply current (60 Hz) and the magnet’s fringing field.

Cold-Cathode: Known as the Philips (or Penning) gauge, it uses a cold cathode
and two parallel anode plates with a magnetic field applied in the direction normal
to the anode plates, which are turned on (∼2 kV) one at a time. The small
number of electrons produced by the cold cathode are thus made to travel in a
helical path alternately toward one of the two plates. This configuration effectively
increases the collision chances between the small number of electrons and gas
molecules. Unlike hot filaments, cold cathodes do not contaminate the gas nor are
they destroyed in the event of a loss of vacuum, but they are less accurate than
hot-cathodes.

TRIVIA 4.3 Of the four contemporary physicists (born 1602–1627) below,
who first achieved, in 1650, a vacuum by means of an air pump?

i) Boyle; ii) Guericke; iii) Pascal; iv) Torricelli.
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DISCUSSION 4.11: Cryocooled Solid Cryogen/Magnet

A. Design and Operation Concept

Generally, a superconducting magnet, LTS or HTS, remains fully superconducting
and operates “stably” over a temperature range from its nominal operating tem-
perature Top to a maximum operating temperature. Chiefly because of a much
greater critical temperature, Tc, of HTS compared with that of LTS, this range,
ΔTop, is an order of magnitude greater for an HTS magnet than an LTS magnet
of comparable size and field performance: typically ΔTop > 1 K for HTS, while
ΔTop < 1 K for LTS. (This concept of “temperature margin” for LTS and HTS
magnets is discussed in CHAPTER 6 .)

A design/operation concept developed at FBML recognizes this large ΔTop of
HTS magnets and combines it with the large heat capacity of solid cryogen [4.30–
4.32]. In this design/operation concept, ΔTop is no longer considered a transitory
excursion permitted in LTS magnets, but a new opportunity for a magnet.

This combination of an expanded operating range, possible primarily with HTS
but not altogether impossible with LTS, and an enhanced heat capacity offers
operating options, an example of which is described below, that are infeasible
with “conventional” design/operation concepts, i.e., “dry,” cryocooled but without
solid cryogen, or “wet,” immersed in a bath of cryogen or force-cooled by cryogen.
Note that even for a solid cryogen-cooled magnet, the primary cooling source is
a cryocooler or a cryocirculator (DISCUSSION 4.7 ). Typically, such a magnet is
surrounded by a volume of solid cryogen and housed in a magnet chamber.

Application to Persistent-Mode Magnets

One application of this design/operation concept is in constant-field magnets such
as for NMR and MRI that normally operate in persistent mode. With the magnet’s
operating temperature designed to span a “large” range, this concept enables such
a magnet to maintain a constant operating field over a design-specified period of
time even after its primary cooling source is turned off and thermally decoupled
from the cold body. The cooling source may be turned off intentionally, e.g.,
to create a measurement environment free of the cooling source vibration or for
cooling source maintenance, or under fault mode, e.g., a power outage.

B. Thermal Diffusion in Solid

In a homogeneous isotropic solid (density, �, thermal conductivity, k, and specific
heat, cp) the rate of thermal diffusion through the solid is characterized by its
thermal diffusivity, Dth [m2/s], given by:

Dth =
k

�cp
(4.20)

The time scale required for transient heating applied at one location to “reach” a
distance δsd in the solid thus is given by:

τsd =
1

Dth

(
δsd

π

)2

(4.21)
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DISCUSSION 4.11: Cryocooled Solid Cryogen/Magnet (continuation)

Table 4.10: Approximate Values of Dth and τsd (for δsd =10mm)

Solid Neon (SNe), Solid Nitrogen (SN2), Copper (Cu) in the 4–60K Range

Dth [mm2/s] τsd [s] for δsd =10mm

T [K] SNe SN2 Cu SNe SN2 Cu

5 35 157 0.36×106 0.29 0.06 27×10−6

10 22 70 0.17×106 0.46 0.14 60×10−6

20 0.27 0.58 0.29×105 38 17 0.3×10−3

30 — 0.22 8000 — 46 1.3×10−3

34* — 0.16 5000 — 63 2×10−3

37* — 0.18 3500 — 56 3×10−3

40 — 0.17 2800 — 60 4×10−3

50 — 0.13 1200 — 78 8×10−3

60 — 0.12 600 — 84 17×10−3

* At 35.61K, as described in 4.5, SN2 undergoes a solid-to-solid phase transition and
Dth =0, because at this temperature the SN2’s heat capacity approaches infinity.

Table 4.10 lists approximate values of Dth and corresponding τsd for δsd =10 mm for
solid neon (SNe), solid nitrogen (SN2), and copper (Cu) in the range 4–60 K, based
on �(T ), cp(T ), and k(T ) data [4.33–4.35]. Over this temperature range thermal
diffusivities of SN2 are 3 to 5 orders of magnitude less than those of copper—heat
penetrates into SN2 much more slowly than into copper. For example, at 30 K, as
given in Table 4.10 for δsd =10 mm, τsd =46 s in SN2, whereas it is only 1.3 ms for
Cu. However, SN2 can absorb much more heat per unit volume than Cu.

“Slow” Heating

If the heat required to be absorbed by a volume of solid cryogen of a “reason-
able” thermal diffusion distance can be absorbed gradually, over a period of time
much longer than τsd, the entire solid will remain nearly uniform in temperature.
Indeed, as noted above, solid cryogen appears best applied to magnets that are
generally operated in persistent mode such as those for MRI and NMR. As stud-
ied in PROBLEM 4.3 below, in a solid-cryogen-cooled magnet which has a heating
time of hours over a diffusion distance of 1–2 cm, the entire solid-nitrogen volume
may be assumed to be at a uniform temperature.

Transient Heating

Under rapid transient conditions only a very thin layer of solid cryogen—note that
δsd ∝ √

τsd (from Eq. 4.21)—is effective in absorbing heat that would otherwise
heat the magnet winding. Even with this limitation, and despite the probable
occurrence of “thermal dry-out” (below), SN2 has proven effective in suppressing
temperature rises in HTS test samples subjected to transient heating [4.36, 4.37].

Recently, a group in Kyoto University has shown that a phenomenon they term
“thermal dry-out” occurs, creating a “large” temperature gap across the contact
between the transiently heated surface and solid nitrogen [4.38–4.40]. Thermal
dry-out and a solution to overcome this phenomenon are discussed below.
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DISCUSSION 4.12: Cryocooled Solid Cryogen/Magnet (continuation)
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Fig. 4.17 Temperature vs. time plots of an HTS strip under over-current disturbances.
Solid curve: with the HTS strip cooled by SN2 only; dashed: with the strip cooled by
an SN2-LNe mixture; dotted: initial temperature at 25.1K [4.38–4.40].

C. “Thermal Dry-Out”

Nakamura and his colleagues in Kyoto University have experimentally demon-
strated that when the surface in thermal contact with SN2 is subjected to a “large”
heating flux, thermal dry-out occurs [4.38–4.40]. For solid nitrogen at 60K, for ex-
ample, a thermal dry-out begins at a power flux of ∼1.5W/cm2. Apparently, a
thin vapor layer at the interface is responsible for this temperature discontinuity.

Figure 4.17 shows temperature vs. time plots for an HTS strip under over-current
disturbances, each disturbance lasting up to ∼600 s. The solid curve corresponds to
a typical run for the strip in contact with solid nitrogen only. The dotted horizontal
line, at 25.1K, indicates the initial temperature of both the strip and solid nitrogen.
Beyond ∼400 s, at which the heat flux is 14.3W/cm2 with a temperature difference
(ΔT ) in excess of 3 K, a thermal runaway occurs that, were the over-current to
persist, would lead to conductor damage.

Solid Nitrogen-Liquid Neon Mixture To Suppress Thermal Dry-Out

The Kyoto group has demonstrated that a mixture of solid nitrogen and liquid
neon—liquid neon occupying ∼1% of the total volume—is quite effective in sup-
pressing this thermal dry-out. Of course the use of LNe restricts operation to a
narrow range, between 24.5 and 27.1K under atmospheric pressure. The dashed
curve in Fig. 4.17 corresponds to a typical run for the strip in contact with an
SN2-LNe mixture. Even after repeated over-current runs, it was observed that the
strip temperature remained at 26.9 K, anchored by LNe. Note that here ΔT < 2K;
more importantly, at least for up to 600 s, there appears to be no imminent ther-
mal runaway. (Note that in both sets of measurements, the “cold body” was
continuously cooled by a cryocooler, which acted as the system’s cold sink.)

For applications in the liquid nitrogen temperature range, perhaps a mixture of
solid argon (SAr) and subcooled liquid nitrogen operating in the range 65–77K
may be an effective option to improve the solid cryogen’s inherently poor thermal
contact characteristics. Argon melts at 83.8K and boils at 87.3K.
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PROBLEM 4.3: Solid cryogen cooled magnet

Here, we deal with issues on solid cryogen cooled magnets.

a) Using Cp vs. T plots shown in Fig. 4.2, make T (t) plots of volumes, each
1 liter, of Cu, Pb, SNe, and SN2, under 1-W heat input for an initial temper-
ature of 4 K and a final temperature of 60 K, except for SNe, 25 K. Assume
uniformity of temperature within each volume during the warm-up.

b) Using the T (t) plot for SN2 of a)—or straight from Fig. 4.2—show that it
takes ∼30 hours for a 15-liter volume of SN2 to warm up from 10 K to 15 K
under a constant heat input of 0.25 W. Neglect heat capacities of other mate-
rials, including that of the magnet, in the cold body and assume temperature
uniformity within the solid nitrogen during the warm-up.

As discussed in DISCUSSION 4.11, it is desirable for a solid cryogen cooled
magnet to be able to operate over a temperature range considerably greater
than the ∼1 K (or even less) typical for LTS magnets. In an SN2-cooled HTS
magnet operating in persistent mode, for example, a typical operating mode
might be to operate at a nominal temperature of 10 K with its cooling source
running. When the cooling source is shut off, either purposely to eliminate its
noise or accidentally by a power outage, and it is thermally decoupled from
the cold body, the magnet will start warming up slowly, keeping its operating
field over a temperature rise of ΔTop, which is 5 K for this particular magnet.
Note that in order to take full advantage of this large heat capacity of solid
cryogen available in the cold body, it is required to design the system to have
the cold body automatically decoupled thermally from the cooling source
whenever it is turned off.

c) This 15-liter volume of solid nitrogen is to be placed inside the cold body
to encircle a magnet of 896-mm winding o.d. (860-mm i.d.) and 300-mm
winding length. Let the nitrogen be in the shape of a cylinder, ≈896-mm
i.d., 300-mm long, and ΔrN2 thick. (Because the cold body is constructed
of copper sheets of sufficient thickness, most heat entering the cold body
from the i.d. side of the magnet flows through the walls of the cold body
by conduction to the outer wall.) Compute ΔrN2 for this 15-liter SN2 and,
assuming that heat entering the cold body flows through the solid nitrogen
layer only in the radial direction from the outer wall of the cold body, show
that the thermal diffusion time corresponding to this layer thickness is ∼0.6 s,
which is much smaller than the 30-h warm-up time from 10 K to 15 K.

d) Show that the 15-liter volume of cryogen in the cold body filled with solid
nitrogen in b) may be halved if it is filled with solid neon. (Because the
volumetric price of SN2 is at least ∼200 times less than that of SNe, nitrogen
is preferred to neon unless neon is absolutely necessary.)

e) Show that it takes this 15-liter SN2 another ∼80 hours to warm up from 15 K
to 60 K. Over the 15–60 K temperature range, take an average heat input to
the cold body of 3.3 W. Neglect the magnetic energy stored in the magnet
that would presumably be converted into thermal energy when the magnet
becomes warm enough to lose its superconductivity.
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PROBLEM 4.3: Solid cryogen cooled magnet (continuation)

f) During this warm-up process beyond 15 K, when the highest field part of
the winding reaches, say 20 K, the magnet begins losing superconductivity
and its field decays. For this magnet with a winding volume of 15,000 cm3

and a stored energy of 75 kJ, compute its final temperature for an initial
temperature of 20 K, assuming that during this transient the entire magnetic
energy is converted to heat within the winding only. Assume that the winding
is at a uniform temperature at the end of energy conversion and its enthalpy
may be approximated by copper’s. Note that because a total thermal energy
of ∼1 MJ is absorbed by the solid nitrogen from 15 K to 60 K, it is reasonable
to neglect the additional thermal energy of 75 kJ in e) above.

Although the magnet is at uniform temperature except during the brief pe-
riod of field decay and shortly thereafter, because the field within the winding
is not uniform, quenching is not initiated simultaneously within the winding.
Nevertheless, the field decay is expected to last only a few seconds—this is
based on a quench analysis of a real HTS magnet.

g) Show that it takes the same HTS magnet system ∼3 hours from an initial
operating temperature of 30 K to a final temperature of 35 K for a constant
heat input of 10 W. Assume the other assumptions in b) are valid.

h) Repeat g) for the range 35–40 K for the same constant heat input of 10 W,
and demonstrate that the extra enthalpy of the phase transition at 35.61 K
doubles the warm-up time over the same temperature increment of 5 K.

Solid nitrogen may also be used to stabilize an HTS winding subjected to transitory
disturbances. Experiments have demonstrated that a thin layer (∼0.5 mm) of SN2

in contact with a Bi2223 tape indeed suppressed the conductor’s temperature rise
when it was driven to the normal state by an over-current pulse imposed upon a
constant transport current [4.36, 4.37]. It is because of the poor thermal diffusivity
of solid nitrogen that only a thin layer (∼0.5 mm) is effective in absorbing transient
power dissipation.

i) Using Eq. 4.21 given in DISCUSSION 4.11, show that a transient heating of
constant amplitude (square wave) and ∼0.1-s duration diffuses through a 0.4-
mm thick layer of SN2, initially at 30 K, over this heating period. Although
the solid nitrogen layer temperature rises during heating, use a constant value
of Dth =2.4×10−3 cm2/s at 30K (Dth =0.24 mm2/s in Table 4.10).

j) For this 0.1-s transient heating of i), show that a power flux of 4.2 W/cm2

could be absorbed by this SN2 layer as it is heated to 35 K.

k) Discuss the effectiveness of a thin layer of solid nitrogen subjected to transient
heating when the heated layer must pass through the solid-to-solid phase
transition at 35.61 K. As footnoted in Table 4.10, Dth of solid nitrogen at
35.61 K is theoretically 0.

l) Discuss to what extent the expansion of a magnet may impact the spatial
field homogeneity as the magnet warms up over its permitted operating tem-
perature range, here between 10 K and 15 K.
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Solution to PROBLEM 4.4

a) Figure 4.18 shows T (t) plots of 1-liter volumes of Cu, Pb, SNe, and SN2,
subjected to a constant heat input of 1W with an initial temperature of 4.2K and
a final temperature of 60K (25K for SNe)—it also includes a dotted horizontal
line at 4.2K showing the duration required to boil off 1 liter of 4.2-K liquid helium
(LHe). The figure clearly demonstrates that among these substances, at least on
a volume basis SNe in the range 4–25K and SN2 in the range 25–60K are the
best heat capacity enhancers. Because specific densities of SNe (1.25 g/cm3 at
25K) and SN2 (1 g/cm3 at 25K) are an order of magnitude less than those of Pb
(11.4 g/cm3) and Cu (8.96 g/cm3), for the same extra volume in the cold body
occupied by a heat capacity enhancer substance, either of these solid cryogens not
only performs its task well but also is only a modest extra mass to the system.

Because the entire warm-up (4.2K–60K) takes, for example, ∼18 hours for SN2,
we may safely conclude that the assumption of uniform temperature throughout
the 1-liter volume of solid with a diffusion distance of ∼10 cm—(1000 cm3)1/3—is
valid. The uniform temperature assumption is clearly valid for copper and lead.

b) From Fig. 4.18 we note that for 1-liter SN2, T (t � 400 s) = 10K and T (t �
2,150 s) = 15K. For 1-liter SN2, we have the warm-up period from 10K to 15K
with 1-W heat input: [Δt(10K→ 15K)]1 W

1 liter � 1,750 s = 0.486h. For 15-liter
solid nitrogen with 0.25-W heat input, the 10-15K warm-up period, [Δt(10K→
15K)]0.25W

15liter, is given by:

[Δt(10K→15K)]0.25W
15 liter =

(
1 W

0.25W

) (
15 liter
1 liter

)
[Δt(10K→15 K)]1 W

1 liter

� (4)(15)(0.486h) = 29 h ∼ 30 h
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Fig. 4.18 T (t) plots with an initial temperature of 4.2K and a final temperature of
60 K (25K, SNe) for a 1-liter volume each of Cu, Pb, SNe, and SN2 subjected to a
constant heat input of 1W. The duration required to boil off 1 liter of liquid helium
(LHe), ∼0.7 h, is indicated by the dotted horizontal line at 4.2K.
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Solution to PROBLEM 4.3 (continuation)

Alternatively, we may directly use Fig. 4.2 and compute h(15 K)−h(10 K) [J/cm3]
by performing the

∫
Cp(T ) dT for SN2 between 10 K and 15 K:

h(15 K) − h(10 K) � Cp(10 K) + Cp(15 K)
2

(15 K − 10 K)

� (0.175 J/cm3 K + 0.475 J/cm3 K)
2

(5 K)

� 1.625 J/cm3

Thus the 10–15 K warm-up time for 15-liter solid nitrogen with 0.25-W heat input,
[Δt(10 K→15 K)]0.25W

15liter may be given by:

[Δt(10 K→15 K)]0.25W
15liter =

(15000 cm3)(1.625 J/cm3)
(0.25 W)(3600 s/h)

� 27.1 h ∼ 30 h

c) The volume of solid nitrogen, VN2, in a cylinder of i.d. D, length �, and layer
thickness ΔrN2
D, is:

VN2 = πD�ΔrN2 (S3.1)

With VN2 =15000 cm3, D=90 cm, � = 30 cm inserted in Eq. S3.1, we have:

ΔrN2 =
VN2

πD�
=

(15000 cm3)
π(90 cm)(30 cm)

= 1.8 cm

We may equate ΔrN2 =1.8 cm to δsd of Eq. 4.21 and with Dth�55×10−2 cm2/s, a
rough average value between 10 K and 15 K, solve Eq. 4.21 for τsd:

τsd =
1

Dth

(
δsd

π

)2

(4.21)

=
1

(55×10−2 cm2/s)

(
1.8 cm

π

)2

∼ 0.6 s

The diffusion time of ∼0.6 s is much less than the 30-h warm-up time. Thus, the
assumption of uniform temperature within this 15-liter SN2 is valid.

d) We reverse the order of the two approaches to the solution given in b). Thus,
using the Cp(T ) data for solid neon given in Fig. 4.2 and by taking the area
underneath the Cp(T ) curve for SNe between 10 K and 15 K, we have:

h(15 K) − h(10 K) � Cp(10 K) + Cp(15 K)
2

(15 K − 10 K)

� (0.400 J/cm3 K + 0.875 J/cm3 K)
2

(5 K)

� 3.2 J/cm3
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Solution to PROBLEM 4.3 (continuation)

For the same warm-up time from 10 K to 15 K with 0.25-W heat input for 15-liter
solid nitrogen, [Δt(10 K→15 K)]0.25W

15liter� 27.1 h computed in b), the volume of solid
neon, VNe(10 K→15 K), is given by:

VNe(10 K→15 K) =
(27.1 h)(3600 s/h)(0.25 W)
(3.2 J/cm3)(1000 cm3/liter)

� 7.6 liter ∼ 1
2 × 15 liter

From Fig. 4.18 we note that for 1-liter solid neon, T (t� 0.33 h)=10 K and T (t�
1.22 h)=15 K, resulting in [Δt(10 K→15 K)]1 W

1 liter � 0.89 h for SNe; for 1-liter SN2:
[Δt(10 K→15 K)]1 W

1 liter � 0.486 h. We thus have:

VNe(10 K→15 K) =
(0.486 h)
(0.89 h)

(15 liter) � 8.2 liter ∼ 1
2 × (15 liter)

e) From Fig. 4.18 we note that for 1-liter solid nitrogen, T (t�0.6 h)=15 K and
T (t � 17.75 h) = 60K, or [Δt(15 K→60 K)]1 W

1 liter � 17.15 h. For an average heat
input of 3.3 W and 15-liter SN2, we have:

[Δt(15 K→60 K)]3.3W
15liter =

(
15 liter
1 liter

) (
1 W

3.3 W

)
[Δt(15 K→60 K)]1 W

1 liter

� (15)(0.303)(17.15 h)

= 78 h ∼ 80 h

f) In this transition, an energy density of 5 J/cm3[= (75 kJ)/(15,000 cm3)] is
injected into copper at an initial temperature of 20 K. Thus, we may determine
the final temperature Tf from the following equation:∫ Tf

20 K

[Cp(T )]cu dT = 5 J/cm3 (S3.2)

From Fig. 4.2, we find Eq. S3.2 is satisfied with Tf �40 K.

g) Using the Cp(T ) data for SN2 given in Fig. 4.2 and by taking the area under-
neath the Cp(T ) curve from 30 K to 35 K, we have:

h(35 K) − h(30 K) � Cp(30 K) + Cp(35 K)
2

(35 K − 30 K)

� (1.24 J/cm3 K + 1.55 J/cm3 K)
2

(5 K)

� 7.0 J/cm3

Answer to TRIVIA 4.3 ii). The German physicist Otto von Guericke (1602–1686)
of “Magdeburg hemispheres” fame was the first with a pump, though the Italian
physicist Evangelista Torricelli (1608–1647) achieved, in 1643, the first man-made
vacuum by using a glass tube and a dish full of mercury.
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Solution to PROBLEM 4.3 (continuation)

We thus have:

[Δt(30 K→35 K)]10 W
15liter =

(15,000 cm3)(7.0 J/cm3)
(10 W)(3,600 s/h)

� 2.9 h ∼ 3 h

h) We proceed as in g) except here an energy absorption at 35.61 K, Δh(35.61 K)
of 8.2 J/cm3, must be added. Also, the enthalpy area computation must be per-
formed over two temperature ranges, 35–35.61 K and 35.61–40 K. Thus:

h(40 K)−h(35 K) � Cp(35 K)+Cp(35.61 K)
2

(35.61 K−35 K)

+Δh(35.61 K)+
Cp(35.61 K)+Cp(40 K)

2
(40 K−35.61 K)

� (1.60 J/cm3 K + 1.62 J/cm3 K)
2

(0.6 K)

+ 8.2 J/cm3 +
(1.29 J/cm3 K + 1.33 J/cm3 K)

2
(4.39 K)

� 0.98 J/cm3 + 8.2 J/cm3 + 5.75 J/cm3 � 14.9 J/cm3

[Δt(30 K→35 K)]10 W
15liter =

(15,000 cm3)(14.9 J/cm3)
(10 W)(3,600 s/h)

� 6.2 h ∼ 6 h

Thus the contribution of the extra enthalpy at 35.61 K more than doubles (2.1
times) the warm-up time for the same temperature increment of 5 K.

i) Equation 4.21 is used to compute τsd for Dth = 2.4×10−3 cm2/s and δsd =
0.04 cm and demonstrate that this τsd indeed is ∼0.1 s. Thus:

τsd =
1

Dth

(
δsd

π

)2

(4.21)

=
1

(2.4×10−3 cm2/s)

(
0.04 cm

π

)2

� 0.067 s

∼ 0.1 s

j) The maximum power flux, psd, that may inject energy in 0.067 s into a 0.04-
mm thick layer of SN2 from 30 K to 35 K may be given by:

psd = [h(35 K) − h(30 K)]
δsd

τsd

= (7.0 J/cm3)
(0.04 cm)
(0.067 s)

= 4.2 W/cm2
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Solution to PROBLEM 4.3 (continuation)

k) As footnoted in Table 4.10, Dth = 0 for solid nitrogen at 35.61 K, because
energy, instead of being diffused through, is absorbed by the solid—8.2 J/cm3—as
it undergoes the phase transition, i.e., SN2 heat capacity effectively approaches
infinity. However, results of transient experiments [4.36, 4.37] have demonstrated
an undiminished effectiveness of solid nitrogen in absorbing transient energy even
over a range that spans this phase transition temperature.

l) Because the impact of a winding’s temperature rise on the magnet’s spatial
field homogeneity is potentially quite important for NMR and MRI applications,
it is presented below in DISCUSSION 4.12.

DISCUSSION 4.12: Temperature Rise vs. Field Homogeneity

For an NMR or MRI magnet spatial field homogeneity is a key design/operation
issue. In this discussion, we shall qualitatively inquire to what extent a rise in an
operating temperature may impact the magnet’s field spatial homogeneity as it
warms up over a permitted range. Here, the range 10–15 K is used for computation.

The coefficient of linear thermal expansion, α(T ), is defined by:

α(T ) =
1
L◦

(
∂L

∂T

)
P

(4.22)

where L◦ is the initial length. The subscript P implies a constant pressure process.
At low temperatures, α(T ) may be given by:

α(T ) = aT + bT 3 (4.23)
Based on an experimental α(T ) plot of copper in the range 0≤T ≤ 50 K, we find
a and b for copper: acu = 5×10−9 K−2 and bcu = 3×10−11 K−4. For ΔTop = 5 K,
between 10 K and 15 K, we may compute ΔL/L◦ for copper, (ΔL/L◦)cu, by inte-
grating Eq. 4.23 between 10 K and 15 K. Here copper is selected as representative
of the winding materials. As may be deduced from Table A3.4 in APPENDIX III,
which lists mean linear thermal expansion data of selected metals and nonmetals,
percentage changes in expansion between 20 K and 80 K, for example, are about
the same order of magnitude among these materials. We are thus justified here in
choosing copper to quantitatively estimate ΔL/L. Thus:(

ΔL

L◦

)
cu

=
∫ 15 K

10 K

(5×10−9T + 3×10−11T 3)dT = 0.62×10−6 (4.24)

This linear change occurs in three dimensions. If the windings were to expand
equally in all directions, there would be no deterioration of homogeneity. In reality,
because every winding is anisotropic, a degradation of the field homogeneity is
expected but to what extent depends on how much the medium is anisotropic,
and consequently this amplitude cannot accurately be predicted.

Note that (ΔL/L◦) in all materials increases not only with ΔTop but also with
initial temperature. Therefore, because of this potential field homogeneity degra-
dation during an operating temperature excursion, for solid cryogen cooled mag-
nets applied to NMR and MRI, it may be prudent to keep their initial operating
temperatures to below ∼20 K and ΔTop no greater than 10 K.
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Temperature plays a dominant role in the key design/operation issues—conductor,
cryogenics, mechanical, protection, stability—of superconducting magnets, as may
be inferred from Fig. 1.6. Temperature measurement is thus one of the require-
ments in the operation of and experiments on superconducting magnets. It is a
large subject, with a book devoted to it [4.41] or a whole chapter [4.42]. Rubin
presents, with nearly 500 papers cited, a thorough review of progress in cryo-
genic thermometry over the period 1982–1997 [4.43]. Here our coverage, at only
an introductory level and extent, is limited to thermometers, not thermometry.
Specifically, we discuss temperature sensors that are readily available and com-
monly used in superconducting magnets; not included here are instrumentation
and calibration techniques, important topics in thermometry. Because we deal
with sensors only for superconducting magnets and related experiments, our dis-
cussion on thermometers covers the temperature range 2–300 K.

A. Kelvin Scale

In 1854 Kelvin proposed to take absolute zero as the starting point of a thermo-
dynamic temperature scale. In 1954, the kelvin (K) was adopted as the unit of
thermodynamic temperature, defined as 1/273.16 of water’s triple point temper-
ature (0.0100◦C). Accordingly, 0◦C, water’s melting point on the Celsius scale, is
equal to 273.15 K. Note that K stands by itself as the unit of temperature scale:
it is thus not 4.2◦K or 4.2 degrees Kelvin, but 4.2 K or 4.2 kelvins.

B. Requirements

As for any sensor, there are a number of requirements for a temperature sensor.
These (listed here in no particular order of importance) with the desired quality
given in parentheses, include: 1) signal level (high); 2) sensitivity (high); 3) re-
sponse time (fast, to detect transitory events); 4) size (small); 5) magnetic field
effect (minimal); 6) DC offset (zero); and 7) cost (low). Also desirable are repro-
ducibility, stability, and linearity. Although every sensor is a linear function of any
variable over a small range, clearly it cannot be expected to remain linear over an
arbitrarily large range. With the proliferation of computer-based data acquisition
techniques, linearity is not as pressing as it once was.

C. Types of Thermometers

Three types of thermometers are used in superconducting magnets and related
experiments: 1) diodes; 2) resistors; and 3) thermocouples. Gas and vapor pressure
thermometers, once quite common, particularly in the laboratory setup, are rarely
used now. Each of the three types of thermometers is described briefly below.

Diode Thermometers The junction voltage of a semiconductor device, such as
a diode, forward-biased at a constant current, increases with decreasing tempera-
ture. Most widely used diode thermometers are based on Si and GaAlAs junctions;
many commercial thermometers, both calibrated and uncalibrated, are available.
Calibrated versions are as little as ∼1/2 (some Si diodes) or as much as ∼4 times
more expensive than uncalibrated versions, the cost differential dictated chiefly by
the sensor’s operating temperature range.



CRYOGENICS—PROBLEMS & DISCUSSIONS 265

DISCUSSION 4.13: Low-Temperature Thermometers (continuation)

Resistance Thermometers Resistance thermometers are available with either
temperature coefficient sign: negative if based on semiconductors and positive if
based on metals (generally pure to maximize the sensor’s sensitivity, ohm/kelvin).

The negative temperature coefficient sensors include germanium, carbon resistors,
carbon-glass (primarily for use in magnetic fields), and ruthenium oxide. The
positive temperature coefficient sensors include platinum, platinum alloys, and
rhodium-iron. Becoming increasingly popular is the zirconium oxynitride ther-
mometer under the name Cernox, manufactured by Lake Shore Cryotronics, Inc.
Among metal-based sensors, the one based on pure platinum is the most promi-
nent and everyone’s choice when highest-accuracy is required; indeed the standard
platinum resistance thermometer defines the International Temperature Standard
from 13.8033 K, the triple point of hydrogen, up to well beyond 300 K.

Temperature Spectrum

Figure 4.19 shows a temperature spectrum over the range from 100 picokelvins
(100 pK) to 1 gigakelvin (1 GK). Note that superconducting magnets operate over
a temperature span that extends less than 2 log scales, 1 K–100 K.

T [K]

1G Interior of the hottest star

100M Thermonuclear fusion
Sun’s interior

10M

1M
Nuclear fission (∼300,000K)

100k

10k
Luminous nebulae; Tungsten melts (3683K)

1k Superconductors reacted (∼1000K)
Ice point (273.15K=0 ◦C)

100 Liquid nitrogen boils (77.3K) HTS magnets
10

Liquid helium boils (4.2K) LTS magnets
1

Pumped 3He (∼0.5K)
100m

10m Dilution refrigerators
3He becomes superfluid (2mK)1m

100μ

16μK, by nuclear adiabatic demagnetization (1956)10μ

1μ

150 nK, by laser cooling (1995)100n

10n

1n
450 pK, by laser cooling (2003)

100p 100 pK, by nuclear adiabatic demagnetization (2001)

Fig. 4.19 Temperature spectrum covering 19 orders of magnitude.
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Thermocouples For cryogenic applications that tolerate uncertainties of tem-
perature up to 5%—for example, 1 K at 20 K—thermocouples are widely used.
This is chiefly because they can meet some of the requirements listed earlier—
small size and fast response time—more readily than the diode and resistance
thermometers. Also, thermocouples are the least expensive among the three types.

D. Signal Levels and Sensitivities of Selected Thermometers

Table 4.11 presents approximate values of signal level (V ) and sensitivity (δV/δT )
at selected temperatures in the 2–300 K range for six commonly used thermome-
ters, two from each of the three types: diodes [4.44], resistances [4.44]; and ther-
mocouples [4.45]. Note that these values are given here to demonstrate that both
signal levels and sensitivities vary over a wide range among thermometers and as
a “guide” in the selection process for appropriate sensors. Commercial sources of
these sensors generally supply accurate “general” data for these sensors; each cal-
ibrated sensor is provided with its own specific data. Each thermometer in Table
4.11 is briefly discussed below, including magnetic field effects.

Additional Remarks, Including Magnetic Field Effects

Diode Diode thermometers, such as silicon and GaAlAs, have the highest sen-
sitivity among the three types over the entire temperature range of our interest.
Also as may be deduced from Table 4.11, the sensor’s V (T ) curve is quite linear,
i.e., V decreasing roughly linearly with T , in the 50–300 K range. Also attrac-
tive is that for most applications in which temperature uncertainties up to 5% are
acceptable, uncalibrated sensors that rely only on the manufacturer’s standard cal-
ibration curve may be used. The only negative is its unsuitability in the presence
of a magnetic field, particularly in the temperature range below 60 K [4.45].

Table 4.11: Approximate Values of Signal Level (V ) and Sensitivity (δV/δT ) of
Selected Thermometers of Diodes [4.44]; Resistances [4.44]; and Thermocouples [4.45]

Sensor 2K 4K 10K 20K 50K 100K 200K 300K

Silicon V [V] 1.69 1.63 1.42 1.21 1.07 0.98 0.76 0.52

δV/δT [mV/K] −21 −33 −29 −18 −1.8 −2.0 −2.3 −2.4

GaAlAs V [V] 5.5 5.1 4.1 2.7 1.5 1.4 1.1 0.9

δV/δT [mV/K] −210 −210 −145 −110 −30 −1.5 −2.6 −2.7

Cernox V [mV] 12 14 17 28 13 20 33 20

δV/δT [mV/K] −10 −3.5 −1.5 −1.2 −0.24 −0.18 −0.18 −0.07
@ Current [μA] 1 3 10 30 30 100 300 300

Platinum V [mV] NA NA NA 2.4 10 31 77 114

δV/δT [mV/K] NA NA NA 0.086 0.35 0.41 0.39 0.38
@ Current [mA] — — — 1 1 1 1 1

Type E V [μV] 1.3 4.6 24.9 91 504 1775 5871 11445

δV/δT [μV/K] 1.15 2.09 4.65 8.51 18.7 31.4 49.3 61

AuFe(0.07%)- V [μV] 17.2 39.6 124.9 286.6 768.6 1647 3667 5864

Chromel δV/δT [μV/K] 10.0 12.2 15.6 16.3 16.4 18.7 21.4 22.8
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GaAlAs There are two important aspects of GaAlAs that are different from Si:
1) greater nonlinearity of V (T ); and 2) insensitivity to magnetic fields up to ∼5 T.

Cernox Although not as sensitive as diode thermometers, second to Si, Cernox
is widely used. Unlike Si, it is quite insensitive to a magnetic field. Data of
Lake Shore Cryotronics [4.44], the manufacturer of Cernox, show that at 20 K the
sensor’s δT/T uncertainty due to magnetic field is less than 0.2% up to a field of
20 T; the error increases with decreasing temperature, reaching ∼5% at 2 K.

Platinum A platinum sensor is quite insensitive to magnetic field at tempera-
tures above ∼40 K: for example, at 40 K and 5 T, δT/T is 1.5%, which, at 80 K
and 5 T, decreases by a factor of 10 [4.44].

Type E Thermocouple Both Type E and Chromel-Au0.07%Fe have the small-
est signal levels and sensitivities compared with the other four sensors. Note that
with the ice-point (0◦) reference, Type E, at 20 K, for example, has an offset volt-
age of ∼11 mV, while its sensitivity is only ∼10 μV/K. However, its accuracy is
much improved when only changes in temperature from a specific operating point
are to be measured. Also, if temperature uncertainties up to ∼5% can be tolerated
and many sensors are required, Type E is an excellent choice. Field sensitivity is
quite modest, e.g., 2% at 20 K and <1% at 45 K, both in a field of 8 T [4.44].

AuFe(0.07%)-Chromel Among all thermocouples, chromel-AuFe(0.07%) gives
the highest sensitivity, and thus is most suitable, at temperatures below ∼20 K. Its
V (T ) values, however, can easily deviate from the published values [4.45] when the
AuFe(0.07%) wire is strained—it must be handled very carefully. Its sensitivity
to magnetic field is roughly one order of magnitude greater than that of Type E.

Capacitance Thermometers

Though not included in the above discussion, capacitance thermometers such as
strontium titanate sensors are used because of their very low magnetic field de-
pendence. Several other types based on glass or plastic materials are popular for
temperatures below 1 K.

Fahrenheit Scale

—Passage from Linus Pauling’s College Chemistry [4.46]

The Fahrenheit scale was devised by Gabriel Daniel Fahrenheit (1686–1736), a
natural philosopher who was born in Danzig (now Gdańsk) and settled in Holland.
He invented the mercury thermometer in 1714; before then alcohol had been used as
the liquid in thermometers. As the zero point on his scale he took the temperature
produced by mixing equal quantities of snow and ammonium chloride. His choice of
212 o for the boiling point of water was made in order that the temperature of his body
should be 100 oF. The normal temperature of the human body is 98.6 oF (37.0◦C);
perhaps Fahrenheit had a slight fever while he was calibrating his thermometer.
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For a superconducting magnet immersed in a bath of liquid helium at 4.2 K, a
vapor-cooled copper current lead can be a large heat load on the system cryogenics.
The basic design concept for an optimum vapor-cooled copper lead is to make the
Joule heating and conduction heating about equal and to remove the heat by
funneling cold helium vapor through the lead. Work on vapor-cooled leads began
in the 1960s and continues [4.47–4.52]. Vapor-cooled leads are now commercially
available in the current range 100 A–75 kA. Recently, it has reached the 100-kA
level [4.53]. Here we present analytical expressions for key parameters of a lead.

A. Power Density Equation

The total power Qin flowing into and generated within a differential volume AΔz
of a vapor-cooled lead (Fig. 4.20) carrying the lead’s rated current I◦ is given by:

Qin =
[
Ak(T )

dT

dz

]
z+Δz

+ ṁIcp(T )T +
ρ(T )I2

◦
A

Δz (4.25)

where z is the axial distance along the lead, and z=0 at the lead’s cold end. k(T ),
A, and ρ(T ) are, respectively, the thermal conductivity, active cross sectional
area, and electrical resistivity of the lead (usually copper). ṁI and cp(T ) are,
respectively, the helium mass flow rate and specific heat. The heat transfer between
the helium and the lead is assumed perfect; T is the temperature of both the lead
and helium at z. The total power Qout flowing out of the differential volume of
AΔz is given by:

Qout =
[
Ak(T )

dT

dz

]
z

+ ṁIcp(T )(T + ΔT ) (4.26)

In the steady-state condition, we have Qin = Qout. Thus:[
Ak(T )

dT

dz

]
z+Δz

−
[
Ak(T )

dT

dz

]
z

− ṁIcp(T )ΔT +
ρ(T )I2

◦
A

Δz = 0 (4.27)

ṁIcp(T )(T +ΔT )
[
Ak(T )dT

dz

]
z+Δz

z+Δz

ρ(T )I2
◦

A

z

ṁIcp(T )T
[
Ak(T )dT

dz

]
z

Fig. 4.20 Heat balance for a differential volume of a vapor-cooled lead.

* Based on Problem4.3 in the 1st Edition (Plenum, 1994).
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Dividing Eq. 4.27 by Δz and letting Δz→0, we obtain:
d

dz

[
Ak(T )

dT

dz

]
− ṁIcp(T )

dT

dz
+

ρ(T )I2
◦

A
= 0 (4.28)

B. Cold-End Heat Input & Boil-Off Rate

In the “high” current limit, i.e., |d[Ak(T )dT/dz]/dz|�ρ(T )I2
◦/A, Eq. 4.28 evalu-

ated at z = 0, where T (0) = T0, is simplified to:

−ṁIcp0
dT

dz

∣∣∣∣
z=0

+
ρ0

A
I2
◦ � 0 (4.29a)

where cp0 = cp(T0) and ρ0 = ρ(T0). From Eq. 4.29a, we can solve for (dT/dz)z=0:
dT

dz

∣∣∣∣
z=0

� ρ0I
2
◦

AṁIcp0
(4.29b)

Because QI◦ at z = 0 is purely by conduction, we have, with k0 =k(T0):

QI◦ = Ak(T0)
dT

dz

∣∣∣∣
z=0

=
k0ρ0I

2
◦

ṁIcp0
(4.30)

The power input QI◦ into the liquid boils off the liquid at a rate ṁI given by:

ṁI =
QI◦

hL
(4.31a)

where hL is the liquid helium’s latent heat of vaporization [J/kg]. Combining
Eqs. 4.30 and 4.31a and solving for ṁI , we obtain:

ṁI = I◦

√
k0ρ0

cp0hL
(4.31b)

Inserting ṁI given by Eq. 4.31b into Eq. 4.30 and solving for QI◦/I◦, we derive:

QI◦

I◦
=

√
hLk0ρ0

cp0
(4.32a)

Note that QI◦ depends neither on �, the lead active length between the bottom
end (z = 0) and top end (z = �), nor on A, the lead conductor cross section. It
is, however, directly proportional to I◦, the lead’s rated current. Note that if the
lead carries I <I◦, the cold-end heat input will not be (I/I◦)QI◦ .

Throughout this discussion T0 is the cold-end temperature of a vapor-cooled lead,
assumed below to be T0 =6 K. However, in a real vapor-cooled lead, this cold end
(z = 0) may be located high above the top of the magnet (and minimum liquid
level)—in some cases 25 cm or even higher, because it is often desirable to provide
a reservoir of liquid helium above the magnet. The cold end is then electrically
and thermally connected to a superconductor-shunted copper extension, the other
end (z<0) of which penetrates into the liquid. The superconductor shunt (often of
copper/NbTi composite) carries I◦ to the magnet, and the copper conducts QI◦ to
the liquid. The copper extension must have enough cross sectional area to conduct
QI◦ , even when exposed out of liquid helium over its entire span, without raising
T0 too high, thus enabling the superconductor shunt to carry I◦ superconductively.
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With hL = 20.7×103 J/kg and cp0 � 5.26×103 J/kg K for liquid helium; k0 =
600 W/m K and ρ0�2.5×10−10 Ω m for copper, we obtain:

QI◦

I◦
�

√
(20.7×103 J/kg)(600 W/m K)(2.5×10−10 Ω m)

5.26×103 J/kg K

= 7.7×10−4 W/A = 0.77 mW/A ∼ 1mW/A (4.32b)

For an optimum vapor-cooled lead, 1 mW/A is a rule-of-thumb value useful for
estimating the heat input into liquid helium. For a single 10-kA lead operating at
10 kA (=I◦), the heat load will be ∼10 W, or ∼20 W for a pair of such leads.

C. Optimal Current-Lead Parameters

The high-current approximation of Eq. 4.28 is given by:

−ṁIcp(T )
dT

dz
+

ρ(T )I2
◦

A
= 0 (4.33)

Solving for dT/ρ(T ) from Eq. 4.33 with cp(T )� c̃p, a temperature-averaged (from
T0 to T�) heat capacity of helium, and integrating both sides over appropriate
limits (T0 at z = 0 and T� at z = �) we obtain:∫ T�

T0

dT

ρ(T )
=

∫ �

0

I2
◦ dz

AṁI c̃p
=

I2
◦�

AṁI c̃p
(4.34a)

For copper, the integral
∫ T�

T0
dT/ρ(T )is given approximately by:∫ T�

T0

dT

ρ(T )
� 1.2×1011 K/Ω m (4.34b)

for T0 = 6 K and T� = 273 K. Inserting ṁI (Eq. 4.31b) in Eq. 4.34a and assuming
c̃p�cp0, a valid assumption for helium, we obtain:∫ T�

T0

dT

ρ(T )
�

(
I2
◦�

Acp0

)
1
I◦

√
cp0hL

k0ρ0
(4.34c)

We express the optimal-current-lead parameter ratio, (I◦�/A)ot ≡ ζ◦, in terms of
its rated current (I◦), lead active length (�), and cross sectional area (A):(

I◦�

A

)
ot

≡ ζ◦ �
[∫ T�

T0

dT

ρ(T )

] √
cp0k0ρ0

hL
(4.35a)

Inserting appropriate values for the parameters in the above equation, we can
numerically solve for ζ◦:

ζ◦ � (1.2×1011 K/Ω m)

√
(5.26×103 J/kg K)(600 W/m K)(2.5×10−10 Ω m)

20.7×103 J/kg

Thus: (
I◦�

A

)
ot

� 2.3×107 A/m (4.35b)

For I◦=6 kA and �=38 cm, for example, Eq. 4.35b gives: A�1 cm2.
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D. Standing Heat Input

The liquid helium boil-off rate when the optimized lead carries no current—called
the “standing” boil-off rate, ṁ0—is due to heat input into the helium by conduc-
tion only. With I◦ = 0 inserted into Eq. 4.28, we have:

Ak̃
d2T

dz2
− ṁ0c̃p

dT

dz
= 0 (4.36)

where k̃ is the average thermal conductivity and c̃p is the average specific heat of
helium, both in the temperature range, T0 to T�.

k̃ =
1

T�−T0

∫ T�

T0

k(T ) dT (4.37)

Table 4.18 (p. 307) presents values of k̃ for four materials (G-10, stainless steel
304, brass, and copper) over three common temperature ranges in cryogenic ap-
plications: 4–80 K; 4–300 K; and 80–300 K.

With the boundary conditions, T (z = 0) = T0 and Ak̃(dT/dz)z=0 = ṁ0hL, T (z)
may be given by:

T (z) = T0 +
hL

c̃p

[
exp

(
ṁ0c̃pz

Ak̃

)
− 1

]
(4.38a)

Thus:

T (�) ≡ T� = T0 +
hL

c̃p

[
exp

(
ṁ0c̃p�

Ak̃

)
− 1

]
(4.38b)

Solving Eq. 4.38b for ṁ0c̃p�/Ak̃, we have:

ṁ0c̃p�

Ak̃
= ln

[
c̃p(T�−T0)

hL
+ 1

]
(4.39a)

From Eq. 4.39a we may solve for ṁ0. Thus:

ṁ0 =
k̃

c̃p

(
A

�

)
ln

[
c̃p(T�−T0)

hL
+ 1

]
(4.39b)

Combining Eq. 4.39b and Q0 = ṁ0hL, we obtain:

Q0 =
k̃hL

c̃p

(
A

�

)
ln

[
c̃p(T�−T0)

hL
+ 1

]
(4.40a)

For an optimal lead, (I◦�/A)ot =ζ◦, we thus obtain:

Q0 =
k̃hL

c̃p

(
I◦
ζ◦

)
ln

[
c̃p(T�−T0)

hL
+ 1

]
(4.40b)
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For an optimum vapor-cooled copper lead, the ratio of Q0 to QI◦ is given by:

Q0

QI◦
=

k̃

c̃pζ◦

√
hLcp0

k0ρ0
ln

[
c̃p(T�−T0)

hL
+ 1

]
(4.41)

With k̃ = 660 W/m K (Table 4.18); c̃p � 5.2 kJ/kg K; T� = 300 K; T0 = 4 K and
ζ◦�2.3×107 A/m inserted into Eq. 4.41, we obtain:

Q0

QI◦
� 0.69 (4.42)

That is, the standing boil-off rate of a vapor-cooled lead is roughly 70% of the
boil-off rate of the lead carrying its rated current.

E. Voltage Drop Across an Optimal Lead

The voltage drop V◦ over the entire length of the copper lead at I◦ is given by:

V◦ =
I◦
A

∫ �

0

ρcu dz (4.43a)

Integration over the lead length � is necessary because ρcu, the electrical resistivity
of copper, is temperature-dependent and thus varies with z. Equation 4.43a may
be expressed as:

V◦ = ρ̃cu

(
I◦�

A

)
ot

= ρ̃cuζ◦ (4.43b)

where

ρ̃cu =
1
�

∫ �

0

ρcu dz � 1
T�−T0

∫ T�

T0

ρcu(T ) dT (4.44)

Equation 4.44 assumes a linear temperature gradient along the current lead. Com-
bining Eqs. 4.43b, where ρ̃cu is given in the unit of Ω m, and Eq. 4.35b, we have:

V◦ � 2.3×107ρ̃cu V (4.45)

That is, Vot is the same among leads optimized for any rated current.

For copper, ρcu is ∼2.5×10−10 Ω m (below ∼50 K) and varies linearly with tem-
perature above ∼50 K, being 1.75×10−8 Ω m at 273 K. From Eq. 4.44, we have:
ρ̃cu�0.4×10−8 Ω m. The voltage drop across an optimum lead at its rated current
is independent of rated current; for a copper lead it is ∼100 mV. Thus, V◦∼100 mV
at 100 A for a 100-A lead and at 10 kA for a 10-kA lead; when the warm end is
“cool,” which often happens in vapor-cooled leads, V◦ can be less than 100 mV.
This conclusion agrees, within an order of magnitude, with experimental data for
vapor-cooled copper leads in the 1 kA–30 kA range [4.54].

TRIVIA 4.4: List the temperatures below in descending order.

i) Critical, of superconductor MgB2; ii) Curie, of ferromagnet CrBr3;

iii) Phase transition, of solid N2; iv) Surface, of the “planet” Pluto.
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DISCUSSION 4.14: Vapor-Cooled Copper Current Lead (continuation)

F. Heating Upon Flow Stoppage

When a cooling gas flow stoppage occurs, the steady-state solution on which the
design of optimum leads is based is no longer valid. If the lead continues to carry
its rated current I◦ without cooling, “flow stoppage meltdown” of the lead may
occur, most often near the warm end. The time-dependent power equation [W/m]
for a differential element of an optimum lead is given by:

ACcu(T )
dT

dt
=

d

dz

[
Ak(T )

dT

dz

]
− ṁIcp(T )

dT

dz
+

ρcu(T )
A

I2
◦ (4.46)

where Ccu(T ) is the volumetric heat capacity of the lead metal (copper). With
no cooling (ṁI = 0) and the conduction term set equal to zero (conservative
assumption), Eq. 4.46 becomes:

ACcu(T )
dT

dt
=

ρcu(T )
A

I2
◦ (4.47)

An optimum lead satisfies (I◦�/A)=ζ◦=2.3×107 A/m. Thus:

Ccu(T )
dT

dt
=

ρcu(T )ζ2
◦

�2
(4.48)

Because flow stoppage meltdown usually happens near the warm end, we replace
Ccu(T ) with C◦ (a constant) and ρcu(T ) = ρ◦ +γcuT (ρ◦ and γcu both constants):

dT

dt
=

ρ◦ζ2
◦

C◦�2
+

γcuζ2
◦

C◦�2
T =

ρ◦
γcuτ

�

+
T

τ
�

(4.49)

The thermal time constant of the lead, τ
�
, is given by:

τ
�

=
C◦�2

γcuζ2
◦

(4.50)

The solution to Eq. 4.49 is given by:

T (t) = Ket/τ
� − ρ◦

γcu
(4.51)

where K is a constant. Equation 4.51 states that upon gas flow stoppage T (t)
rises exponentially with a time constant of τ

�
. Because τ

�
is proportional to �2,

a longer optimum lead takes longer to reach the metal’s meltdown temperature
than does a shorter optimum lead. Note that because ζ◦ = (I◦�/A), we may also
conclude that for the same rated current a thicker optimum lead is safer than a
thinner optimum lead against a flow stoppage incident.

For an optimum 10-kA lead with �=1 m, for example, with C◦=3.5×106 J/m3 K,
γcu =68×10−12 Ω m/K, and (I◦�/A) ≡ ζ◦=2.3×107 A/m, we obtain:

τ
�

=
(3.5×106 J/m3 K)(1 m)2

(68×10−12 Ω m/K)(2.5×107 A/m)2
∼ 90 s

Note that τ
�

is doubled for an optimum 10-kA lead having �=1.4 m.
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DISCUSSION 4.15: “Dry” Leads—Normal Metal & HTS*

For a dry superconducting magnet, current leads must generally operate in a
vacuum environment. Here we discuss two types of leads rated at I◦: 1) normal
metal [4.55]; and 2) HTS over its usable temperature range [4.56].

A. Normal Metal

The steady-state power differential equation over a unit lead length is given by:

Ak̃
d2T

dz2
+

ρ̃I2
◦

A
= 0 (4.52)

where A is the lead active cross sectional area; k̃ and ρ̃ are, respectively, the metal’s
T -averaged thermal conductivity and electrical resistivity. Solving Eq. 4.52 with
the boundary conditions T (z = 0) = T0 and T (z = �) = T�, we obtain Eq. 4.11
(p. 240), from which the heat input at the cold end, QI◦ may be derived:

QI◦ = Ak̃
dT

dz

∣∣∣∣
z=0

= k̃(T� − T0)
(

A

�

)
+

ρ̃I2
◦

2

(
�

A

)
(4.53)

Differentiating Eq. 4.53 with respect to �/A and setting it to 0 for (I◦�/A)dr, we
obtain (I◦�/A)dr for an optimal dry lead that minimizes [QI◦ ]dr (Eq. 4.12, p. 240):(

I◦�

A

)
dr

=

√
2k̃(T� − T0)

ρ̃
(4.12)

From Eqs. 4.12 and 4.53, we obtain an expression for [QI◦ ]dr:

[QI◦ ]dr = I◦

√
2k̃ρ̃(T� − T0) (4.54)

With k̃ = 460 W/m K and ρ̃ = 1×10−8 Ω m (for copper in the range 80–300 K),
Eq. 4.54 gives: [QI◦ ]dr/I◦ � 45 mW/A; for brass, Eq. 4.54 gives 32 mW/A [4.19].
That is, for a conduction-cooled lead, brass is preferable to copper.

B. HTS Extension

After the discovery of YBCO, HTS lead “extensions” were built for the cold portion
(below ∼80 K) of a normal metal lead [4.57, 4.58]. The heat input to the magnet
environment at T0 by an HTS extension, [QIhts

]dr, of “average” thermal conduc-
tivity khts, cross sectional area Ahts, length �hts, and warm-end temperature Twhts

is ideally by conduction, for which:

[QIhts
]dr = khtsAhts

(Twhts
− T0)

�hts
(4.55)

In a real normal-metal/HTS lead, the normal metal heat at its cold end, given by
Eq. 4.54 with T0 � Twhts

, generally is absorbed by the 1st stage of a cryocooler,
the 2nd stage of which maintains the magnet at T0. Also, the HTS lead, whether
of bulk or tape, must be protected; protection of Bi2223 tape current lead is
discussed in DISCUSSION 8.5. Besides the HTS lead considered here, there also
are vapor-cooled HTS versions, as studied in PROBLEMS 4.4–4.6.

* Based on Problem4.4 in the 1st Edition (Plenum, 1994).
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PROBLEM 4.4: Vapor-cooled HTS current lead

—Fully Superconducting Version (FSV)

Together with conduction-cooled HTS current leads, vapor-cooled HTS current
leads were also among the earliest practical, and successful, HTS devices. Started
in 1989, the work is still continuing [4.59–4.73]. HTS leads now reach rated currents
of 60 kA [4.69] and 70 kA [4.74].

Here, we study a vapor-cooled current lead incorporating HTS, specifically that in
the form of tape, in which the HTS’s warm end is thermally anchored at 77–80 K;
at this point the HTS lead is connected to a vapor-cooled normal-metal lead, to
reach the room-temperature termination. Hull has classified altogether 11 types
of current leads [4.60]. Among these is a fully-superconducting version (FSV) of
a vapor-cooled HTS lead, i.e., that operates fully superconducting over the entire
temperature range, between 4.2 K and 77–80 K. Because such a lead relies on
convective cooling by the effluent helium vapor, it is appropriate primarily for
superconducting magnets that operate immersed in a bath of liquid helium.

Figure 4.21 shows the basic configura-
tion of the vapor-cooled HTS lead stud-
ied here, comprised of Nfs paralleled HTS
tapes, each of active length �. The HTS
lead, rated at current I◦, operates be-
tween its cold end (z=0) at temperature
T0 and its warm end (z = �), at T�. The
HTS lead conducts heat, Qin, into liq-
uid helium, generating effluent vapor, of
mass flow rate ṁh, that absorbs the heat
over the lead length �.

Between T� and room temperature, any
vapor-cooled HTS lead must be coupled
to an optimal vapor-cooled lead of nor-
mal metal, generally copper, rated at the
same current of I◦. Because Qin of the
HTS lead is necessarily smaller than that
of the copper counterpart—this reduc-
tion in Qin is the only reason for incor-
porating the HTS lead—the helium flow
rate ṁh generated by the HTS section is
insufficient for the normal metal section.
Therefore extra coolant is introduced at
the cold-end of the normal-metal vapor-
cooled lead, as indicated in Fig. 4.21.

Room Temperature

Normal Metal
Section

I◦

Coolant

I◦

� HTS Section

z = 0

Liquid Helium

[Magnet]

Fig. 4.21 Basic configuration of a vapor-
cooled HTS lead coupled to an optimal vapor-cooled lead of normal
metal. The HTS lead extends from z = 0, generally at 4.2K, to z = �,
e.g., at 77–80K. An extra flow of coolant is introduced at z=�.
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PROBLEM 4.4: Vapor-cooled HTS current lead—FSV (continuation)

The steady-state time-independent power equation for a differential element of an
HTS current lead cooled by the effluent helium vapor is given by:

d

dz

[
[Am]fskm(T )

dT

dz

]
− [ṁh]fscp(T )

dT

dz
= 0 (4.56)

It is assumed here that heat transfer between the lead and helium vapor is perfect,
with zero temperature difference between the two.

In Eq. 4.56, [Am]fs is the total cross sectional area in the FSV lead of HTS matrix
(normal) metal, e.g., Ag-Au in Bi2223 tape: [Am]fs = Nfsam, where am is the
matrix cross sectional area of an individual tape; Nfs is the number of parallel
HTS tapes; km(T ) is the thermal conductivity of the matrix metal; [ṁh]fs is the
helium flow rate; and cp(T ) is the specific heat of helium. We linearize Eq. 4.56
by making km(T ) = k̃ and cp(T ) = c̃p, both constants, respectively, temperature-
averaged km(T ) and cp(T ) over the range from T0 at z=0 to T� at z=�, Thus:

[Am]fsk̃
d2T

dz2
− [ṁh]fsc̃p

dT

dz
= 0 (4.57)

Equation 4.57 may be solved for T (z):

T (z) = T0 +
(

T�−T0

e[α]fs−1

) [
e[α]fs(z/�) − 1

]
(4.58)

where, [α]fs, a dimensionless quantity, is given by:

[α]fs =
[ṁh]fsc̃p�

k̃[Am]fs

(4.59)

a) Show that [Qin]fs, the heat input to the helium bath (z=0), is given by:

[Qin]fs =
k̃[Am]fshL

c̃p�
ln

[
c̃p(T�−T0)

hL
+ 1

]
(4.60)

where hL is the latent heat of vaporization of helium. Note that [Qin]fs, unlike
QI◦ ∝ I◦ (from Eq. 4.32a) for the vapor-cooled copper lead, is proportional
not to current but to Nfs through [Am]fs =Nfsam.

b) Show that the difference between [Qin]fs and [Q�]fs, the heat conducted into
the FSV lead from the copper lead at z = �, is equal to the difference in
enthalpy energy of the effluent helium vapor at z=� (T�) and z=0 (T0):

[Q�]fs − [Qin]fs = [ṁh]fsc̃p(T� − T0) (4.61)

Answer to TRIVIA 4.4: Pluto (∼40, in K); MgB2 (39); CrBr3 (37); N2 (35.6).
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Solution to PROBLEM 4.4

a) From Eq. 4.58, we may first solve for dT/dz|0 (dT/dz at z=0). Then, [Qin]fs:

[Qin]fs = k̃[Am]fs
dT

dz

∣∣∣∣
0

= [ṁh]fshL (S4.1)

Evaluating dT/dz|0 from Eq. 4.58 and inserting [α]fs given by Eq. 4.59, we obtain:

k̃[Am]fs
dT

dz

∣∣∣∣
0

= k̃[Am]fs

(
T�−T0

e[α]fs−1

)
[α]fs

�

=
(

T�−T0

e[α]fs−1

)
[ṁh]fsc̃p = [ṁh]fshL (S4.2)

Solving Eq. S4.2 for e[α]fs , we have:

e[α]fs =
c̃p(T�−T0)

hL
+ 1 (S4.3a)

[α]fs = ln
[
c̃p(T�−T0)

hL
+ 1

]
(S4.3b)

Combining Eqs. 4.59 and S4.3b, we have:

[ṁh]fs =
k̃[Am]fs

c̃p�
ln

[
c̃p(T�−T0)

hL
+ 1

]
(S4.4)

Substituting Eq. S4.4 into S4.1, we obtain:

[Qin]fs =
k̃[Am]fshL

c̃p�
ln

[
c̃p(T�−T0)

hL
+ 1

]
(4.60)

Strictly, Eq. 4.60 is valid only when the system bath is continuously replenished so
that its liquid level is kept constant; if it is not, a correction factor of (1−�v/��) is
needed for [ṁh]fshL [4.63], where �v and �� are respectively the densities of vapor
and liquid at saturation. At 4.2 K the density ratio is 0.135: (1−�v/��)=0.865.

b) Conduction heat into the lead at z=� from above, [Q�]fs, is given by:

[Q�]fs = k̃[Am]fs
dT

dz

∣∣∣∣
�

= [ṁh]fsc̃p

(
T�−T0

e[α]fs−1

)
e[α]fs (S4.5a)

= [ṁh]fshL

[
c̃p(T�−T0)

hL
+ 1

]

= [ṁh]fsc̃p(T� − T0) + [ṁh]fshL (S4.5b)

Combining the outboard terms of Eq. S4.1 and Eq. S4.5b, we note that:

[Q�]fs − [Qin]fs = [ṁh]fsc̃p(T� − T0) (4.61)

Equation 4.61 shows that the three power terms are balanced. Namely, the differ-
ence in heat entering the lead at z=� and that leaving the lead at z=0 is exactly
equal to the gain in thermal power of the effluent helium vapor.
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PROBLEM 4.5: Vapor-cooled HTS current lead
—Current-Sharing Version (CSV)

We study here a vapor-cooled HTS current lead in which a short section at the
warm (T�) end is designed to operate in the so-called “current-sharing” mode [4.75–
4.77]—current sharing is studied in CHAPTER 6. This current-sharing version
(CSV) of a vapor-cooled HTS lead has the same rated current as its FSV counter-
part studied in PROBLEM 4.4. Figure 4.22 shows a linearized Ic(T ) plot for the
superconductor in the lead, with critical currents of Ic0 at T0 (z = 0) and Ic� at
T� (z=�). Also shown by the dotted horizontal line is the rated transport current
I◦ of the lead. As indicated in the figure, Ic(Tcs)= I◦ at Tcs, the temperature at
which current sharing begins. The dashed line indicates the portion of I◦ in the
superconductor’s normal metal matrix. At T� the superconductor carries Ic�, and
the matrix I◦−Ic�. This short section of the HTS lead dissipates Joule heat, which
must be removed by the effluent helium.

Advantage of CSV

For the same rated transport current, the CSV lead contains fewer (Ncs) expensive
HTS tapes than its FSV counterpart (Ncs < Nfs). Furthermore, as discussed in
PROBLEM 4.6 for 6-kA leads, the cold-end heat input of the CSV lead, despite
its Joule dissipation near the warm end, is less than that of the FSV counterpart.

Analysis of Superconducting Section (0≤z≤�cs)
We first analyze the superconducting section of this CSV lead. It spans between
z = 0 at T0 and z = �cs at Tcs. The temperature T (ξ), with z normalized to �
(ξ ≡ z/�) and constant materials properties, is similar to Eq. 4.58. Thus:

T (ξ) =
(

Tcs−T0

e[α�]csξcs−1

) (
e[α�]csξ +

e[α�]csξcsT0−Tcs

Tcs−T0

)
(0 ≤ z ≤�cs) (4.62)

With [Am]cs =Ncsam, [α�]cs is given by:

[α�]cs ≡ [ṁh]csc̃p�

k̃[Am]cs
(4.63)

Ic(T )

Ic0

I◦
Ic�

I◦−Ic�

0 T
0 T0 Tcs T� Tc

Fig. 4.22 Ic(T ) plot (solid line), approximated to be linear with temperature for
HTS. The dotted horizontal line is the lead’s rated current, I◦. The dashed line
indicates the current through the matrix, I◦−Ic(T ), in the current-sharing region.
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PROBLEM 4.5: Vapor-cooled HTS current lead—CSV (continuation)

a) Show, from Eq. 4.62, that T (ξ=0)=T0 and T (ξ=ξcs)=Tcs.

b) Show that [Qin]cs, the heat input at z=0 in the CSV lead, is given by:

[Qin]cs =
k̃[Am]cshL

c̃p�cs
ln

[
c̃p(Tcs−T0)

hL
+ 1

]
(4.64)

In practice, as we shall see in PROBLEM 4.6, which deals with a numerical
example, �cs and Tcs−T0 are, respectively, nearly equal to � and T�−T0 of the
FSV counterpart. Thus, [Qin]cs < [Qin]fs comes mainly from [Am]cs < [Am]fs.
In the process of deriving Eq. 4.64, show also that [α�]cs is given by:

e[α�]csξcs =
c̃p(Tcs−T0)

hL
+ 1 (4.65a)

[α�]cs =
1

ξcs
ln

[
c̃p(Tcs−T0)

hL
+ 1

]
(4.65b)

Analysis of Current-Sharing Section (�cs≤z≤�)
In the current-sharing region, between z=�cs at Tcs and z=� at T�, the power per
conductor length equation, with the material properties constant, is given by:

k̃[Am]cs
d2T

dz2
− [ṁh]csc̃p

dT

dz
+

ρ̃xI◦(I◦−Ic�)
[Am]cs(T�−Tcs)

(T − Tcs) = 0

(�cs ≤ z ≤ �) (4.66)

The third term in Eq. 4.66 gives the Joule dissipation that takes place over this
section of the CSV lead that operates in the current-sharing mode. ρ̃x is the
temperature-averaged electrical resistivity of the lead over this section. With the
boundary conditions, T (�cs)=Tcs and T (�)=T�, and normalizing z with �, ξ≡z/�,
we obtain in the range ξcs ≤ ξ ≤ 1:

T (ξ) = Tcs +
(T�−Tcs)

e
[α�]cs

2 sinβcs(1−ξcs)
e

[α�]cs
2 ξ sinβcs(ξ − ξcs) (4.67)

where, βcs, another dimensionless quantity, is given by:

βcs =

√
ρ̃xI◦(I◦−Ic�)�2

k̃[Am]2cs(T�−Tcs)
− 1

4

(
[ṁh]csc̃p�

k̃[Am]cs

)2

(4.68a)

Combining Eqs. 4.68a and 4.63, we have:

βcs =

√
ρ̃xI◦(I◦−Ic�)�2

k̃[Am]2cs(T�−Tcs)
− 1

4 [α�]2cs (4.68b)

Combining Eqs. 4.68b and 4.65b, we also have:

βcs =

√
ρ̃xI◦(I◦−Ic�)�2

k̃[Am]2cs(T�−Tcs)
− 1

4

{
1

ξcs
ln

[
c̃p(Tcs−T0)

hL
+ 1

]}2

(4.68c)
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PROBLEM 4.5: Vapor-cooled HTS current lead—CSV (continuation)

c) By equating conduction heat derivable from Eq. 4.62 and that derivable from
Eq. 4.67, both at ξcs =�cs/�, show that ξcs may be given by:

[α�]cse
[α�]cs(1+ξcs)

2 =
βcs

sinβcs(1−ξcs)

[
c̃p(T�−Tcs)

hL

]
(4.69)

Combining Eqs. 4.65a, 4.65b, and 4.69, and noting that:

e
[α�]cs

2 =
[
c̃p(Tcs−T0)

hL
+ 1

]1/(2ξcs)

(4.70a)

e
[α�]csξcs

2 =
[
c̃p(Tcs−T0)

hL
+ 1

]1/2

(4.70b)

We obtain:

1
ξcs

[
hL

c̃p(T�−Tcs)

]
ln

[
c̃p(Tcs−T0)

hL
+1

] [
c̃p(Tcs−T0)

hL
+1

] 1+ξcs
2ξcs

=
βcs

sinβcs(1−ξcs)
(4.71)

Note that for a set of parameters of a CSV lead—ρ̃x, k̃, [Am]cs, I◦, Ic�—the
only unknown parameter in Eq. 4.71 is ξcs, because the only unknown in βcs

(Eq. 4.68c) is also ξcs: ξcs must satisfy both Eqs. 4.68c and 4.71.

d) Show that over the fully superconducting section (0 ≤ z ≤ �cs) of this CSV
lead, the three power terms are balanced:

[Q�cs ]cs − [Qin]cs = [ṁh]csc̃p(Tcs − T0) (4.72)

where [Q�cs ]cs is the conduction heat entering the fully superconducting sec-
tion at z=�cs.

e) Show that in the current-sharing region, the four power terms—[Q�]cs, the
conduction into the CSV lead at z = �; Qj , the total Joule dissipation gen-
erated within the region; [Q�cs ]cs, the conduction out of the lead at z = �cs;
and convective cooling, ṁhc̃p(T�−Tcs)—are balanced.

[Q�]cs + Qj − [Q�cs
]cs = [ṁh]csc̃p(T� − Tcs) (4.73)

f) Show that:
[Q�]cs + Qj − [Qin]cs = [ṁh]csc̃p(T� − T0) (4.74)

That is, over the entire CSV lead, power is balanced.
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Solution to PROBLEM 4.5

a) By inserting ξ=0 into Eq. 4.62, we obtain:

T (0) =
(

Tcs−T0

e[α�]csξcs−1

) (
1 +

e[α�]csξcsT0−Tcs

Tcs−T0

)

=
(

Tcs−T0

e[α�]csξcs−1

) [
T0(e[α�]csξcs−1)

Tcs−T0

]
= T0 (S5.1)

Similarly, by inserting ξ=ξcs into Eq. 4.62, we obtain:

T (ξcs) =
(

Tcs−T0

e[α�]csξcs−1

) (
e[α�]csξcs +

e[α�]csξcsT0−Tcs

Tcs−T0

)

=
(

Tcs − T0

e[α�]csξcs−1

) [
Tcs(e[α�]csξcs−1)

Tcs − T0

]
= Tcs (S5.2)

b) We have:

[Qin]cs =
k̃[Am]cs

�

dT

dξ

∣∣∣∣
ξ=0

(S5.3)

where dT/dξ is evaluated from T (ξ) given by Eq. 4.62. Thus:

[Qin]cs =
k̃[Am]cs

�

(
Tcs−T0

e[α�]csξcs−1

)
[α�]cs = [ṁh]cshL (S5.4)

Combining [α�]cs given by Eqs. 4.63 and S5.4, we obtain:

e[α�]csξcs =
c̃p(Tcs−T0)

hL
+ 1 (4.65a)

[α�]cs =
1

ξcs
ln

[
c̃p(Tcs−T0)

hL
+ 1

]
(4.65b)

Finally, by combining Eqs. S5.3 and 4.65b, and noting ξcs�=�cs, we have:

[Qin]cs =
k̃[Am]cshL

c̃p�cs
ln

[
c̃p(Tcs−T0)

hL
+ 1

]
(4.64)

Although �cs <�, [Qin]cs < [Qin]fs, given by Eq. 4.60 for FSV, because [Am]cs/�cs is
generally less, at most ∼80% of [Am]fs/� for FSV. Also note that Tcs−T0 <T�−T0,
which also contributes to making [Qin]cs < [Qin]fs.
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Solution to PROBLEM 4.5 (continuation)

c) We can solve for ξcs by equating the temperature slope derivable from Eq. 4.62
and that derivable from Eq. 4.67, both at ξcs =�cs/�.

(from Eq. 4.62)
dT

dξ

∣∣∣∣
�cs

=
[α�]cse[α�]csξcs(Tcs−T0)

(e[α�]csξcs−1)
(S5.5a)

(from Eq. 4.67)
dT

dξ

∣∣∣∣
�cs

=
βcse

[α�]csξcs
2 (T�−Tcs)

e
[α�]cs

2 sinβcs(1−ξcs)
(S5.5b)

Equating Eqs. S5.5a and S5.5b, we obtain:

[α�]cse[α�]csξcs(Tcs−T0)
(e[α�]csξcs−1)

=
βcse

[α�]csξcs
2 (T�−Tcs)

e
[α�]cs

2 sinβcs(1−ξcs)
(S5.6)

Equation S5.6 may be rearranged and combined with Eqs. 4.70 to obtain Eq. 4.71.

d) From Eq. S5.5a, we may compute [Q�cs ]cs:

[Q�cs ]cs =
k̃[Am]cs

�

dT

dξ

∣∣∣∣
�cs

= k̃[Am]cs
[α�]cse[α�]csξcs(Tcs−T0)

�(e[α�]csξcs−1)
(S5.7)

With [α�]cs given by Eq. 4.63 and e[α�]csξcs derivable from Eq. 4.70b, we obtain:

[Q�cs
]cs = k̃[Am]cs

[ṁh]csc̃p�

k̃[Am]cs
×

[
c̃p(Tcs−T0)

hL
+ 1

]
(Tcs−T0)

�
[

c̃p(Tcs−T0)
hL

]

= [ṁh]cshL

[
c̃p(Tcs−T0)

hL
+ 1

]
(S5.8)

Because [Qin]cs =[ṁh]cshL, combining this with Eq. S5.8, we have:

[Q�cs
]cs − [Qin]cs = [ṁh]csc̃p(Tcs − T0) (4.72)

That is, within the fully superconducting section of a CSV lead, power is balanced.

e) [Q�]cs, the conduction into the lead at z=� may be evaluated from Eq. 4.67:

[Q�]cs =
k̃[Am]cs

�

dT

dξ

∣∣∣∣
�

=
k̃[Am]cs(T�−Tcs)

�e[α�]cs sinβcs(1−ξcs)

× e[α�]cs
[
1
2 [α�]cs sinβcs(1 − βcs) + βcs cos βcs(1 − ξcs)

]

=
k̃[Am]cs(T�−Tcs)

�

[
1
2 [α�]cs + βcs cot βcs(1 − ξcs)

]
(S5.9)
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Solution to PROBLEM 4.5 (continuation)

[Q�cs ]cs, the conduction out of the lead at z=�cs may be evaluated from Eq. S5.5b:

[Q�cs
]cs =

k̃[Am]cs
�

dT

dξ

∣∣∣∣
�cs

=
k̃[Am]cs(T�−Tcs)

�

[
βcs

e
[α�]csξcs

2

e
[α�]cs

2 sinβcs(1−ξcs)

]
(S5.10)

By inserting T (ξ), given by Eq. 4.67 (with ξ = z/�), into the last term of the
left-hand side of Eq. 4.66 and integrating from ξ=ξcs to ξ=1, we evaluate Qj :

Qj =
ρ̃xI◦(I◦−Ic�)�

[Am]cse
[α�]cs

2 sinβcs(1−ξcs)

∫ 1

ξcs

e
[α�]cs

2 ξ sinβcs(ξ − ξcs) dξ (S5.11)

Making x=ξ−ξcs, we can integrate Eq. S5.11 and obtain:

Qj =
4ρ̃xI◦(I◦−Ic�)�e

[α�]csξcs
2

[Am]cse
[α�]cs

2 sinβcs(1−ξcs) ([α�]2cs+4β2
cs)

×
∣∣∣∣e [α�]cs

2 x

(
[α�]cs

2
sinβcsx − βcs cos βcsx

)∣∣∣∣
1−ξcs

0

(S5.12a)

=
4ρ̃xI◦(I◦−Ic�)�

[Am]cse
[α�]cs

2 sinβcs(1−ξcs) ([α�]2cs+4β2
cs)

×
[
[α�]cs

2
e

[α�]cs
2 sinβcs(1 − ξcs) − βcse

[α�]cs
2 cos βcs(1 − ξcs) + βcse

[α�]csξcs
2

]
(S5.12b)

From Eq. 4.68b we may derive:

[α�]2cs + 4β2
cs =

4ρ̃xI◦(I◦−Ic�)�2

k̃[Am]2cs(T�−Tcs)
(S5.13)

Combining Eqs. S5.12b and S5.13, we obtain:

Qj =
k̃[Am]cs(T�−Tcs)

�

×
[

1
2 [α�]cs − βcs cot βcs(1 − ξcs) + βcs

e
[α�]csξcs

2

e
[α�]cs

2 sinβcs(1−ξcs)

]
(S5.14)

Combining Eqs. S5.9, S5.10, and S5.14, we obtain:

[Q�]cs + Qj − [Q�cs
]cs =

k̃[Am]cs(T�−Tcs)
�

[α�]cs (S5.15)

And from Eqs. S5.15 and 4.63:

[Q�]cs + Qj − [Q�cs ]cs = [ṁh]csc̃p(T� − Tcs) (4.73)

f) By adding Eqs. 4.72 and 4.73, we obtain:

[Q�]cs + Qj − [Qin]cs = [ṁh]csc̃p(T� − T0) (4.74)
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Thermal Conductivity & Electrical Resistivity Data of Ag-Au Alloys

Figures 4.23 and 4.24 present, respectively, thermal conductivity and electrical
resistivity data of Ag-Au alloys [4.78]. Although “pure” silver used in Bi2223 has
an advantage of very small electrical resistivity, its thermal conductivity is too
great for current leads. A compromise has been to replace pure Ag with Ag-Au
in Bi2223 manufactured specifically for use in current leads.
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Fig. 4.23 Thermal conductivity vs. temperature data of selected Ag-Au alloys [4.78].

10

1

0.1

0.01

0.001
1 2 5 10 20 50 100 200 300

11at%Au

2.9at%Au
1at%Au

0.22at%Au

0.085at%Au

Pure Ag

Temperature [K]

R
es

is
ti
vi

ty
[μ

Ω
cm

]

Fig. 4.24 Electrical resistivity vs. temperature data of selected Ag-Au alloys [4.78].
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DISCUSSION 4.16: Protection of FSV and CSV Current Leads

Because each HTS tape (Bi2223/Ag-Au in PROBLEM 4.5) in either an FSV or
a CSV lead has a relatively large ic(T�) with a relatively small am, when driven
normal it generates a large Joule dissipation in comparison with the available
convective cooling: neither lead is capable of surviving an episode of even a short
period of flow stoppage. To protect against such a fault-mode incident, the lead
must be paralleled with normal-metal tapes that not only reduce Joule dissipation
but also increase the cooling surface area.

FSV [Qin]fs for an FSV lead will be modified to [Qin]nfs, given by:

[Qin]nfs =
[k̃A]nfshL

c̃p�
ln

[
c̃p(T�−T0)

hL
+ 1

]
(4.75)

where
[k̃A]nfs = k̃[Am]fs + k̃n[An]fs (4.76)

k̃n and [An]fs are, respectively, the thermal conductivity and total cross sectional
area of the normal metal tapes paralleled to the HTS tapes. Note that for the sake
of protection, heat input to the liquid helium is increased because [Qin]nfs > [Qin]fs,
as given by Eq. 4.60. [α]fs, given by Eq. 4.59, is modified to:

[α�]nfs =
[ṁh]nfsc̃p�

[k̃A]nfs

(4.77a)

= ln
[
c̃p(T�−T0)

hL
+ 1

]
(4.77b)

where [ṁh]nfs is the effluent helium mass flow rate for an FSV lead paralleled with
normal metal tapes.

[Q�]cs + Qj − [Qin]cs = ṁhc̃p(T� − T0) (4.74)

CSV For a CSV lead, [Qin]cs, given by Eq. 4.64, is modified to [Qin]ncs:

[Qin]ncs =
[k̃A]ncshL

c̃p�cs
ln

[
c̃p(Tcs−T0)

hL
+ 1

]
(4.78)

[k̃A]ncs = k̃[Am]cs + k̃n[An]cs (4.79)

where [An]cs is the total cross sectional area of normal metal tapes used in a CSV
lead. Note that �cs remains the same whether the CSV lead is paralleled with
normal metal tapes or not. Note also that because [Am]fs and [Am]cs are different,
[An]fs and [An]cs can be different. [α�]cs also is different:

[α�]ncs =
[ṁh]ncsc̃p�

[k̃A]ncs
(4.80a)

=
1

ξcs
ln

[
c̃p(Tcs−T0)

hL
+ 1

]
(4.80b)

where [ṁh]ncs and ξcs(= �cs/�) are, respectively, the helium mass flow rate and
dimensionless length from z = 0 at which the current-sharing region starts for a
CSV lead paralleled with normal metal tapes.
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DISCUSSION 4.16: Protection of FSV and CSV Leads (continuation)

For the CSV lead, βcs also is modified:

βn
cs =

√
ρ̃xρ̃nI◦(I◦−Ic�)�2

[k̃A]ncs[ρ̃A]ncs(T�−Tcs)
− 1

4 ([α�]ncs)
2 (4.81)

where
[ρ̃A]ncs = ρ̃x[An]cs + ρ̃n[Am]cs (4.82)

Equation 4.71 is modified as given below:

1
ξcs

[
hL

c̃p(T�−Tcs)

]
ln

[
c̃p(Tcs−T0)

hL
+ 1

] [
c̃p(Tcs−T0)

hL
+ 1

] 1+ξcs
2ξcs

=
βn

cs

sinβn
cs(1−ξcs)

(4.83)

Electricity

—Passage from Helen Davis’ The Chemical Elements [4.79]

Among the special uses for certain elements, none is more remarkable than the
dependence of electrical industry upon copper. Its softness and ductility allow the
metal to be drawn into wire which carries the electric current, and its electrical
conductivity is greater than that of any other suitable metal except silver [and now,
obviously, superconductors].

Alessandro Volta (1745–1827) in 1800 wrote to Sir Joseph Banks,* describing a
piece of apparatus he had built: “The apparatus of which I speak to you, and which
without doubt will surprise you, is only the assemblage of a number of good conduc-
tors of different sorts, arranged in a certain number, 30, 40, 60 pieces, preferably,
of copper, or better silver, each touching a piece of tin, or, which is better, of zinc,
and an equal number of layers of water, or some other liquid which should be a
better conductor than simple water like salt water, lye solution, etc., or pieces of
cardboard, leather, etc., well soaked in these liquids; of which pads interposed be-
tween each couple or combination of the two different metals, alternating with each
set, and always in the same order, of the three sorts of conductors; that is all there
is to my new instrument.”

Volta drew sparks from his battery, felt light shocks in the wrists of both hands
when he touched the top and bottom plates with wet fingers, and admired the way
it would, after each discharge, re-establish itself—“an inexhaustible charge, a per-
petual effect.” He did not notice the slight corrosion of the metal which accounts
for the source of the electric current.

* The English botanist Sir Joseph Banks (1743–1820) was “that convenient but rare phe-
nomenon, a scientist of great independent wealth who spends that wealth liberally in the
support of science. While still a student at Oxford he financed a lectureship in botany,
which is how the subject came to be taught there for the first time.” [4.27]



CRYOGENICS—PROBLEMS & DISCUSSIONS 287

DISCUSSION 4.17: HTS Current Lead—Copper Extension

Because all HTS current leads, at least those currently available, are usable only up
to T�∼80 K, every HTS lead, vapor-cooled or not, must be connected to a normal-
metal lead to reach the room-temperature terminal. For any vapor-cooled HTS
current lead, an optimal vapor-cooled copper lead is the logical choice. However,
as mentioned earlier, Qin at 4.2 K of any of these HTS current leads is necessarily
smaller than that of an optimal vapor-cooled copper lead rated for the same I◦.
That is, the helium flow rate generated by the HTS lead is insufficient for the
copper lead. Extra coolant (see Fig. 4.21) must be introduced at the cold end of
the copper lead. Here, the effluent helium vapor of the HTS section is not mixed
with the new coolant to be introduced at ∼80 K; it is diverted away, cold. Basically
there are two choices for the new coolant: 1) cold gas (helium or nitrogen); and
2) liquid nitrogen boiling at 77.3 K.

A. Coolant Fluid Flow Rate

To determine the minimum coolant flow rate to be introduced at the cold end
of the copper lead, we analyze here an optimal vapor-cooled copper current lead
in the temperature range ∼80 K–300 K. For a copper lead carrying I◦ and cooled
with fluid mass flow rate, ṁfl, the steady-state (dT/dt = 0) power equation, with
ζ ≡ z/�cu, for a differential element of the copper current lead is given by:

k̃cuAcu

�2cu

d2T

dζ2
− ṁflc̃fl

�cu

dT

dζ
+

I2
◦γcu

Acu
(T − T◦) +

I2
◦ρ◦
Acu

= 0 (4.84)

In Eq. 4.84 k̃cu and c̃fl are, respectively, the T -averaged copper thermal conduc-
tivity and the fluid specific heat; γcu and ρ◦ are, respectively, the resistivity tem-
perature coefficient and resistivity at the cold-end temperature, T◦ (here 77 K).
Because over most of the 77–293 K range the last term in the left-hand side of
Eq. 4.84 is negligible compared with the third term, Eq. 4.84 may be simplified to:

d2T

dζ2
−

(
ṁflc̃fl�cu

k̃cuAcu

)
dT

dζ
+

(
I2
◦γcu�2cu

k̃cuA2
cu

)
(T − T◦) = 0 (4.85)

With T (ζ =1)≡T�cu , T (0)≡T◦, and θ(ζ) ≡ T (ζ)−T◦, θ(ζ) may be given by:

θ(ζ) =
T�cu−T◦

eαcu sinβcu
eαcuζ sinβcuζ (4.86)

where

αcu =
ṁflc̃fl�cu

2k̃cuAcu

(4.87a)

βcu =

√
I2
◦γcu�2cu

k̃cuA2
cu

−
(

ṁflc̃fl�cu

2k̃cuAcu

)2

(4.87b)

=

√
I2
◦γcu�2cu

k̃cuA2
cu

− α2
cu (4.87c)
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DISCUSSION 4.17: HTS Current Lead—Copper Extension (continuation)

We may force θmx to occur at ζ =1 by setting dθ/dζ|ζ=1 =0 and obtain:

αcu sinβcu + βcu cos βcu = 0 (4.88a)

αcu + βcu cot βcu = 0 (4.88b)

For a given set of lead parameters, i.e., Acu, �cu, I◦, c̃fl, γcu, there is a unique set
of αcu and βcu (and thus, from Eq. 4.87a or 4.87b, a value of ṁfl) that satisfies
Eq. 4.86. Note that cotβcu must be negative, and therefore θmx must be greater
than π/2, as we will see later in PROBLEM 4.6D.

B. Cold-End Heat Input & Power Balance

The cold-end heat input, Q◦, is given by:

Q◦ =
k̃cuAcu

�cu

dθ(ζ)
dζ

∣∣∣∣
0

=
k̃cuAcuθ�cu

βcu

�cueαcu sinβcu
� 0 (4.89)

Q◦�0 because of the large value of eαcu . This will indeed be the case in PROBLEM

4.6D, in which a 6-kA copper lead is studied.

The warm-end conduction heat, Q�cu is, by definition, zero (Eq. 4.88a). Therefore,
because no heat enters or leaves the lead by conduction from either end, the coolant
is used entirely to remove the Joule dissipation, Qj , generated in the lead:

Qj =
I2
◦γcu

Acu

∫ �cu

0

θ(z) dz

=
I2
◦γcu�cu

Acu

∫ 1

0

θ(ζ) dζ (4.90)

Combining Eqs. 4.86 and 4.90, and then invoking Eq. 4.87c, we obtain:

Qj =
I2
◦γcu�cu(T�cu−T◦)
Acueαcu sinβcu

∫ 1

0

eαcuζ sinβcuζ dζ

=
I2
◦γcu�cu(T�cu−T◦)
Acu(α2

cu+β2
cu)

(αcu − βcu cot βcu)

+ (terms containing e−αcu)

� k̃cuAcu

�cu
(T�cu−T◦)(αcu − βcu cot βcu) (4.91a)

Combined with Eq. 4.88b, Eq. 4.91a becomes:

Qj =
k̃cuAcu

�cu
(T�cu−T◦)(αcu + αcu) (4.91b)

Next, combined with Eq. 4.87a, Eq. 4.91b becomes:

Qj = ṁflc̃fl(T�cu
−T◦) (4.92)

Note that, as expected, Eq. 4.92 states that the Joule dissipation generated over
the entire length of the copper lead is balanced by the cooling power of fluid
introduced at the cold end of the lead.
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DISCUSSION 4.17: HTS Current Lead—Copper Extension (continuation)

C. Liquid Nitrogen Mass Flow Rate

When 77-K liquid nitrogen is introduced at the cold end at a mass flow rate of ṁfl,
it generates a cooling power, Qn2 =ṁflhn2, at the cold end, where hn2 =199 J/g is
the liquid’s latent heat of vaporization at 77 K.

When a vapor-cooled copper lead is operated down to the liquid helium envi-
ronment, Qin is matched by ṁhhL, where hL = 20.7 J/g is the helium heat of
vaporization; ṁh of helium vapor is sufficient to keep the entire lead stable. Be-
cause Q◦ � 0, as remarked above, the cooling power of liquid nitrogen, ṁflhn2,
cannot be matched at the cold end. What actually happens is that ṁflhn2 soaks
up the Joule dissipation generated over the lower portion of the copper lead, from
the cold end to a distance of ��q. That is, the 77-K point instead of being anchored
at the cold end now extends from z =0 to z = ��q. This extended 77-K portion of
the lead, because it is resistive, generates Joule dissipation Qj�q

, which is matched
by ṁflhn2. Noting that the last term in the left-hand side of Eq. 4.84, neglected
in Eq. 4.85, cannot be neglected at 77 K, we have:

Qj�q
=

ρ◦I2
◦��q

Acu
= ṁflhn2 (4.93)

��q and ṁfl in Eq. 4.93 are not yet known.

With the lower portion of the lead (z=��q long) at 77 K, the effective vapor-cooled
length of the lead is shortened to (�cu − ��q), and Eq. 4.88b thus becomes:

α′
cu + β′

cu cot β′
cu = 0 (4.94)

where

α′
cu =

ṁflc̃fl(�cu−��q)
2k̃cuAcu

(4.95a)

β′
cu =

√
I2
◦γcu(�cu−��q)2

k̃cuA2
cu

− (α′
cu)2 (4.95b)

There is a unique combination of ṁfl and ��q that satisfies both Eqs. 4.93 and 4.94.

Conversion from Wt% to At%

In the thermal conductivity and electrical resistivity data of Ag-Au (metal A–metal
B) alloys shown in Figs. 4.23 and 4.24, the gold contents are given in Xat at%Au—
an atomic weight (mole)%. However, superconductor manufacturers often express
the gold content in Xwt wt%Au—a weight (mass)%, as in Table 4.12 next page.

The conversion from Xwt%B to Xat%B of metal B of atomic weight WB alloyed in
metal A of atomic weight WA is given by:

Xat%B =
100Xwt%B×WA

(100 − Xwt%B)×WB + Xwt%B×WA
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PROBLEM 4.6: 6-kA vapor-cooled HTS current lead

In PROBLEM 4.6, the design concepts discussed in PROBLEMS 4.4 and 4.5 are
applied for three types of 6-kA vapor-cooled HTS leads: A) FSV, with no parallel
normal metal tapes; B) FSV, with 120 parallel normal metal tapes; and C) CSV
also with the same number of normal metal tapes. Table 4.12 shows key parameters
of Bi2223/Ag-Au tape. In the table, am is the cross sectional area of Ag-Au matrix
in one tape: thus, [Am]fs =Nfsam; Ic(T�)=Nfsic(T�); and Ic(T0)=Nfsic(T0). Each
tape is assumed to be exposed to a normal field of 0.2 T over its entire active
length. k̃ and ρ̃x are, respectively, the average thermal conductivity and electrical
resistivity of Ag-Au over the temperature range indicated in Table 4.12. Table
4.13 shows key parameters of brass tape.

PROBLEM 4.6A: FSV, with no parallel normal metal tapes

a) Show that Nfs =75 for this 6-kA vapor-cooled FSV lead.

b) Show that [Qin]fs = 0.0786 W for this lead with � = 20 cm. Here, � must be
“long” on one hand to ensure good heat exchange with effluent vapor, while
“short” on the other to limit the cost of the Bi2223/Ag-Au tapes.

c) Verify that Eq. 4.61 is satisfied for this lead by computing each power term.

Table 4.12: Parameters of Bi2223/Ag-Au Tape

Parameters Value

Overall width [mm] 4.2

Overall thickness [mm] 0.228

Bi2223 filling (volume) [%] 42

Au content [wt%] 5.3

Ag-Au cross section, am [mm2] 0.555

Tape cross section [mm2] 0.958

ic(T�) (@77.3K @B⊥ =0.2T) [A] 80*

ic(T0) (@4.2K @B⊥ =0.2T) [A] 445.5†
k̃ (4.2–77K) [W/cmK] 0.327

ρ̃x (T�–77K) [μΩcm] 1.0

* 1-μV/cm criterion.

† At 4.2K the effect of B⊥ =0.2T is negligible.

Table 4.13: Parameters of
Normal Metal (Brass) Tape

Parameters Value

Width (each tape) [mm] 4.203

Thickness (each tape) [mm] 0.344

Total # of paralleled tapes 120

[An]fs and [An]cs [cm2] 1.735

k̃n (4.2–77K) [W/cmK] 0.350

ρ̃n (4.2–77K) [μΩcm] 2.25
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Solution to PROBLEM 4.6A

a) Because I◦=Nfsic(T�), we have: Nfs =6,000 A/80 A=75.

b) With k̃ = 0.327 W/cm K; [Am]fs = Nfsam = 0.416 cm2; hL = 20.7 J/g; c̃p =
5.28 J/g K (averaged between 4.2 K and 77 K) ; T� = 77.3 K; T0 = 4.2 K, and � =
20 cm into Eq. 4.60, we obtain:

[Qin]fs =
k̃[Am]fshL

c̃p�
ln

[
c̃p(T�−T0)

hL
+ 1

]
(4.60)

=
(0.327 W/cm K)(0.416 cm2)(20.7 J/g)

(5.28 J/g K)(20 cm)

× ln
[
(5.28 J/g K)(77.3 K−4.2 K)

(20.4 J/g)
+ 1

]

= 0.0798 W

As studied in DISCUSSION 4.14 (Eq. 4.32b ), a copper vapor-cooled 6-kA lead would
have had Qin�6 W; thus, ∼0.08 W is indeed an impressive improvement.

c) With [Qin]fs = 0.0798 W, we obtain [ṁh]fs = [Qin]fs/hL = 0.00385 g/s. Heat
input at z=� is given by the first form of Eq. S4.5b:

[Q�]fs = [ṁh]fshL

[
c̃p(T�−T0)

hL
+ 1

]

= (0.00385 g/s)(20.7 J/g)
[
(5.28 J/g K)(77.3 K−4.2 K)

(20.7 J/g)
+ 1

]

= 1.566 W

Thus: [Q�]fs−[Qin]fs =1.486 W, which essentially equals [ṁh]fsc̃p(T�−T0)=1.487 W.

TRIVIA 4.5 Of the statements below on bismuth, which is incorrect ?

i) A diamagnet with an usually large susceptibility;

ii) Like water, expands upon freezing;

iii) One of the four elements familiar to the medieval alchemist;

iv) A superconductor with a critical temperature of 0.83K.
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PROBLEM 4.6B: FSV, with parallel normal metal tapes

Here, we study an FSV lead with 120 normal metal tapes, [An]fs =1.735 cm2 (Table
4.13), paralleled to the FSV lead of PROBLEM 4.6A. Although not demonstrated
here, for this lead a normal metal of 1.735-cm2 cross section is sufficient against
flow stoppage incidents that may occur in typical operating conditions.

a) Using Eq. 4.75, compute [Qin]nfs. Because of the presence of normal metal
tapes, [An]fs	 [Am]fs, [Qin]nfs	 [Qin]fs =0.0798 W computed above.

b) Verify numerically that the power terms are balanced for this lead too.

Solution to PROBLEM 4.6B

a) First, we compute [k̃A]nfs using Eq. 4.76. Note that again [Am]fs =0.416 cm2.

[k̃A]nfs = (0.327 W/cm K)(0.416 cm2) + (0.350 W/cm K)(1.735 cm2)

= 0.136 W cm/K + 0.607 W cm/K = 0.743 W cm/K

From Eq. 4.75, we have:

[Qin]nfs =
[k̃A]nfshL

c̃p�
ln

[
c̃p(T�−T0)

hL
+ 1

]
(4.75)

=
(0.743 W cm/K)(20.7 J/g)

(5.28 J/g K)(20 cm)

× ln
[
(5.28 J/g K)(77.3 K−4.2 K)

(20.7 J/g)
+ 1

]
= 0.4337 W

Note that although indeed [Qin]nfs 	 [Qin]fs, 0.4337 W is still only ∼1/14 of the
copper counterpart (∼6 W). Also note, from Eq. 4.35b, that for an optimal vapor-
cooled copper lead rated at 6 kA with 20-cm active length (�), A = 0.480 cm2,
∼30% of [An]fs = 1.735 cm2. Despite this large [An]fs the reason [Qin]nfs is still
∼1/14 of QI◦ (Eq. 4.32a) is principally because k̃n � k0, where k0 is the copper
thermal conductivity near 4.2 K, i.e., 0.350 W/cm K (k̃n) vs. 6 W/cm K (k0). Also
note that this lead generates no Joule dissipation over this part (�) of the lead.

b) With [Qin]nfs = 0.4337 W, we obtain [ṁh]nfs = [Qin]nfs/hL � 0.021 g/s. Heat
input at z=�, [Q�]nfs, though not derived, is similar to Eq. S4.5b. Thus:

[Q�]nfs = [ṁh]nfshL

[
c̃p(T�−T0)

hL
+ 1

]

� (0.021 g/s)(20.7 J/g)
[
(5.28 J/g K)(77.3 K−4.2 K)

(20.7 J/g)
+ 1

]
= 8.540 W

We have thus: [Q�]nfs−[Qin]nfs =8.106 W � [ṁh]nfsc̃p(T�−T0)=8.105 W.
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PROBLEM 4.6C: CSV, with parallel normal metal tapes

Here, we shall consider an example of a CSV lead with Ncs = (2/3)Nfs = 50 and
the same number (120) of normal metal tapes added as in the FSV studied above.

a) Show that Tcs = 69.3 K for this CSV lead. Assume that ic(T ) is a linear
function of T , with ic(T0)=445.5 A and ic(T�)=80 A, as given in Table 4.12.

b) For � = 20 cm (same value as the FSV counterparts), determine ξcs for this
CSV for a special—simple—case in which:

sinβn
cs(1−ξcs) = 1 (4.96a)

βn
cs(1 − ξcs) = π/2 (4.96b)

You may determine ξcs iteratively, first guessing a value of ξcs, compute βn
cs

from Eq. 4.96b, then insert ξcs and βn
cs into Eq. 4.83 to see if Eq. 4.83 is indeed

satisfied. Because ic(T ) is assumed a linear function of T , an appropriate
starting value of ξcs into Eq. 4.96b may be 0.9 (� 69.3/77.3).

c) Verify that βn
cs found in b) agrees with βn

cs computed by Eq. 4.81.

d) Compute [Qin]ncs, the heat input to liquid helium at z=0, given by Eq. 4.78.

e) Numerically compute each term appearing in the following power balance
equation and demonstrate that power is balanced.

[Q�]ncs + [Qj ]ncs − [Qin]ncs = [ṁh]ncsc̃p(T� − T0) (4.97)

[Q�]ncs is the heat into the lead at z=�; [Qj ]ncs is the Joule dissipation within
the current-sharing region; and [Q�cs ]cs is the heat out of the lead at z=�cs.
[Q�]ncs and [Qj ]ncs are given by modified forms of Eq. S5.9 and Eq. S5.14:

[Q�]ncs =
[k̃A]ncs(T�−Tcs)

�

[
1
2 [α�]ncs + βn

cs cot βn
cs(1 − ξcs)

]
(4.98)

[Qj ]ncs =
[k̃A]ncs(T�−Tcs)

�

[
1
2 [α�]ncs − βn

cs cot βn
cs(1 − ξcs)

+ βn
cs

e
[α�]ncsξcs

2

e
[α�]ncs

2 sinβn
cs(1−ξcs)

]
(4.99)

Note that because βn
cs(1−ξcs)=π/2 here, Eqs. 4.98 and 4.99 are simplified:

[Q�]ncs =
[k̃A]ncs(T�−Tcs)

�
× 1

2 [α�]ncs (4.100)

[Qj ]ncs =
[k̃A]ncs(T�−Tcs)

�

[
1
2 [α�]ncs + βn

cse
[α�]ncs(ξcs−1)

2

]
(4.101)
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Solution to PROBLEM 4.6C

a) Because Ic(T�)=Ncsic(T�), with Ncs =50 and, from Table 4.12, ic(T�)=80 A,
we have: Ic(T�) = 50×80 A = 4,000 A at T� = 77.3 K; similarly, Ic(T0) = 22,275 A
at T0 = 4.2 K. Thus, this particular set of Bi2223/Ag-Au tapes has the following
Ic(T ) between 77.3 K and 4.2 K:

Ic(T ) = 23,325 − 250T [A] (S6C.1)

where T is in kelvins. This equation gives Tc = 93.3 K. From Eq. S6C.1, we can
solve for Tcs at which Ic(Tcs)=6,000 A: Tcs =69.3 K.

b) As shown in Table 4.14 below, ξcs =0.94505, which gives βn
cs =28.586.

c) [Am]cs =Ncsam =50×0.555 mm2(from Table 4.12)=0.2775 cm2; and [An]cs =
[An]fs =1.735 cm2 (Table 4.13) and thus, from Eqs. 4.79, 4.82, and 4.80b:

[k̃A]ncs = k̃[Am]cs + k̃n[An]cs (4.79)

= (0.327 W/cm K)(0.2775 cm2) + (0.350 W/cm K)(1.735 cm2)

= 0.0907 W cm/K + 0.607 W cm/K = 0.698 W cm/K

[ρ̃A]ncs = ρ̃x[An]cs + ρ̃n[Am]cs (4.82)

= (1 μΩ cm)(1.735 cm2) + (2.25 μΩ cm)(0.2775 cm2)

= 1.735 μΩ cm3 + 0.624 μΩ cm3 = 2.359 μΩ cm3

[α�]ncs =
1

ξn
cs

ln
[
c̃p(Tcs−T0)

hL
+ 1

]
(4.80b)

=
1

0.94505
ln

[
(5.28 J/g K)(69.3 K−4.2 K)

(20.7 J/g)
+ 1

]

=
1

0.94505
ln(17.605) = 3.035

Thus, ([α�]ncs)
2/4, required to compute Eq. 4.81 is given by:

1
4 ([α�]ncs)

2 = 2.303

Table 4.14: Determination of ξn
cs and βn

cs

Guess Value of Eq. 4.96b Left-Hand Side

ξcs βn
cs* Eq. 4.83

0.9 15.708 32.3975

0.95 31.4159 28.2120

0.94 26.1799 28.9759

0.945 28.5599 28.5898

0.9451 28.6120 28.5821

0.94505 28.5859 � 28.5860

* sin βn
cs(1−ξcs)=1 and thus βn

cs is equal to the left-hand side of Eq. 4.83.
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Solution to PROBLEM 4.6C (continuation)

Inserting appropriate values into Eq. 4.81, we obtain:

βn
cs =

√
ρ̃xρ̃nI◦(I◦−Ic�)�2

[k̃A]ncs[ρ̃A]ncs(T�−Tcs)
− 1

4 ([α�]ncs)
2 (4.81)

28.586 =

√
(1 μΩ cm)(2.25 μΩ cm)(6 kA)(6 kA−4 kA)(20 cm)2

(0.698 W cm/K)(2.359 μΩ cm3)(77.3 K−69.3 K)
− 2.303

28.586 �
√

817.58 = 28.593

d) With ξcs = 0.94505 and � = 20 cm: �cs = 18.9 cm. The current-sharing region
for this CSV lead thus spans 1.1 cm, from z=18.9 cm to z=20 cm. From Eq. 4.78:

[Qin]ncs =
[k̃A]ncshL

c̃p�cs
ln

[
c̃p(Tcs−T0)

hL
+ 1

]
(4.78)

=
(0.698 W cm/K)(20.7 J/g)

(5.28 J/g K)(18.9 cm)
ln

[
(5.28 J/g K)(69.3 K−4.2 K)

(20.7 J/g)
+ 1

]

= (0.1448 W)(2.868) = 0.4153 W

Thus, as expected [Qin]ncs =0.4153 W< [Qin]nfs =0.4296 W; [Qin]ncs is ∼1/15 that of
a copper counterpart. From [Qin]ncs =0.4153 W, [ṁh]ncs =0.02006 g/s.

e) Applying Eqs. 4.100 and 4.101, we have:

[Q�]ncs =
[k̃A]ncs(T�−Tcs)

�

(
[α�]ncs

2

)
(4.100)

=
(0.698 W cm/K)(77.3 K−69.3 K)

(20 cm)

(
3.035

2

)
= 0.4237 W

[Qj ]ncs =
[k̃A]ncs(T� − Tcs)

�

[
[α�]ncs

2
+ βn

cse
[α�]ncs(ξcs−1)

2

]
(4.101)

=
[k̃A]ncs(T�−Tcs)

�

[(
3.035

2

)
+ (28.586)e

3.035(0.945−1)
2

]

=
(0.698 W cm/K)(77.3 K−69.3 K)

(20 cm)

[(
3.035

2

)
+ 26.30

]
= 7.7658 W

With [ṁh]ncsc̃p(T� − T0) = (0.02006 g/s)(5.28 J/g K)(77.3 K−4.2 K)=7.7743 W and
[Qin]ncs =0.4153 W, we obtain:

[Q�]ncs + [Qj ]ncs − [Qin]ncs = [ṁh]ncsc̃p(T� − T0) (4.97)

0.4237 W + 7.7658 − 0.4153 = 7.7742 W

� 7.7743 W
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DISCUSSION 4.18: “Optimal” CSV Lead

As we have seen from the numerical power check in e) of PROBLEM 4.6C, the
largest power component is [Qj ]ncs =7.7659 W, yet [Qin]ncs =0.4153 W is very nearly
the same as [Qin]nfs =0.4337 W for the FSV counterpart.

Thus, despite the large value of [Qj ]ncs, the only way this CSV lead can have [Qin]ncs
comparable with [Qin]nfs is to have [Q�]ncs� [Q�]nfs. This is indeed the case, as may
be seen from Solution b) of PROBLEM 4.6B, which shows: [Q�]nfs =8.540 W, while
Solution e) of PROBLEM 4.6C shows: [Q�]ncs = 0.4237 W. How can this be? The
answer may be seen from Eq. 4.98, given again here:

[Q�]ncs =
[k̃A]ncs(T�−Tcs)

�

[
1
2 [α�]ncs + βn

cs cot βn
cs(1 − ξcs)

]
(4.98)

It is possible to make [Q�]ncs =0 by a suitable choice of βn
cs and ξcs in the bracketed

term of the right-hand side of Eq. 4.98. For βn
cs(1−ξcs)>π/2, cot βn

cs(1−ξcs)< 0,
and there indeed exists a set of βn

cs and ξcs that not only makes [Q�]ncs =0 but also
satisfies Eq. 4.83. Such a set in fact minimizes [Qin]ncs, giving rise to an “optimal”
CSV lead that is loaded with normal metal to satisfy a protection criterion.

Heike Kamerlingh Onnes (1853–1926)

—Passage from K. Mendelssohn’s The Quest for Absolute Zero [4.80]

In 1882 the University of Leiden appointed to the chair of physics a young man
of only twenty nine whose early work had already given great promise. He came
from an old family in Groningen in the north of Holland,. . . Two years earlier
[Kamerlingh] Onnes had been much impressed by one of van der Waals’ papers
which dealt with the concept of corresponding states . . . was particularly intrigued
by the prediction of the critical points of as yet unliquefied gases which could be
made on the basis of the van der Waals equation . . .

Although he was deeply interested in the great revolution of physical concepts
and theories which was to take place during his lifetime, his main preoccupation
was with the measurements from which these new ideas were to arise. He was es-
sentially an experimentalist with a keen sense for the engineering problems involved
in the perfection and proper use of scientific instruments. Without ever becoming a
perfectionist, he was acutely aware of the importance of careful planning and organ-
isation for the success of an experiment and he used these ideas on a scale which
had never previously been attempted in a physical laboratory. Quite apart from
the decisive role which his laboratory played in the development of low-temperature
research, it also served as the model for the research institutions of the twentieth
century. Kamerlingh Onnes was not only a master of organisational genius, he was
also a good and patient diplomatist and a wise man. His great strength was to plan
not for tomorrow but for the day after. The secret of the steady output of brilliant
work which issued from his institute lay in the fact that each experiment had been
thoroughly thought out and prepared long before work on it was begun.

[Kamerlingh] Onnes was probably the first scientist to realise that the complexity
of modern research techniques would require a reliable supply of skilled and specially
trained assistants. He sensed that the time of the amateur professor was over, who
could go into the laboratory and discover the secrets of nature in odd afternoons
with the aid of string and sealing wax . . .
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PROBLEM 4.6D: Copper section (∼80K–300K)

Here, we study a 6-kA vapor-cooled copper current lead that may be coupled
to either the FSV lead studied in PROBLEM 4.6B or the CSV lead studied in
PROBLEM 4.6C. We shall determine values of three fluid flow rates: 1) gaseous
helium; 2) gaseous nitrogen; and 3) liquid nitrogen. For the liquid nitrogen case,
we shall also determine the value of ��q. Table 4.15 lists values of key parameters
for a 6-kA vapor-cooled copper lead. Note that the cold end (z = 0) is at 77.3 K
and the warm end (z=�cu) is at 293 K.

a) Determine ṁfl when the coolant is gaseous helium entering the cold-end
(z=0) point at 77.3 K.

b) As discussed in connection with Eq. 4.89, demonstrate here that Q◦, the
cold-end conduction heat input, is indeed negligibly small.

c) Determine ṁfl when the coolant is gaseous nitrogen entering the cold-end
(z=0) point at 77.3 K.

d) Determine ṁfl when the coolant is liquid nitrogen entering the cold-end (z=
0) point at 77.3 K. Also determine ��q.

Table 4.15: Parameters of

6-kA Vapor-Cooled Copper Lead

Parameters Value

Operating range (T◦–T�cu) [K] 77.3–300

Active area, Acu [cm2] 1.19

Active length, �cu [cm] 38

Area exposed to coolant [cm2] 12,650

k̃cu (77–300K) [W/cmK] 4

c̃fl (77–300K): helium [J/gK] 5.28

c̃fl (77–300K): nitrogen [J/gK] 1.04

hn2 (77.3K) [J/g] 199

ρ◦ (77K) [μΩcm] 0.22

γcu (77–300K) [nΩ cm/K] 7.01

Answer to TRIVIA 4.5 iv). Although itself a nonsuperconductor (even
at 0.83K), Element 83 is a key constituent of HTS. The other three
substances of the alchemist: antimony (Sb); arsenic (As); and zinc (Zn).
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Solution to PROBLEM 4.6D

a) Inserting parameter values from Table 4.15 into Eq. 4.87c, we have:

βcu =

√
I2
◦γcu�2cu

k̃cuA2
cu

− α2
cu =

√
(6 kA)2(7.01 nΩ cm/K)(38 cm)2

(4 W/cm K)(1.19 cm2)2
− α2

cu

=
√

64.333 − α2
cu (S6D.1)

There is a set of βcu and αcu that satisfies both Eqs. 4.88b and S6D.1. These
two equations may be solved iteratively; Table 4.16 gives results of the iteration.
From Table 4.16, we note that βcu =2.786750�2.786885, and thus αcu =7.521055.
Solving ṁfl from Eq. 4.87a, we have:

ṁfl =
2αcuk̃cuAcu

c̃fl�cu
(S6D.2)

=
2(7.521)(4 W/cm K)(1.19 cm2)

(5.28 J/g K)(38 cm)
= 0.357 g/s

A helium mass flow rate of 0.357 g/s computed here is very close to the boiling
liquid helium mass flow rate ṁh corresponding to an AMI 6-kA vapor-cooled
copper lead, i.e., Qin ∼ 7.2 W: ṁh ∼ 0.35 g/s (∼ 7.2 W/20.4 J/g). Note that the
total cooling power between 77.3 K and 293 K is 407 W, given by ṁflc̃fl(T�cu−T◦).

b) Inserting eαcu =e7.521055 =1846, sin(159.669◦) = 0.3474, θ�cu
=293 K−77 K=

216 K, and other parameter values into Eq. 4.89, we obtain:

Q◦ =
k̃cuAcu

�cu

dθ(ζ)
dζ

∣∣∣∣
0

=
k̃cuAcuθ�cuβcu

�cueαcu sinβcu
� 0 (4.89)

=
(4 W/cm K)(1.19 cm2)(216 K)(2.787)

(38cm)(1846)(0.3474)
� 0.118 W � 0

c) The values of βcu and αcu determined in a) are also valid for gaseous nitrogen
entering the cold-end (z = 0) at 77.3 K. The only difference between helium and
nitrogen is c̃fl, which for the latter is 1.04 J/g K. Thus: ṁfl =1.812 g/s.

Table 4.16: Determination of βcu and αcu

Eq. 4.88b Eq. 4.88b Eq. 4.87c

βcu [degree] − cot βcu βcu αcu βcu

150 1.732051 2.617994 4.534498 6.615990

160 2.747477 2.792527 7.672404 2.338207

159 2.605089 2.775074 7.229314 3.474194

159.5 2.674621 2.783800 7.445612 2.982594

159.6 2.688919 2.785545 7.490106 2.869026

159.7 2.703351 2.787291 7.535026 2.748887

159.65 2.696118 2.786418 7.512513 2.809832

159.67 2.699007 2.786767 7.521505 2.785671

159.669 2.698863 2.786750 7.521055 2.786885
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Solution to PROBLEM 4.6D (continuation)

d) Here, we have to determine the value of ��q that satisfies Eqs. 4.93, 4.94, and
4.95 for given parameter values of ρ◦, γcu, I◦, and k̃cu, and Acu. Again, it is
simplest to determine ��q iteratively. Thus we proceed along the following steps:

Step 1 Guess ��q (1st column in Table 4.17);

Step 2 Compute ṁfl from Eq. 4.93 (2nd column);

Step 3 Insert ��q and ṁfl into Eq. 4.95a, and compute α′
cu (3rd column);

Step 4 With this α′
cu inserted into Eq. 4.95b, compute β′

cu (4th column);

Step 5 Express this β′
cu in degrees (5th column): it must be between 90◦ and 180◦;

Step 6 Compute − cot β′
cu (6th column);

Step 7 Compute α′
cu using Eq. 4.94 (7th column).

If α′
cu computed in Step 7 agrees with that computed in Step 3, the iteration

process is complete and ��q guessed at the outset of this iteration is correct. Table
4.17 gives results of the above iteration, and it shows that ��q =26.98 cm (�27 cm)
and ṁfl =0.902 g/s are the desired values.

Thus, with liquid nitrogen in the lower section of the copper lead, specifically
over a length of �27 cm, and soaked by a mixture of liquid and gaseous nitrogen,
this section is at 77.3 K. Only the remaining section, extending from z�27 cm to
z=38 cm is cooled by a flow of gaseous nitrogen; its temperature rises from 77.3 K
at z�27 cm to 293 K at z=38 cm.

In comparing with ṁfl = 1.812 g/s found in c) with 77.3-K gaseous nitrogen, we
note that liquid nitrogen requires less (∼1/2) mass flow rate. This is because
liquid nitrogen contributes a large dose of cooling upon vaporization at 77.3 K,
i.e., 199 J/g, which with c̃fl =1.04 J/g K of nitrogen, is equivalent to a temperature
rise of gaseous nitrogen of nearly 200 K. If the coolant to be introduced at the cold
end of the copper current lead is to be 77.3-K nitrogen, the results of c) and d)
suggest that 77.3-K liquid is likely preferable to 77.3-K gas.

Table 4.17: Determination of ��q, β′
cu, and α′

cu

Eq. 4.93 Eq. 4.95a Eq. 4.95b Eq. 4.94

��q [cm] ṁfl [g/s] α′
cu β′

cu β′
cu [degree] − cot β′

cu α′
cu

10 0.3334453 1.023033 5.820835 333.5 no solution

20 0.668891 1.315298 3.564382 204.2 no solution

26 0.869558 1.139925 2.261869 129.595532 0.827141 1.870884

27 0.903002 1.085120 2.052632 117.607165 0.522947 1.073417

26.9 0.898304 1.089288 2.074294 118.848308 0.550853 1.142631

26.98 0.902334 1.086289 2.056789 117.845335 0.528252 1.086503

26.9805 0.902350 1.086259 2.056686 117.839402 0.528119 1.086175

26.9802 0.902340 1.086277 2.056748 117.842976 0.528199 1.086373

26.9804 0.902347 1.086265 2.056706 117.840594 0.528146 1.086241
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PROBLEM 4.7: Vapor-cooled brass current lead

Vapor-cooled current leads for a superconducting magnet operated in a bath of liq-
uid helium may be entirely of copper (DISCUSSION 4.14 ) or superconducting over
the lower cold section (PROBLEMS 4.4–4.6), extended to the room-temperature
terminal by a copper lead rated at the same current.

In some applications, current leads carry a rated current only occasionally or even
rarely during the life of a magnet [4.81–4.84]. Examples of occasional use include
magnets of low duty cycle in which the magnets are energized periodically, each
time for a short duration. When the total duration of “off-current” operation far
exceeds that of “on-current” operation, it may be possible to reduce the long-term
consumption of helium with vapor-cooled leads having a Q0/QI◦ ratio (Eq. 4.42)
significantly smaller than the ∼0.6 achievable with copper leads.

Because Q0 ∝ k̃ (Eq. 4.40), such low-Q0 leads should be of an alloy (e.g., brass),
rather than pure copper. It necessarily implies that such an alloy lead would have
Joule dissipation rate greater than its copper counterpart. Because the effluent
helium flow rate would remain roughly the same, to be effective, the alloy lead
must operate in overcurrent mode, and the thermal behavior of such a lead in
overcurrent mode becomes an important design and operation issue [4.85].

For the questions below, use the following property values for brass: thermal
conductivity, [k0]br =22 W/m K, and resistivity, [ρ0]br =21 nΩ m, both at T0, and∫ T�

T0
dT/ρbr(T )=0.97×1010 K/Ω m [4.86].

a) Show that for brass leads (I◦�/A), which is approximately 2.3×107 A/m for
copper (Eq. 4.35b), is given by:[

I◦�

A

]
br

≡ [ζ◦]br � 0.35×107 A/m (4.102)

That is, a brass lead having the same � and A as those of a copper lead will
have its optimal rated current ∼1/7 that of the copper lead.

b) Show that [QI◦/I◦]br, the ratio of the cold-end heat input to rated current
for the brass lead, is given by:[

QI◦

I◦

]
br

� 1.25 mW/A (4.103)

This ratio is 0.77 mW/A for copper leads (Eq. 4.32b ). Note that for the brass
lead, despite its much greater resistivity—by a factor of ∼100—than copper’s
at 4.2 K, [QI◦/I◦]br is only ∼60% greater than QI◦/I◦ (for copper).

c) Show that [Q0/QI◦ ]br, the ratio of cold-end heat input of a brass lead with
no current (I =0) to that of the lead at I◦ is given by:[

Q0

QI◦

]
br

� 0.21 (4.104)

Use k̃br =55 W/m K (Table 4.18); c̃p =5.2 kJ/kg K; and cp0 =6.0 kJ/kg K.
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PROBLEM 4.7: Vapor-cooled brass current lead (continuation)

Overcurrent Mode

As stated above, brass leads are suitable for low-duty-cycle applications. Consider
a brass current lead in the overcurrent mode carrying a constant current I > I◦,
the nominal rated current. The power equation may be given by:

ACbr(T )
dT

dt
=

d

dz

[
Akbr(T )

dT

dz

]
− ṁbr(I)cp(T )

dT

dz
+

ρbr(T )
A

I2 (4.105)

where Cbr(T ), kbr(T ), and ρbr(T ) are, respectively, the temperature-dependent
heat capacity, thermal conductivity, and electrical resistivity of brass, and ṁbr(I)
is the vapor flow rate, which depends on current. For an optimal brass lead at
I >I◦ in stable operation, dT/dt=0: the temperature of a differential element of
the lead, though it depends on z, is constant with time.

To solve Eq. 4.105 at I >I◦, we make the following assumptions.

1. The entire lead is treated as a single entity with an average temperature of T̃ ,
which is further assumed to be at the midpoint (z=�/2) temperature. Cbr(T )
and cp(T ) are also assumed constants, respectively, C̃br and c̃p.

2. dT/dz appearing in Eq. 4.105 is assumed constant, T̃/(�/2)=2T̃/�.

3. For I >I◦ ṁbr(I)=νbrI[1+ ηbr(I−I◦)], where νbr and ηbr are constants.

4. ρbr(T )=[ρ0]br+γbr(T̃−T̃◦), where T̃◦ is the initial midpoint temperature (when
I =I◦); for brass, [ρ0]br = 21 nΩ m and γbr =74 pΩ m/K [4.86].

With these assumptions, Eq. 4.105 becomes:

AC̃br
dT̃ (t)

dt
= −νbrI[1+ηbr(I − I◦)]c̃p

T̃ (t)
(�/2)

+
[ρ0]br

A
I2 +

γbr

A
[T̃ (t)− T̃◦]I2 (4.106)

Inserting θ(t)= T̃ (t)−T̃◦ to Eq. 4.106, we have dθ(t)/dt and solution θ(t):

dθ(t)
dt

=
1

A2�C̃br

({
2νbr c̃pAI[1 + ηbr(I − I◦)] − γbr�I

2
}

θ(t)

+
{

2νbr c̃pAT̃◦I[1 + ηbr(I − I◦)] − [ρ0]br�I
2
})

(4.107a)

θ(t) = Δθ(I)
[
1 − e−t/τj(I)

]
(4.107b)

Δθ(I) and τj(I), both I-dependent constants, are, respectively, the temperature
rise and response time, which is assumed to be much longer than the period during
which the condition I >I◦ is established. Solving for Δθ(I) and τj(I), we have:

Δθ(I) =
[ρ0]br�I

2−2νbr c̃pAT̃◦I[1+ ηbr(I−I◦)]
2νbr c̃pAI[1+ ηbr(I−I◦)]− γbr�I2

(4.108a)

τj(I) =
A2C̃br�

2νbr c̃pAI[1+ ηbr(I−I◦)]−γbr�I2
(4.108b)
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PROBLEM 4.7: Vapor-cooled brass current lead (continuation)

d) Show that νbr is given by:

νbr =
[ρ0]br�I◦

2c̃pAT̃◦
(4.109)

e) Show that in the overcurrent region, [QI ]br, the heat input is given by:

[QI ]br = hLνbrI[1 + ηbr(I − I◦)] (4.110)

f) Show that [I◦�/A]br, given by Eq. 4.102, is also given by:

[
I◦�

A

]
br

=
2c̃pT̃◦
[ρ0]br

√
[k0]br[ρ0]br

hLcp0
(4.111)

where cp0 is the helium specific heat at the cold-end temperature.

g) The voltage across the entire lead, Vbr(t) is given by:

Vbr(t) = V◦(T̃◦) + ΔV (I)(1 − e−t/τj(I)) (4.112)

where V◦(T̃◦) is the steady-state lead voltage when the lead is carrying I◦.
Show that ΔV (I), a constant at I, is given by:

ΔV (I) =
γbr�

A

{
[ρ0]br�I

2− 2νbr c̃pAT̃◦I[1+ ηbr(I−I◦)]
2νbr c̃pAI[1+ ηbr(I−I◦)]− γbr�I2

}
I (4.113)

h) Consider a vapor-cooled brass lead rated at 25 kA under a cyclic operation
in which it is subjected to an overcurrent of 75 kA (=3×I◦) over a 5-min pe-
riod, followed by a 30-min off-current period. As may become evident from
experimental results performed on a 40-A brass lead [4.87], presented later in
Figs. 4.25 and 4.26, the 40-A brass lead can operate stably at an overcurrent
of up to nearly 200 A (= 5× I◦) over an indefinite period of time—in the
experiment the overcurrent condition at a given I lasts only up to 500 s.

Determine I◦ of a vapor-cooled copper lead that when operated at I◦ con-
tinuously results in the same cold-end heat input as that of the 25-kA brass
lead operated in the mode described above. Use νbr = 6.13×10−8 kg/s A,
determined in the experiment [4.87], and ηbr =2.2×10−5 A−1, scaled to a 25-
kA lead from the experiment (ηbr =0.0138 A−1 at I◦=40 A). For the copper
lead, use QI◦/I◦=1 mW/A.

TRIVIA 4.6 List the metals below in the descending order of their electrical resistivities.

i) Aluminum 1100 at 4.2K; ii) Copper (RRR�20, 000) at 100K;

iii) Copper (RRR�100) at 50K; iv) Copper (RRR�100) at 4.2K in a 20-T field.
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Solution to PROBLEM 4.7

a) From Eq. 4.35, [I◦�/A]br for brass leads is:

[
I◦�

A

]
br

=

√
cp0[k0]br[ρ0]br

hL

∫ T�

T0

dT

ρbr(T )
(S7.1)

With cp0 =6.0 kJ/kg K and other property values inserted into Eq. S7.1, we have:

[
I◦�

A

]
br

=

√
(6.0 kJ/kg K)(22 W/m K)(21 nΩ m)

(20.7 kJ/kg)
(0.97×1010 K/Ω m)

Thus: [
I◦�

A

]
br

≡ [ζ◦]br � 0.35×107 A/m (4.102)

b) From Eq. 4.32a, which is for copper leads, we obtain:

[
QI◦

I◦

]
br

=

√
hL[k0]br[ρ0]br

cp0
=

√
(20.4 kJ/kg)(22 W/m K)(21 nΩ m)

(6.0 kJ/kg K)
(S7.2)

Thus: [
QI◦

I◦

]
br

� 1.25 mW/A (4.103)

c) From Eq. 4.41 with k̃br =55 W/m K (Table 4.18) and other values, including
ln[c̃p(T�−T0)/hL + 1]�4.32, we have:

[
Q0

QI◦

]
br

=
k̃br

c̃p[ζ◦]br

√
hLcp0

[k0]br[ρ0]br
×ln

[
c̃p(T�−T0)

hL
+ 1

]
(S7.3)

� (55 W/m K)
(5.2 kJ/kg K)(0.36×107 A/m)

√
(20.7 kJ/kg)(6.0 kJ/kg K)

(22 W/m K)(21 nΩ m)
×(4.32)

Thus: [
Q0

QI◦

]
br

� 0.21 (4.104)

d) Because Δθ(I◦)=0 (no overcurrent), from Eq. 4.107a we have:

[ρ0]br�I
2
◦ − 2νbr c̃pAT̃◦I◦ = 0 (S7.4)

From Eq. S7.4, we obtain:

νbr =
[ρ0]br�I◦

2c̃pAT̃◦
(4.109)
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Solution to PROBLEM 4.7 (continuation)

e) From [QI◦ ]br =ṁbrhL and with ṁbr(I)=νbrI[1+ηbr(I−I◦)] (assumption 3 ):

[QI◦ ]br = hLνbrI[1 + ηbr(I − I◦)] (4.110)

f) With [I◦�/A]br from Eq. 4.109 and [QI◦ ]br from Eq. 4.110 at I =I◦:[
I◦�

A

]
br

=νbr
2c̃pT̃◦
[ρ0]br

(S7.5a)

[QI◦ ]br =hLνbrI◦ (S7.5b)

Combining Eqs. S7.5a and S7.5b, we have:

[
I◦�

A

]
br

=
[
QI◦

I◦

]
br

2c̃pT̃◦
hL[ρ0]br

(S7.6)

Inserting [QI◦/I◦]br from Eq. S7.2 into Eq. S7.6, we obtain:

[
I◦�

A

]
br

=
2c̃pT̃◦
[ρ0]br

√
[k0]br[ρ0]br

hLcp0
(4.111)

We may determine the value of T̃◦, the only unknown parameter in Eq. 4.111:

T̃◦ =
[ρ0]br

2c̃p

[
I◦�

A

]
br

√
hLcp0

[k0]br[ρ0]br
(S7.7)

=
(21 nΩ m)

2(5.19 kJ/kg K)
(0.358×107 A/m)

√
(20.7 kJ/kg)(6.0 kJ/kg K)

(22 W/m K)(21 nΩ m)

� 120 K

This value of 120 K is quite reasonable because T̃◦ is assumed to be the steady-
state average temperature of the entire lead at I◦, i.e., ∼4 K at the cold end and
∼293 K at the warm end, which gives a linear average value of 149 K.

g) An increase in the lead voltage, ΔV (I), at a given level of overcurrent I comes
from an increase in the brass resistivity, Δρbr(I), which in turn is caused by an
increase in the lead temperature, Δθ(I). Thus:

ΔV (I) =
�Δρbr(I)

A
I =

γbr�Δθ(I)
A

I (S7.8)

Inserting the expression of Δθ(I) given by Eq. 4.108a, we obtain:

ΔV (I) =
γbr�

A

{
[ρ0]br�I

2−2νbr c̃pAT̃◦I[1+ ηbr(I−I◦)]
2νbr c̃pAI[1+ ηbr(I−I◦)]− γbr�I2

}
I (4.113)
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Solution to PROBLEM 4.7 (continuation)

h) For a vapor-cooled 25-kA brass lead at an overcurrent of I =75 kA, we have
[QI◦ ]br, with hL = 20.7 kJ/kg; νbr = 6.13×10−8 kg/s A; ηbr = 2.2×10−5 A−1; and
I◦=25 kA, inserted into Eq. 4.110:

[QI◦ ]br = hLνbrI[1 + ηbr(I − I◦)] (4.110)

= (20.7 kJ/kg)(6.13×10−8 kg/s A)(75 kA)

× [1 + (2.2×10−5 A−1)(75 kA − 25 kA)] � 200 W

At I◦ = 25 kA, we have, from Eq. 4.103, [QI◦ ]br = 31.5 W. When carrying no
current, this 25-kA brass lead has, from Eq. 4.104, [Q0]br � 0.21[QI◦ ]br � 6.6 W.
Thus, a total energy injected into the cold bath, Ebr, over a 300-s period at 75 kA
and over a 1800-s period at 25 kA, is given by:

Ebr � (300 s)(200 W) + (1,800 s)(6.6 W) (S7.10)

� 72 kJ

Over this 2100-s period, a copper lead would have required a cold-end heat input of
33.8 W, to match the total energy Ebr =72 kJ. For a vapor-cooled copper lead op-
erating continuously at I◦, this translates to a current rating of ∼35 kA (<75 kA).
Although no detailed study is available for vapor-cooled copper leads in overcur-
rent mode, it is quite possible that a copper lead too can be operated safely with
an overcurrent up to a “reasonable” value of I/I◦.

Experimental Results of a Vapor-Cooled Brass Lead

Here we present experimental results of a pair of vapor-cooled brass leads [4.87].
Each lead has the same active length (� = 54 cm) and cross sectional area (A =
0.0613 cm2) as those of an optimal vapor-cooled copper lead rated at 280 A. As
inferred from Eq. 4.102, this brass counterpart thus is rated at [I◦]br given by:

[I◦]br =
[ζ◦]br

ζ◦
I◦

� (0.35×107 A/m)
(2.3×107 A/m)

(280 A) ∼ 40 A

Figure 4.25 shows a measured heat input vs. I plot of this brass lead in the current
ranges of 0 to its nominally rated current of 40 A, and 40 A to 90 A (overcurrent).
As expected, the results show that the heat input is linear with I up to ∼40 A,
while beyond 40 A, the results agree well with the solid curve given by Eq. 4.110.

Figure 4.26 shows ΔV (I) vs. t plots for three constant overcurrent levels, 130 A,
150 A, and 203 A. The solid curves are experimental, while the dotted curves are
analytical, given by Eq. 4.113. The experimental curve at 203 A shows that at this
level of overcurrent (I ∼ 5×I◦), the lead eventually—after ∼400 s—enters into an
unstable (overheated) region. The results indicate that it is safe to operate the
lead up to an overcurrent level ∼4 times the rated current.
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Solution to PROBLEM 4.8 (continuation)
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Fig. 4.25 Measured heat input vs. I plot for a vapor-cooled brass lead (I◦=40 A) [4.87].
Solid curve: based on Eq. 4.110, with νbr =6.13×10−8 kg/s A; and ηbr =0.0138A−1.
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Fig. 4.26 ΔV (I) vs. t plots for over-current levels of 130, 150, and 203A [4.87]. Solid
curves: experimental; Dotted curves: based on τj given by Eq. 4.108b and ΔV (I) by
Eq. 4.113, with A=0.0613 cm2; �=54 cm; cp◦ =5.19 J/g K; and b=7.4 nΩ cm/K.

Answer to TRIVIA 4.6

Cu @100K (2, in nΩ m); Cu @4.2K, 20 T (1); Al (0.8); Cu @50 K (0.6)
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DISCUSSION 4.19: Vapor-Cooled Support Rods*

Structural supports inside a cryostat represent a conductive heat load on the cryo-
genic environment. Like the vapor-cooled copper current lead in DISCUSSION 4.14,
the effluent helium vapor may be used to cool a support rod of active length � and
cross sectional area A spanning two temperatures (T0 at the cold end and T� at
the warm end) and thus greatly to reduce the conductive heat loss.

Assuming that the rod material’s thermal conductivity is temperature-independent
and given by k̃ and that heat transfer between the helium and the rod is perfect,
we may show that the ratio of conduction heat input through the rod from T� to
T0 without helium cooling, Qvp, to that with helium cooling, Qvp, is given by:

Qvp

Qvp
=

cp0(T� − T0)

hL ln
[
cp0(T� − T0)

hL
+ 1

] (4.114)

Note that Qvp/Qvp is independent of the rod’s dimensions and thermal conductiv-
ity. With cp0 =6.0 J/g K, hL =20.4 J/g, T0 =4 K, T� =300 K, Eq. 4.114 gives:

Qvp

Qvp
=

(6.0 J/g K)(296 K)
(20.4 J/g) ln(88)

= 19.4 ∼ 20

That is, it is possible to greatly reduce the conduction heat input through struc-
tural elements by an effective use of cold effluent helium vapor.

DISCUSSION 4.20: Structural Materials for Cryogenics

Structural materials for cryogenic applications must withstand large stresses, while
conducting very little heat flux over a temperature range. A material property
that can be used to quantify the suitability for cryogenic applications is k̃/σU , the
ratio of the temperature-averaged thermal conductivity (over a specific span) to
its ultimate tensile strength. Both Qvp and Qvp are proportional to k̃.

Table 4.18 presents values for G-10, stainless steel 304, brass, and copper to gauge
their suitability as structural materials for cryogenic applications; copper is in-
cluded to demonstrate its unsuitability. Based on k̃/σU , G-10 is better than stain-
less steel; however, stainless steel has a virtue of weldability.

Table 4.18: “Structural Data” for G-10, Stainless Steel 304, Brass, and Copper

Material k̃ [W/mK] σU [MPa] k̃/σU [m2/K s]†
4–80K 4–300K 80–300K 295K (80–300K)

G-10 0.25 0.50 0.56 280 2×10−9

Stainless Steel 304 4.5 11 13 1300 10×10−9

Brass 24 55 65 400 2×10−7

Copper 1300 660 460 250 2×10−6

† Approximate values.

* Based on Problem4.5 in the 1st Edition (Plenum, 1994).
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CHAPTER 5

MAGNETIZATION

5.1 Introduction

In this chapter we study the magnetization of Type II superconductors by using
a phenomenological theory of magnetization developed in 1962 by Bean [5.1]. As
remarked in CHAPTER 1, over the field range of interest (above ∼0.5 T) for most
magnet applications, a Type II superconductor is in the mixed state, consisting of
normal-state islands in a sea of superconductivity. When a Type II superconductor
is subjected to a time-varying magnetic field or transport current, dissipation
takes place in these islands and manifests either as “flux jumping,” a transitory
phenomenon, or AC losses. Known as Bean’s critical state model, the theory,
pertinent to LTS and HTS, has been successfully applied to formulate requirements
in closed-form expressions to eradicate flux jumping and minimize AC losses.

Today, well-established methods of producing LTS wires and cables that virtually
eradicate flux jumps are available. As we will study in this chapter, flux jumping
is not an overriding concern with HTS as it is for LTS. Thus, if magnetization were
important only for eradication of flux jumping, for HTS applications, it might be
appropriate to regard it as a minor topic. However, because it also plays a crucial
role in AC losses in both LTS and HTS, we are devoting an entire chapter here to
study magnetization; AC losses will be addressed in more detail in CHAPTER 7.

5.2. Bean’s Theory For a Type II Superconductor

5.2.1 No Transport Current

Bean’s theory treats magnetization of a superconductor under assumptions that
enable, like many successful theories, simple mathematics to derive closed-form
expressions that agree remarkably well with experimental results [5.2–5.5]. In the
Bean model the superconductor has the simplest geometry—a slab of width 2a
(in the x-direction) and infinite lengths in the y- and z-directions. Here, magnetic
field quantities (H, B, M) point in the y-direction, while current, I, and current
density, J , flow in the z-direction. Also in the Bean model, J = Jc, the critical
current density, which is assumed independent of magnetic field and temperature.

Vector Eq. 2.15 relating �B, �H, and �M may thus be simplified to define magneti-
zation M in terms of B and H:

M =
B

μ◦
− H (5.1)

According to the Bean model, magnetic induction B is not zero within the interior
of the hard superconductor but is equal to the superconductor’s volumetric average
of μ◦Hs, where Hs is the magnetic field within the superconductor.

Figure 5.1 shows a Type II superconducting slab infinitely high (in the y-direction)
and deep (in the z-direction), and 2a wide (in the x-direction). An external field
He, applied parallel to a slab previously unexposed to a magnetic field (“virgin”
slab), creates Hs(x) within the slab. With Ampere’s law ∇× �H = �J = �Jc applied
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Hs(x)

Hp Hp

He He

0 0
0 x∗ a x 2a

Fig. 5.1 Slab of Type II superconductor exposed to an external field.

to the slab, we obtain the magnetic field within the superconductor, Hs(x):

0 (x∗ ≤ x ≤ x ) (5.2a)
Hs(x) = He − Jcx (0 ≤ x ≤ x∗) (5.2b)

He + Jc(x − 2a) (x ≤ x ≤ 2a) (5.2c)

⎧⎪⎨
⎪⎩

Note that the slope of Hs(x) is equal to Jc, positive where Jc is positive (z-directed,
out of the paper) and negative where Jc is negative. x∗ (and 2a − x ) gives the
extent of the field penetration in the slab; in terms of He and Jc:

x∗ =
He

Jc
(5.3a)

At He = Hp ≡ Jca, x∗ = x = a, and the entire slab is in the critical state; Hp is
known as the penetration field:

Hp ≡ Jca (5.3b)

The average magnetic induction within the slab, B̃s, is thus given by

B̃s =
μ◦
2a

∫ 2a

0

Hs(x) dx =
μ◦
2a

×<shaded area in Fig. 5.1> (5.4a)

= 2 × μ◦
2a

× Hex∗
2

=
μ◦H2

e

2aJc
(5.4b)

=
μ◦H2

e

2Hp
(5.4c)

From the definition, M = B̃s/μ◦ − He, we have:

−M = He −
H2

e

2Hp
(0 ≤ He ≤ Hp) (5.5)

The superconductor is diamagnetic; −M is the magnitude of its magnetization.

As the external field is increased further, the field eventually penetrates the slab
completely (He ≥ Hp), and B̃s = He − Hp/2, and thus:

−M = 1
2Hp = 1

2Jca (He ≥ Hp) (5.6)

The dashed magnetization profile in Fig. 5.1 corresponds to He =Hp.
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Hs(x)

Hm Hm

2Hp 2Hp

He↓ He↓
Hm−Hp Hm−Hp

Hp Hp

He↓ He↓=Hm−2Hp

He↓ He↓=0
0 a 2a

Fig. 5.2 Hs(x) during a return field sequence: He↓=Hm→0.

The dotted lines in Fig. 5.2 represent Hs(x) at He = Hm >2Hp, where Hm is the
maximum external field applied in this field sweep sequence.

As He is reduced from Hm towards 0, Hs(x) changes as indicated by the solid
lines in Fig. 5.2. When He =Hm−2Hp, −M becomes −Hp/2, as may be inferred
from Fig. 5.2, because Hs(x) is a perfect mirror image of that at Hm. It can be
shown that for the return field sweep from Hm to He↓=0, −M(He) is given by:

−M(He) = 1
2Hp−(Hm − He) +

(Hm−He)2

4Hp
(He↓=Hm→Hm−2Hp) (5.7a)

= − 1
2Hp (He↓=Hm−2Hp→0) (5.7b)

Note that −M is a quadratic function of He, as is the case when an external
field is applied to the virgin slab; also −M(He) = −Hp/2 when He returns to
0. This “remanent” magnetization is indicated by the dashed lines in Fig. 5.2.
Once exposed to an external magnetic field, a Type II superconductor will thus
become magnetized. This remanent magnetization cannot be removed by means
of the external field; one way to remove it is to heat the superconductor, raising
its temperature to above Tc.

Figure 5.3 gives −M vs. He plots for the entire positive field sweep sequence from 0
to Hm =Hc2 and back to 0, where Hc2 is the upper critical field. The solid curve is
based on Eqs. 5.5–5.7 derived with Bean’s assumption that Jc is field-independent.
The dashed curve qualitatively corrects for more realistic cases [5.2–5.5] in which
Jc decreases with field, becoming 0 at Hc2. Note that magnetization is hysteretic,
and its magnitude within the range Hp <He <Hm−2Hp, ΔM =−M(He↑)+M(He↓),
is equal to Hp =Jca. A magnetization measurement is thus sometimes performed
to obtain Jc(He) data—see DISCUSSION 5.4 (p. 331).
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Fig. 5.3 Magnetization vs. field traces for a hard superconducting slab subjected to an
external field sequence of 0→Hc2 → 0. The solid curve presents the case Jc =constant;
the dashed curve qualitatively presents the case Jc(He), with Jc =0 at Hc2 [5.2–5.5].

Figure 5.4 shows the current distribution within the slab corresponding to the field
distribution of Fig. 5.1. Note that Jc =Hp/2a. The net current per unit length in
the y-direction [A/m] flowing through the slab in the z-direction is given by:

I =
∫ 2a

0

J(x) dx = 0 (5.8)

As expected, I = 0 in the absence of transport current.

5.2.2 Effect of Transport Current on Magnetization

When a transport current It (per unit length in the y-direction) flows in the slab
in the +z-direction (out of the paper), we see an increase in magnetic field of It/2
at x=2a and a decrease in magnetic field of It/2 at x=0.

Because the shielding current within the slab builds up from each surface into the
interior, the field distribution Hs(x) within the slab will be that shown in Fig. 5.5.
In Fig. 5.5, x∗ and x are given by:

J(x)

Hp/a Hp/a

Jc = 1
2
Hp/a

0
x∗ a x 2a

−Jc

−Hp/a −Hp/a

Fig. 5.4 J(x) corresponding to Hs(x) given in Fig. 5.1.

0

−M(He)

1
2Hp

He
Hp Hc2

− 1
2Hp
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Hs(x)

Hp Hp

1
2
It

0
x∗ a x 2a

− 1
2
It

−Hp −Hp

Fig. 5.5 Hs(x) with transport current It in the slab.

− 1
2It + Jcx∗ = 0 (5.9a)

Jc(x − 2a) + 1
2It = 0 (5.9b)

x∗ =
It

2Jc
and x = 2a − It

2Jc
(5.9c)

Figure 5.6 shows current distribution J(x) in the slab. By integrating J(x) across
the slab width, we can show that the net current flowing in the slab is indeed It:

I =
∫ 2a

0

J(x) dx = Jcx∗ + Jc(2a − x ) (5.10a)

= 1
2It + 1

2It = It (5.10b)

As expected, the net current in the slab is the current supplied by the external
source. Note that the presence of an external field He�ıy, when applied after It, does
not fundamentally change the distributions shown in Figs. 5.5 and 5.6; but if He�ıy
is applied before It, different Hs(x) and J(x) would emerge. In DISCUSSION 5.1
the effects of transport current on magnetization are studied in detail.

J(x)

Hp/a Hp/a

Jc Jc = 1
2
Hp/a

0
x∗ a x 2a

−Hp/a −Hp/a

Fig. 5.6 J(x) corresponding to Hs(x) given in Fig. 5.5.
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5.3 Measurement Technique

We describe here the technique most widely used to measure magnetization. Figure
5.7 presents the key components of this technique [5.6]: 1) a primary search coil;
2) a secondary search coil; and 3) a balancing potentiometer. Not shown in the
figure but equally essential is an integrator that converts the bridge output voltage,
Vbg(t), to a voltage that is directly proportional to M(He). The test sample is
placed within the primary search coil set. When the primary and secondary search
coils are subjected to a time-varying external magnetic field He(t) which is nearly
uniform over the space occupied by each search coil, voltages, Vpc(t) and Vsc(t),
are induced across the terminals of each search coil:

Vpc(t) = μ◦NpcApc

⎡
⎣dM

dt
+

(
dH̃e

dt

)
pc

⎤
⎦ (5.11a)

Vsc(t) = μ◦NscAsc

(
dH̃e

dt

)
sc

(5.11b)

The subscripts pc and sc refer to the primary and secondary search coils, respec-
tively. N is the number of turns of each search coil and A is the effective area of
each turn in the coil through which He(t) is coupled. H̃e is the space-averaged
field over each search coil.

The bridge output voltage Vbg(t) is given by:

Vbg(t) = (k − 1)Vpc(t) + kVsc(t) (5.12)

where k is a constant (from 0 to 1) that expresses the fraction of the potentiome-
ter resistance (R) appearing in the primary side of the search coil in Fig. 5.7.
Combining Eqs. 5.11 and 5.12, we obtain:

Vbg(t) = (k − 1)μ◦NpcApc
dM

dt

+ (k − 1)μ◦NpcApc

(
dH̃e

dt

)
pc

+ kμ◦NscAsc

(
dH̃e

dt

)
sc

(5.13)

Magnetized test sample (M)

Vpc(t) Primary search coil

He(t) ↑ Vbg(t)
Balancing
potentiometer (R)

Vsc(t) Secondary coil

⎫⎬
⎭kR

+ −

Fig. 5.7 Schematic of a magnetization measurement technique.



MAGNETIZATION 319

Now, it is possible to adjust k of the potentiometer to satisfy the following condi-
tion and make Vbg(t) proportional to dM/dt:

(k − 1)μ◦NpcApc

(
dH̃e

dt

)
pc

+ kμ◦NscAsc

(
dH̃e

dt

)
sc

= 0 (5.14a)

Vbg(t) = (k − 1)μ◦NpcApc
dM

dt
(5.14b)

Although in practice the condition required by Eq. 5.14a is not always satisfied
over a wide frequency range, Eq. 5.14b is a good approximation for most cases.
Generally k is close to 0.5. Vbg(t) is fed into an integrator, and its output, Vmz(t),
is proportional to M . Specifically, if the test sample is in the virgin state (M =0)
and He(t) is increased (He↑) from 0 (at t=0) to He (at t= t1), then we have:

Vmz(He↑) =
1
τit

∫ t1

0

Vbg(t) dt

=
(k − 1)μ◦NpcApc

τit
M(He) (5.15)

where τit is the effective integrator time constant. If He > Hp, then M(He) =
−Hp/2=−Jca/2 (Eq. 5.6), and Eq. 5.15 simplifies to:

Vmz(He↑> Hp) = −fm
(k − 1)μ◦NpcApc

τit

(
Jca

2

)
(5.16a)

The factor fm is the ratio of magnetic material volume to the total test sample
volume. This factor is needed because generally a test sample does not consist
entirely of magnetic material for which magnetization is measured; in the case
of a multifilamentary conductor, for example, the test sample consists not only
of superconducting filaments but also of a matrix metal and other nonmagnetic
materials, e.g., insulator. If an external field excursion is 0 → Hm >Hp → He↓<
Hm−2Hp, then we have:

Vmz(He↓< Hm − 2Hp) = fm
(k − 1)μ◦NpcApc

τit

(
Jca

2

)
(5.16b)

ΔVmz = Vmz(He ↑> Hp) − Vmz(He ↓< Hm −2Hp) is thus proportional to the
“width” of magnetization curve at He:

ΔVmz = −fm
(k − 1)μ◦NpcApc

τit
Jca (5.16c)

From Eq. 5.16c we note that ΔVmz is directly proportional to Jc and a.
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Fig. 5.8 Magnetization vs. field (in tesla) traces of MgB2 at 10 K, 20K, and 30 K [5.7].

Figure 5.8 shows magnetization vs. field (here given in the unit of tesla) traces of
MgB2 at 10K, 20K, and 30K, each completing a field cycle, from 0 to +1.7 T,
back to 0, to −1.7T, and finally to 0 [5.7]. Note that unlike Fig. 5.3 which shows
−M(He) plots, these are +M(He) plots. Because the traces are not tilted along
the x (field) axis, we may conclude that the primary and secondary coils used in
this measurement are well balanced.

The hysteretic nature of its magnetization clearly indicates that MgB2 is a Type
II superconductor. Note that the diamagnetic nature of this superconductor is
evident in the first part of each trace when the field is increased from 0 towards
1.7T, magnetization enters into the negative quadrant.

As may be inferred from Hp = Jca of Bean’s model, magnetization is directly
proportional to the superconductor’s Jc. However, unlike in Bean’s model, Jc is
a decreasing function of not only field but temperature. Dependence on Jc and T
are clearly evident in Fig. 5.8. Here, the magnetization is in emu/cm3, a non-SI
unit. In DISCUSSION 5.1, we shall apply Bean’s model to the magnetization data
of Fig. 5.8 to compute the material’s Jc at 10K in zero field.

“Through measurement to knowledge.”—Heike Kamerlingh Onnes
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DISCUSSION 5.1: Magnetization with Transport Current*

As stated at the outset, magnetization in the presence of transport current depends
on the order in which the external field and transport current are applied. Here we
examine three cases: A) field and then transport current; B) transport current and
then magnetic field; and C) field and then current, which is subsequently changed.

A. Field and then Transport Current

Figure 5.9 shows the field profiles inside a Bean slab of thickness 2a, Hs(x), after
specific field-current sequences given below.

1. Initially, Hs1(x), with He =2.5Hp and no transport current—dotted lines.

2. Next, Hs2(x), after application of transport current It =Jca= Ic/2, with the
external field held constant—solid lines. Note that Jca=Hp.

3. Finally, Hs3(x), after transport current is increased further to 2Jca=Ic, with
He =2.5Hp, resulting in Hs3(0)=1.5Hp and Hs3(2a)=3.5Hp—dashed line.

Hs1(x) and Hs3(x) are quite straightforward. Hs2(x) consists of three piece-wise
functions, Hs21(x), Hs22(x), and Hs23(x):

Hs21(x) = 2Hp + Jcx = 2Jca + Jcx (0 ≤ x ≤ x∗)
Hs22(x) = 2.5Hp − Jcx = 2.5Jca − Jcx (x∗ ≤ x ≤ x )

Hs23(x) = Hp + Jcx = Jca + Jcx (x ≤ x ≤ 2a)

where x∗ and x are given by two intersections of Hs1(x) and Hs2(x). Namely,
Hs1(x∗)=Hs21(x∗) and Hs1(x )=Hs23(x ): x∗=0.25a and x = 0.75a.

Hs(x)

3.5Hp 3.5Hp

3Hp 3Hp

2.5Hp 2.5Hp

2Hp 2Hp

1.5Hp 1.5Hp

0
0 x∗ x a 2a

Fig. 5.9 Field profiles in the presence of He =2.5Hp, first with It = 0 (dotted
lines), then It =Jca=Ic/2 (solid), and finally It =2Jca=Ic (dashed).

* Problems 5.1–3 in the 1st Edition (Plenum, 1994).
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DISCUSSION 5.1: Magnetization with Transport Current (continuation)

Figure 5.10 shows Hs(x) for the general case in the presence of It as piece-wise
solid lines of Hs21(x), Hs22(x), and Hs23(x). As noted in 5.2.2, It (z-axis) is
the transport current per unit y-axis length. Here, we define a dimensionless
transport current, i: i ≡ It/Ic, where Ic = 2aJc. For

∫
Hs(x) dx integration, the

slab in Fig. 5.10 is divided into three areas, A1, A2, and A3, as partitioned by the
vertical dashed lines in Fig. 5.10. Note that It = iIc =2iaJc =2iHp.

The solid field line in area A1 (0 ≤ x ≤ x∗), Hs21(x), that in A2 (x∗ ≤ x ≤ x ),
Hs22(x), and that in A3 (x ≤x≤2a), Hs23(x), are given by:

Hs21(x) =
(
He − 1

2It

)
+ Jcx (0 ≤ x ≤ x∗)

Hs22(x) = He − Jcx (x∗ ≤ x ≤ x )

Hs23(x) =
(
He + 1

2It

)
+ Jc(x − 2a) (x ≤ x ≤ 2a)

We solve for x∗ and x , and determine Hs22(x∗) and Hs22(x ):

Hs21(x∗) = Hs22(x∗)

He − Hpi + Jcx∗ = He − Jcx∗ =⇒ x∗ =
Hp

2Jc
i = 1

2ai

Hs22(x∗) = He − 1
2aJci = He − 1

2Hpi

and
Hs22(x ) = Hs23(x )

He − Jcx = He + Hpi + Jc(x − 2a) =⇒ x = a
(
1 − 1

2 i
)

Hs22(x ) = He − Hp + 1
2Hpi

Hs(x)

He+ 1
2
It

He He

He− 1
2
It

A1 A2 A3
He−Hp

0
0 x∗ x a 2a

Fig. 5.10 Field profile with transport current (solid) for computation of mag-
netization. The vertical dashed lines partition three areas, A1, A2, and A3.
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DISCUSSION 5.1: Magnetization with Transport Current (continuation)

M is proportional to the size of the “shaded area,” shown in Fig. 5.10, which is
the sum of three partitioned areas A1, A2, and A3.

The area of each trapezoid is its (base)×(height1+height2)/2.

A1 = 1
2x∗[Hs1(0) + Hs2(x∗)] = 1

4ai
[
(He − Hpi) +

(
He − 1

2Hpi
)]

= 1
4ai

(
2He − 3

2Hpi
)

= a
(
1
2Hei − 3

8Hpi
2
)

A2 = 1
2 (x − x∗)[Hs2(x∗) + Hs2(x )]

= 1
2 (a − ai)

(
He − 1

2Hpi + He − Hp + 1
2Hpi

)
= 1

2a(1 − i)(2He − Hp)

= a
(
He − Hei − 1

2Hp + 1
2Hpi

)
A3 = 1

2 (2a − x )[Hs2(x ) + Hs3(2a)]

= 1
2

(
a + 1

2ai
)
(He − Hp + 1

2Hpi + He + Hpi)

= a
(
1 + 1

2 i
)
(He − 1

2Hp + 3
4Hpi)

= a
(
He + 1

2Hei − 1
2Hp − 1

4Hpi + 3
4Hpi + 3

8Hpi
2
)

By combining these three areas, we may compute the shaded area:

Shaded area = A1 + A2 + A3

= a
(

1
2Hei − 3

8Hpi
2 + He − Hei − 1

2Hp + 1
2Hpi

+ He + 1
2Hei − 1

2Hp − 1
4Hpi + 3

4Hpi + 3
8Hpi

2
)

= a(2He − Hp + Hpi)

With the shaded area known, M can be computed quickly:

−M(i) = He −
1
2a

×(Shaded area)

= He − He + 1
2Hp − 1

2Hpi

= 1
2Hp(1 − i) (5.17a)

= −M(0)f1(i) (5.17b)

where f1(i) = 1 − i. −M(i) decreases linearly with i, becoming 0 at i = 1.
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DISCUSSION 5.1: Magnetization with Transport Current (continuation)

B. Transport Current and then Field

Here, the order is reversed for introducing external magnetic field and transport
current to the slab. Specifically, a transport current of Jca = (Ic/2)�ız (out of the
paper) is introduced into the slab initially in the virgin state. Next, while It is
held constant, an external magnetic field of 2Hp is applied in the +y-direction.

In Fig. 5.11 the dotted lines present Hs(x) after a transport current of Jca (=Hp/2)
but before He of 2Hp is introduced; the solid lines present Hs(x) after the field
He =2Hp is introduced. In both cases the net current in the slab is Jca.

Initially with He = 0:

It =
∫ 2a

0

J(x) dx = Jc(0.5a) + Jc(2a − 1.5a) = Jca

Next, with He = 2Hp:

It =
∫ 2a

0

J(x) dx = −Jc(0.5a) + Jc(2a − 0.5a) = Jca

To determine the magnetization in the slab for the general case of arbitrary current
(I <Ic), we must first find x∗ (Fig. 5.12), which can be determined from the solid
line in Region I, Hs1(x) (0≤x≤ x∗) and that in Region II, Hs2(x) (x∗≤x≤ 2a).

Hs1(x) = (He − Hpi) − Jcx (0 ≤ x ≤ x∗)
Hs2(x) = (He + Hpi) + Jc(x − 2a) (x∗ ≤ x ≤ 2a)

Because Hs1(x∗) = Hs2(x∗), we may solve for x∗ from the above expressions:

x∗ = a − ai = a(1 − i)

Hs(x)

He+ 1
2
It

He He(= 2Hp)

He− 1
2
It

Hp Hp

1
2
It

0

− 1
2
It

0 0.5a a 1.5a 2a

Fig. 5.11 Field profiles, with current only (dotted) and with current and field (solid).
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DISCUSSION 5.1: Magnetization with Transport Current (continuation)

Once x∗ is determined, we can compute Hs1(x∗):
Hs1(x∗) = He − Hpi − Jca(1 − i) = He − Hp

We can now compute the shaded area, which is the sum of two areas, A1 and A2,
partitioned by the vertical dashed line in Fig. 5.12.

A1 = 1
2a(1 − i)(He − Hpi + He − Hp)

= a(1 − i)
(
He − 1

2Hp − 1
2Hpi

)
= a

(
He − Hei − 1

2Hp + 1
2Hpi

2
)

A2 = 1
2 (2a − a + ai)(He + Hpi + He − Hp)

= a(1 + i)
(
He − 1

2Hp + 1
2Hpi

)
= a

(
He + Hei − 1

2Hp + 1
2Hpi

2
)

Shaded area = A1 + A2

= a(2He − Hp + Hpi
2)

Once the shaded area is known, we have M :

−M(i) = He − 1
2 (2He − Hp + Hpi

2)

= 1
2Hp(1 − i2) (5.18a)

= −M(0)f2(i) (5.18b)

where f2(i) = 1 − i2. This magnetization is a parabolic function of i.

Hs(x)

He+ 1
2
It

He He

He− 1
2
It

A1 A2

0
0 x∗ a 2a

Fig. 5.12 Field profile with transport current and field for computation
of magnetization. The vertical dashed line partitions areas A1 and A2.
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DISCUSSION 5.1: Magnetization with Transport Current (continuation)

C. Field and then Current Changes

Finally, we shall consider Hs(x) and −M(i) for the slab when the following se-
quence of field and transport current is applied.

Step 1: Starting with a virgin state and It = 0 initially, the external magnetic
field, He = 2Hp, is applied in the +y-direction.

Step 2: While He remains at 2Hp, a transport current It =2Hpi, where i=It/Ic,
is introduced into the slab in the z-direction (out of the paper).

Step 3: With He remaining at 2Hp, It is reduced to zero.

Step 4: It is now reversed and |2Hpi| is introduced into the slab in the −z-
direction (into the paper).

Step 5: It is again reduced to zero; He still remains at 2Hp.

Figure 5.13 shows the field profile Hs(x) after Step 5, consisting of five piece-wise
solid lines, the second and third of which, useful to compute M(i), are given below.

Hs2(x) = He + Hpi − Jcx (x∗ ≤ x ≤ a)

Hs3(x) = He + Hpi + Jc(x − 2a) (a ≤ x ≤ x )

where x∗ and x may be solved from: Hs2(x∗)=Hs3(x )=He. Thus:

Hs2(x∗) = He =⇒ He + Hpi − Jcx∗

x∗ =
Hpi

Jc
= ai

Hs3(x ) = He =⇒ He + Hpi + Jc(x − 2a)

x = 2a − Hp

Jc
i = 2a − ai

Hs(x)

He+Hpi He+Hpi (=He+ 1
2
It)

He He

He−Hpi He−Hpi (=He− 1
2
It)

0
0 x∗ a x 2a

Fig. 5.13 Field profile after Step 5.
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DISCUSSION 5.1: Magnetization with Transport Current (continuation)

The magnetization is computed from appropriate areas, shown in Fig. 5.14, in
which the slab is divided into four “white” areas, from left to right, designated A1

(rectangle), A2 (trapezoid), A3 (trapezoid), and A4 (rectangle minus “triangle”).
In the figure, “base” and “height” are given by:

base = x − x∗ = (2a − ai) − ai = 2a(1 − i)

height = He − Hs2(a) = He − (He + Hpi − Jca)

= Jca − Hpi = Hp(1 − i)

The two “dotted” areas in Fig. 5.14 are equal in magnitude but have “opposite”
signs, hence they cancel out when we perform the area integral. The sum of the
areas, A1, A2, A3, and A4, is given by:

4∑
j=1

Aj = 2aHe − crossed area

crossed area = 1
2 (base)×(height)

4∑
j=1

Aj = 2aHe − 1
22a(1 − i)Hp(1 − i)

= 2aHe − aHp(1 − i)2

The magnetization, −M(i), is thus given by:

−M(i) = He −
1
2a

[2aHe − aHp(1 − i)2]

= 1
2Hp(1 − i)2

−M(i) = −M(0)(1 − i)2 (5.19a)

= −M(0)f3(i) (5.19b)

where f3(i) = (1 − i)2.

He+Hpi He+Hpi
base

He

He−Hpi

height

0
0 x∗ a x 2a

A1 A2 A3 A4

Fig. 5.14 Field profile (after Step 5) for computation of magnetization.
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DISCUSSION 5.1: Magnetization with Transport Current (continuation)

1

f3(i) f1(i) f2(i)

0.5

0
0 0.5 1

i

Fig. 5.15 Three normalized magnetization vs. normalized transport
current functions studied in DISCUSSION 5.1.

Magnetization Functions—Summary

Figure 5.15 presents three normalized magnetization functions, f1(i), f2(i), and
f3(i), where i = It/Ic. It is interesting to note how different sequences of transport
current and external field applications affect M(i). These f(i) functions were val-
idated with experimental results [5.3, 5.4], thereby making Bean’s model accepted
quite quickly after its formulation.

DISCUSSION 5.2: SQUID for Magnetization Measurement

A SQUID (Superconducting Quantum Interference Device), based on the princi-
ple of the Josephson effect, is an electronic device that can be used to measure
changes in magnetic field with extremely high resolution—individual flux quanta
of magnitude 2.0×10−15 Wb (T m2).

A typical SQUID magnetization measurement setup consists of a test sample, at
a constant temperature, placed in a uniform field. The test sample is moved back
and forth in the uniform field; during each cycle it cuts through measurement
coils, one located at one end of the test sample and the other located at the other
end. The induced current in each measurement coil is measured by the SQUID in
terms of the field generated by the current, which, in turn, is a measure of the test
sample’s magnetization. Because SQUIDs operate best in low-field environments
(perhaps no higher than ∼100 oersted or ∼0.01 T), they are usually shielded from
the high-field environment of the test sample.

To do is to be. —Immanuel Kant

To be is to do. —Jean-Paul Sartre

Do be do be do. —Frank Sinatra
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DISCUSSION 5.3: Magnetization in a “Bean Filament”
Part 1: Field Parallel to the Filament’s Axis

For an infinitely long superconducting filament of diameter df subjected to an
external magnetic field parallel to the filament’s axis (z), He�ız, we may use the
same assumptions as Bean to derive expressions for its magnetization. For an
infinitely long filament exposed to He�ız, Ampere’s law (Eq. 2.5) is given by:

dHz

dr
�ıθ = −Jc�ıθ (5.20)

Equation 5.20 states that an axially (z) directed magnetic field within the filament,
Hs(r), is a linear function of r with a slope of Jc.

A. Initial State

For He ≤ Hp, where Hp is the critical-state field, the field within the filament,
Hs(r), is zero from r=0 to r∗=(df/2−He/Jc) and varies as Jcr from r∗ to df/2:

Hs(r) = He
r − r∗

df/2 − r∗ (r ≥ r∗) (5.21)

Note that r∗=0 when He =Hp, where Hp is the critical-state field:

Hp = 1
2Jcdf (5.22)

Using steps similar to those taken with Eq. 5.4, we may compute the average
magnetic induction within the filament, B̃s:

B̃s =
4μ◦
πdf

2

∫ df/2

r∗
He

r − r∗
df/2 − r∗ (2πr) dr

=
8μ◦He

d2
f (df/2 − r∗)

(
1
24d3

f − 1
8d2

f r∗ + 1
6r∗3

)
(5.23)

Unlike in the case of a slab, where the integration may be performed geometrically
from Hs(x), here the “area” integration must be performed mathematically. By
inserting r∗=(df/2−He/Jc) into Eq. 5.23 and noting that Hp =Jcdf/2, we obtain:

B̃s

μ◦
=

2H2
e

dfJc
− 4H3

e

3(dfJc)2
=

H2
e

Hp
− H3

e

3H2
p

(5.24)

From the definition M =B̃s/μ◦−He, we have:

−M = He −
H2

e

Hp
+

H3
e

3H2
p

(0 ≤ He ≤ Hp) (5.25)

Note that Eq. 5.25 is similar to, but clearly different from, Eq. 5.5 for the slab.

B. Critical State and Beyond

For He≥Hp the filament is in the critical state, and its magnetization is constant
and given from Eq. 5.25 with He =Hp:

−M = 1
3Hp = 1

3

(
Jcdf

2

)
(He ≥ Hp) (5.26)

The “magnetization factor” for the filament is 1/3; for the slab it is 1/2 (Eq. 5.6).
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DISCUSSION 5.3: Magnetization in a “Bean Filament” (continuation)
Part 2: Field Perpendicular to the Filament’s Axis

When the applied external field is perpendicular to the axis of a filament of diam-
eter df , the current distribution within the filament is complicated for He ≤Hp,
the critical field. For He≥Hp, a total current of Jcπd2

f/8 is induced flowing in the
+z-direction, and the same magnitude in the −z-direction. Figure 5.16 shows the
current distributions for: a) a Bean slab (2a); and b) a filament of diameter df .

We may compute the magnetization, M , by integrating the magnetic moment, mA,
per unit volume. Here, we derive expressions for the critical state magnetization
for a Bean slab of width 2a and a filament of diameter df .

A. Bean Slab

For a Bean slab in the critical state, the magnetic moment mA per unit length in
both z- and y-directions, from Jc(x) shown in Fig. 5.16a, is given by:

mA =
∫ a

0

2xJc(x) dx = Jca
2 (5.27a)

The conductor volume per unit length in both z- and y-directions is 2a. Thus:

M =
mA

2a
= 1

2Jca (5.27b)

M given by Eq. 5.27b, except for the sign, is identical to that given by Eq. 5.6.

B. Filament

For a filament of diameter df , the magnetic moment mA per unit length in the
z-direction, from Jc(x, y) shown in Fig. 5.16b, is given by:

mA =
∫ df/2

−df/2

∫ √
(df/2)2−y2

0

2xJc(x, y) dx dy = 1
6Jcd

3
f (5.28)

The conductor volume per unit length in the z-direction is πd2
f /4. Thus:

M =
4mA

πdf
2 =

(
4
3π

)
Jc

(
df

2

)
� 0.424Jc

(
df

2

)
∼ 0.5Jca (5.29a)

Hp =
(

8
3π

)
Jc

(
df

2

)
(5.29b)

This is nearly the same (8/3π∼1) as that for a Bean slab of thickness df .

He He He He

2a
df

(a) (b)

•
↑
−→

y

x

Fig. 5.16 Induced current distributions in a) Bean slab of width 2a and b) an infinitely
long filament of diameter dd, both subjected to an external field He in the y-direction.
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DISCUSSION 5.4: Jc from Magnetization

We demonstrate here how critical current density (Jc) data may be extracted
from magnetization (M) data. This method of extracting Jc data from M data
is quite useful when dealing with superconductor test samples too short for a
standard voltage vs. current measurement technique. Test samples too small for
V (I) measurement were common in the early days of HTS, and Bean’s model
discussed above was extremely useful.

In a V (I) measurement the sample must be “long” to: 1) generate a detectable
voltage with the very low electric field that defines the superconducting-to-normal
transition—the typical criterion is between 0.1 to 1μV/cm; and 2) keep the contact
resistance to the lead wires at each end of the test sample “low,” thereby preventing
excessive heating at the ends which might cause a premature normal transition.
The test samples should normally be at least 10 mm long; perhaps under certain
circumstances they can be as short as 5 mm, but not much shorter than this. It
depends largely on the level of critical current.

Figure 5.8 presented the magnetization vs. applied field traces at 10 K, 20 K, and
30 K of a short length (15 mm) of copper/MgB2 composite wire of an equivalent
circular diameter of 1.038 mm[5.7]; the MgB2 itself has a diameter of 0.531 mm.
Here, the unit of magnetization is given in emu/cm3 corresponding to the total
wire diameter of 1.038 mm. The external field is along the wire axis, i.e., the same
configuration as in DISCUSSION 5.3 Part 1. To compute the superconductor’s Jc,
for example, at 10 K in zero field, we treat the wire as a Bean rod of infinite length
and 0.531 mm diameter. First, we convert emu/cm3 into the SI unit equivalent,
A/m, by multiplying it by 1000. (See Appendix I.)

At 10 K in zero field, the magnetization, from Fig. 5.8, is 60 emu/cm3 or 60 kA/m.
To translate this to M corresponding to the volume of just the MgB2, we must
multiply 60 kA/m by (1.038/0.531)2 = 4.0. Solving Eq. 5.26 for Jc with M =
240 kA/m and df =5.31×10−4 m, we obtain:

Jc(0 T; 10 K) =
6M(0 T; 10 K)

df

=
6(240×103 A/m)
(0.531×10−3 m)

= 2.7×109 A/m2

TRIVIA 5.1 Fill in the blank in a poetic couplet about one of the
poet’s contemporaries below. God said, Let be! and all was light.

i) Bach; ii) Halley; iii) Newton; iv) Wren.
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PROBLEM 5.1: Magnetization measurement*

This problem applies the magnetization measurement technique discussed in 5.4 to
one of the four superconductors used in the Hybrid III SCM, to confirm that there
would be no flux jumping. The absence of flux jumping is one of the necessary
conditions for magnets that are not “cryostable”—this point will be discussed in
more detail in CHAPTER 6.

Table 5.1 presents specifications of the superconductor, a bare NbTi composite
strip with overall dimensions of 9.2 mm width and 2.6 mm thickness. (Not all
parameters in the table, e.g., twist pitch, are relevant for this problem.)

The test sample consisted of 52 (13×4) 100-mm long strips assembled in a rect-
angular solid of square cross section, 38 mm×38 mm, as shown in Fig. 5.17. Each
bare strip was electrically insulated with a thin tape. In the orientation shown
in Fig. 5.17a, each strip presents its narrow surface to the external magnetic in-
duction Be; in the orientation shown in Fig. 5.17b, each strip is broadside to
Be. The test sample assembly was placed inside a rectangular-bore (cross section
107 mm×42 mm) search coil set containing a primary search coil and two secondary
coils (Fig. 5.17c). The test assembly midplane coincided with that of the primary
search coil, whose midplane coincided with that of an external magnet generat-
ing Be. The midplane-to-midplane distance between the primary and one of the
secondary coils was 70 mm. The primary coil had 500 turns of fine copper wire
over an axial distance of 40 mm centered on its midplane; each secondary search
coil had 280 turns, extending an axial distance of 20 mm centered on its midplane.
The turn density in the axial direction in each search coil was uniform.

When an external magnetic induction Be was swept at a rate of 0.05 T/s between
0 and 5 T with the test sample at 4.2 K with its orientation as in Fig. 5.17a, a
plot of −M (given in Vmz) vs. Be plot similar to that shown in Fig. 5.8 was
obtained. +Vmz is the integrator output proportional to −M , the negative of
the test sample magnetization. The effective integration time, τit, was 1 s; the
balancing potentiometer’s constant k was 0.5. Assume negligible voltage drift.

Table 5.1: Specifications for a Hybrid III NbTi Conductor

Overall width, a [mm] 9.2 Cu/Sc ratio, γc/s 3

Overall thickness, b [mm] 2.6 Tc @10T [K] 4.7

Filament diameter† [μm] 100 Ic @1.8K, 10T [A] 6000

Twist pitch length, �p [mm] 100 Jc @4.2K, 5T [GA/m2] 2.0

Insulation none — —

† Computed value for filaments of circular cross section.

* Based on Problem 5.5 in the 1st Edition (Plenum, 1994).
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PROBLEM 5.1: Magnetization measurement (continuation)

(a) (b)

38 100

Be
38

42

20
Secondary Coil
(280 turns)107 Be

40
Primary Coil
(500 turns)

70

20
Secondary Coil
(280 turns)

70

(c)

Fig. 5.17 Magnetization measurement details, dimensions in mm.
(a) Each strip presents its narrow surface to the external magnetic
induction, Be; (b) Each strip is broadside to Be; (c) Search coil setup.

a) Make a ballpark estimate of ΔVmz at Be∼2.5 T (magnetization trace “width”
in Fig. 5.8, given in volts). Note that τit = 1 s and k = 0.5. Assume df = 2a,
where df is the filament diameter and 2a is the width of the Bean slab.

b) A 1.8-K measurement was performed by pumping on the cryostat and re-
ducing the liquid helium bath pressure to 12.6 torr. The technician who con-
trolled the cryostat pressure noticed that pressure control was more difficult,
because of an increased liquid boil-off rate, when the test sample orientation
was as in Fig. 5.17b rather than as in Fig. 5.17a. Is this an aberration or
does his observation make sense? Explain.

c) The z-component of the external induction Be over the radial space occupied
by the search coil may be approximated to vary as:

Be(z) � Be(0)

[
1 − c

(
z

z◦

)2
]

(5.30)

where z◦ = 75 mm. Based on information you have, compute the value of c.
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Solution to PROBLEM 5.1

a) Equation 5.13 indicates that search coils need to be balanced; otherwise, a
term proportional to the applied field contributes to the apparent magnetization.
Since the −M(H) trace shown in Fig. 5.8 is not tilted, the search coils are balanced.
From Eq. 5.14b:

Vbg(t) = (k − 1)μ◦NpcApc
dM

dt
(5.14b)

We have from Eq. 5.16c:

ΔVmz = −fm
(k − 1)μ◦NpcApc

τit
Jca (5.16c)

We have: k = 0.5; τit = 1 s; Npc = 500; Apc = (13)(0.1 m)(2.6× 10−3 m) =
3.38×10−3 m2 [also acceptable is (0.1 m)×(38×10−3 m) = 3.8×10−3 m2]; fm =(NbTi
volume)/total composite volume)= 1/(γc/s + 1) = 0.25.

Estimate of Jc (4.2 K, 2.5 T)

From Table 5.1 we have Jc at 4.2 K and 5 T of 2.0×109 A/m2. It is generally
accepted that for a given temperature, Jc(Be) may be approximated, based on
Eq. 1.3, by:

Jc =
J0B0

Be + B0
(S1.1)

where for NbTi, B0 ∼ 0.3 T. J0 is the zero-field critical current density, which is
usually difficult to measure. Thus from the Jc value at 5 T and B0 = 0.3 T, we
can first solve for J0B0:

2.0×109 A/m2 =
J0B0

5T + 0.3 T
=⇒ J0B0 = 10.6×109 A T/m2

Once J0B0 is known, then Jc may be solved at 2.5 T. Thus:

Jc(2.5 T) =
10.6×109 A T/m2

2.8 T
= 3.8×109 A/m2

Inserting appropriate values into Eq. 5.16c, we have:

ΔVmz = −0.25
(−0.5)(4π×10−7 H/m)(500)(3.38×10−3 m2)

1 s
×(3.8×109 A/m2)(50×10−6 m)

� 50 mV
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Solution to PROBLEM 5.1 (continuation)

Because the strip is flattened from a round conductor by a process that squeezes
the conductor between rollers, the projected diameter of filaments in the direction
parallel to Be would be actually slightly less than the equivalent circular-area
radius, a = 50μm, which is used in the above computation for ΔVmz. If a radius
less than 50 μm is used, ΔVmz would be less than 50 mV.

b) The anisotropic shape of the NbTi filaments makes magnetization in the ori-
entation of Fig. 5.17b greater than that in the orientation of Fig. 5.17a—the “ef-
fective” a is greater. Thus there will be more magnetization loss.

If the aspect ratio of the filaments is the same as for the conductor, eddy current
loss will be proportional to (aḢe)2 in the orientation of Fig. 5.17b and (bḢe)2

in the orientation Fig. 5.17a—review PROBLEM 2.8. Thus eddy current loss is
greater by a factor of (9.2/2.6)2 = 12.5 for Fig. 5.17b than for Fig. 5.17a.

The increased heat load on the helium due to higher magnetization and eddy
current losses causes a higher liquid helium boil-off rate; thus the technician’s
observation makes sense.

c) With balanced search coils, we have:

NpcApc

(
dB̃e

dt

)
pc

= NscAsc

(
dB̃e

dt

)
sc

(S1.2)

Because Apc = Asc, we have: Npc[B̃e]pc = Nsc[B̃e]sc. From symmetry, we consider
only the upper half (the unit mm is omitted in the following equations):

[B̃e]pc =
Be(0)

20

∫ 20

0

[
1 − c

(
z

z0

)2
]

dz (S1.3a)

[B̃e]sc =
Be(0)

20

∫ 80

60

[
1 − c

(
z

z0

)2
]

dz (S1.3b)

The Npc[B̃e]pc = Nsc[B̃e]sc equality gives:

250
20

∫ 20

0

[
1 − c

(
z

z0

)2
]

dz =
280
20

∫ 80

60

[
1 − c

(
z

z0

)2
]

dz (S1.4)

250
[
20 − c

3
(20)3

(75)2

]
= 280

[
80 − c

3
(80)3

(75)2
− 60 +

c

3
(60)3

(75)2

]

5000 − 118.5c = 22400 − 8495.4c − 16800 + 3584c

c � 600
4793

� 0.125
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DISCUSSION 5.5: Magnetic and Thermal Diffusion*

Before studying the flux jump criterion next in PROBLEM 5.2, we derive here basic
equations of magnetic and thermal diffusion to identify two diffusivities: magnetic
diffusivity, Dmg, and thermal diffusivity, Dth. The relative sizes of these two
diffusivities are quite different for electrically conductive normal metals (Dth 	
Dmg) and for Type II superconductors (Dth
Dmg). This condition of Dth
Dmg

in Type II superconductors makes the penetration of flux into a superconductor
an adiabatic process, leading, as we shall study in PROBLEM 5.2, to the criterion
for flux jumping.

To derive the magnetic diffusion equation, the applicable Maxwell’s equations are
Ampere’s law and Faraday’s law, both in differential forms:

Ampere’s law: ∇× �H = �Jf (2.5)

Faraday’s law: ∇× �E = −∂�B

∂ t
(2.8)

For the slab (width 2a) geometry, we can express Eqs. 2.5 and 2.8 as:

Ampere’s law:
∂Hy

∂x
= Jz =

Ez

ρe
(5.31)

Faraday’s law:
∂Ez

∂x
=

∂By

∂ t
= μ◦

∂Hy

∂ t
(5.32)

where ρe is the material’s electrical resistivity. From Eqs. 5.31 and 5.32, we obtain:

ρe
∂ 2Hy

∂x2
= μ◦

∂Hy

∂ t

ρe

μ◦

∂ 2Hy

∂x2
≡ Dmg

∂ 2Hy

∂x2
=

∂Hy

∂ t
(5.33)

Equation 5.33 is a magnetic diffusion equation, for which:

Dmg =
ρe

μ◦
(5.34)

Similarly, the one-dimensional thermal diffusion equation having constant thermal
properties is given by:

k
∂ 2T

∂x2
= C

∂T

∂ t
(5.35a)

where k and C are, respectively, the material’s thermal conductivity and heat
capacity. Dividing both sides of Eq. 5.35a by C, we obtain:

k

C

∂ 2T

∂x2
≡ Dth

∂ 2T

∂x2
=

∂T

∂ t
(5.35b)

Equation 5.35b is a thermal diffusion equation, for which:

Dth =
k

C
(5.36)

Note that Eq. 5.36 and 4.20 are equivalent, because C =�cp.

* Based on Problems 6.5 in the 1st Edition (Plenum, 1994).
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DISCUSSION 5.5: Magnetic and Thermal Diffusion (continuation)

Table 5.2: Diffusivities* of Stainless Steel and Copper at 4K and 80K

Metal ρe k C Diffusivity [m2/s]

[nΩ m] [W/mK] [J/m3 K] Dmg Dth

Stainless Steel @4K 500 0.2 3×103 0.4 7×10−5

@80K 500 8 1.5×106 0.4 5×10−6

Copper @4K 0.2 400 800 1.6×10−4 0.5

@80K 2 600 1.8×106 1.6×10−3 3×10−4

* Property values are approximate.

Table 5.2 presents approximate values of electrical and thermal properties and
corresponding diffusivities at 4 K and 80 K for stainless steel and copper. From
Table 5.2 we can clearly see that stainless steel, a stand-in for normal-state su-
perconductors, and copper are opposite with respect to magnetic and thermal
diffusivities. Specifically, changes in magnetic field propagate quickly through
stainless steel, whereas temperature gradients are relatively slow to propagate;
hence, large nonuniform temperature distributions can be created in stainless steel
during changing magnetic fields. Physically, it means that magnetic heating hap-
pens essentially adiabatically in Type II superconductors. In copper, the reverse
is true: the magnetic field diffuses very slowly, while any nonuniformity in temper-
ature is quickly “evened out.” Therefore, copper in intimate contact with Type
II superconductor can alleviate field-motion-induced instability in Type II super-
conductors. This thinking is the essence of dynamic stability, one of the stability
criteria developed during the 1960s and 1970s [5.8] and applied also to HTS in the
late 1980s [5.9].

Answer to TRIVIA 5.1 iii). The Principia Mathematica of Sir Isaac Newton
(1642–1727) is regarded as a dominant force ushering in the Age of Reason.
The complete couplet of the English poet Alexander Pope (1688–1744): Nature
and Nature’s laws lay hid in night/God said, Let Newton be! and all was light.
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PROBLEM 5.2: Criterion for flux jumping*

This problem deals with the derivation of the critical conductor size above which
flux jumping will occur. Flux jumping was once a major source of instabilities in
the first superconducting magnets of engineering significance in the early 1960s
[5.10]. Flux jumping is a thermal instability peculiar to a Type II superconductor
that permits the magnetic field to penetrate its interior. A time-varying magnetic
field, Ḣe, at the conductor surface induces an electric field �E in the conductor,
which interacts with the supercurrent (density Jc). This �E · �Jc interaction heats
the conductor. Since Jc decreases with temperature, the field (flux) penetrates
further into the conductor, generating more heat, which further decreases Jc. The
field penetration and temperature rise can cascade until the conductor loses its
superconductivity. This thermal runaway event is called a flux jump.

a) Using the Bean model and computing the �E · �Jc interaction over the positive
half (0 ≤ x ≤ a) of the slab, show that an expression for the dissipative energy
density, eφ [J/m3], generated within the slab when the critical current density
Jc is suddenly decreased by |ΔJc| is given by:

eφ =
μ◦Jc|ΔJc|a2

3
(5.37)

Note that the entire slab is in the critical state with its surface (±a) exposed
to an external field of He�ıy.

b) Derive Eq. 5.37 by computing the Poynting energy flow into the slab at x = a
and equating it with the change in magnetic energy storage and dissipation
energy Eφ in the positive half of the slab.

c) To relate ΔJc to an equivalent temperature rise in the conductor, we may
assume a linear temperature dependence for Jc(T ):

Jc(T ) = Jc◦

(
Tc − T

Tc − Top

)
(5.38)

where Jc◦ is the critical current density at the operating temperature Top. Tc

is the critical temperature at a given magnetic induction B◦. From Eq. 5.38,
ΔJc in Eq. 5.37 may be related to an equivalent temperature rise ΔT :

ΔJc = −Jc◦

(
ΔT

Tc − Top

)
(5.39)

Now, by requiring that ΔTs =eφ/C̃s≤ΔT , where C̃s is the superconductor’s
average heat capacity [J/m3 K] in the range from Top to Tc, show thermal
stability implies a critical slab half width ac of:

ac =

√
3C̃s(Tc − Top)

μ◦J2
c◦

(5.40)

* Based on Problem 5.6 in the 1st Edition (Plenum, 1994).



MAGNETIZATION—PROBLEMS & DISCUSSIONS 339

Solution to PROBLEM 5.2

Hs2(x)

He

Hs1(x)

0 a

Fig. 5.18 Field profiles.

a) Because of symmetry about x = 0, we
shall consider only one half of the slab, between
x = 0 and x = a. As illustrated in Fig. 5.18,
the solid line corresponds to Hs1(x), which
gives the initial field distribution within the
slab, with J =Jc. The dotted line corresponds
to Hs2(x) for the slab carrying Jc−|ΔJc|. Note
that the field at the surface is He in both cases.
We thus have:

Hs1(x) = He + Jc(x − a) (S2.1a)

Hs2(x) = He + (Jc − |ΔJc|)(x − a) (S2.1b)

Because there is a change in magnetic field
within the slab, an electric field �E is gener-
ated, which from Faraday’s law of induction is
given by: ∮

C
�E · d�s = −μ◦

∫
S

ΔHs(x)�ıy · d �A
Δt

(S2.2)

From symmetry we have �E(x = 0) = 0 and �E points in the z-direction. ΔHs(x)
is given by:

ΔHs(x) = Hs2(x) − Hs1(x)

= |ΔJc|(a − x) (S2.3)

Combining Eqs. S2.2 and S2.3, we obtain:

Ez(x) = μ◦
|ΔJc|
Δt

∫ x

0

(a − x) dx

= μ◦
|ΔJc|
Δt

(
ax − x2

2

)
(S2.4)

Dissipation power density, p(x), is given by Ez(x)Jc; the total energy density per
unit length dissipated in the slab or per unit slab surface area in the y-z plane, Eφ

[J/m2], is given by:

Eφ =
∫ a

0

p(x)Δt dx

= μ◦Jc|ΔJc|
∫ a

0

(
ax − x2

2

)
dx =

μ◦Jc|ΔJc|a3

3
(S2.5)

The average dissipation energy density, eφ, is given by Eφ/a:

eφ =
μ◦Jc|ΔJc|a2

3
(5.37)
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Solution to PROBLEM 5.2 (continuation)

b) The Poynting energy flux [J/m2] in the y-z plane into the slab (in the −x-
direction) at x = a is equal to the change in magnetic energy storage flux ΔEm

[J/m2] and dissipation energy flux Eφ in the slab. Thus:∫
Sx(a) dt = ΔEm + Eφ (S2.6)

We can verify the direction of �S by computing �S = �E× �H at x = a. At x = a,
�H = He�ıy; from Ez(x) derived in Eq. S2.4:

Ez(a) = μ◦
|ΔJc|a2

2Δt
(S2.7)

Thus:
�S(a) = μ◦

|ΔJc|a2

2Δt
�ız×He�ıy = −μ◦

He|ΔJc|a2

2Δt
�ıx (S2.8)

As expected, �S(a) points in the −x-direction; energy indeed flows into the slab.
Thus: ∫

Sx(a) dt = μ◦
He|ΔJc|a2

2
(S2.9)

The difference in magnetic energy flux ΔEm in the slab is given by:

ΔEm =
μ◦
2

∫ a

0

[H2
s2(x) − H2

s1(x)] dx (S2.10)

=
μ◦
2

∫ a

0

{[He + (Jc − |ΔJc|)(x − a)]2 − [He + Jc(x − a)]2} dx

=
μ◦
2

∫ a

0

[−2He|ΔJc|(x − a) − 2Jc|ΔJc|(x − a)2 + |ΔJc|2(x − a)2] dx

Neglecting the |ΔJc|2 term in the above integral, we obtain:

ΔEm = μ◦

(
He|ΔJc|a2

2
− Jc|ΔJc|a3

3

)
(S2.11)

From Eq. S2.6, we have:

Eφ =
∫

Sx(a) dt − ΔEm (S2.12)

Combining Eqs. S2.9, S2.11, and S2.12, we obtain:

Eφ = μ◦
He|ΔJc|a2

2
− μ◦

(
He|ΔJc|a2

2
− Jc|ΔJc|a3

3

)

= μ◦
Jc|ΔJc|a3

3
(S2.13)

Equation S2.13 leads directly to Eq. 5.37:

eφ =
Eφ

a
=

μ◦Jc|ΔJc|a2

3
(5.37)
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Solution to PROBLEM 5.2 (continuation)

c) As given by Eq. 5.38, Jc(T ) is a decreasing function of temperature. We thus
have:

ΔJc = −Jc◦

(
ΔT

Tc − Top

)
(5.39)

From Eq. 5.39, we have:

|ΔJc| =
Jc◦ΔT

Tc − Top
(S2.14)

Replacing Jc with Jc◦ in Eq. 5.37 and combining it with Eq. S2.14, we obtain:

eφ =
μ◦J2

c◦ΔTa2

3(Tc − Top)
(S2.15)

Note that eφ is proportional not only to ΔT but also, more importantly, to a2.
Under adiabatic conditions, the dissipation energy density eφ increases the super-
conductor’s temperature by ΔTs, given by:

ΔTs =
eφ

C̃s

> 0 (S2.16)

C̃s is the superconductor’s average heat capacity [J/m3 K] in the temperature
range from Top to Tc. Combining Eqs. S2.15 and S2.16, and requiring ΔTs < ΔT
for thermal stability, we have:

ΔTs

ΔT
<

μ◦J2
c◦a

2

3C̃s(Tc − Top)
(S2.17)

For a given superconducting material and operating temperature, a is the only
parameter that can be varied by the magnet designer to satisfy Eq. S2.17. That
is, thermal stability can be satisfied only if the slab half-width a is less than the
critical size ac, given by:

ac =

√
3C̃s(Tc − Top)

μ◦J2
c◦

(5.40)

Equation 5.40 is applied to compute approximate values of ac for NbTi (LTS) op-
erating at 4.2 K and YBCO (HTS) operating at 77.3 K. Table 5.3 lists approximate
values of parameters appearing in Eq. 5.40 for both superconductors.

We may conclude that for a circular filament of NbTi, ac =140 μm means a critical
diameter of ∼300 μm (Eq. 5.29) and a coated YBCO tape of width 8 mm.

Table 5.3: Application of Eq. 5.40 to NbTi and YBCO

Superconductor Top [K] Tc [K] Jc◦ [A/m2] C̃s [J/m3 K] ac [mm]

NbTi 4.2 9.8 2×109 6×103 0.14

YBCO 77.3 93 2×109 2×106 4



342 CHAPTER 5—PROBLEMS & DISCUSSIONS

PROBLEM 5.3: Flux jumps*

The magnetization vs. ambient field trace shown in Fig. 5.19 was obtained with a
monofilament Nb-Zr wire (0.5mm φ) at 4.2K carrying no transport current. (In
the early 1960s, superconductors based on alloys of niobium and zirconium, Nb-Zr,
preceeded Nb-Ti. Shortly after a composite superconductor became the standard
form for magnet-grade superconductors in the mid 1960s, Nb-Ti (now more com-
monly designated NbTi), being much easier to co-process with copper than Nb-Zr,
replaced Nb-Zr.) Note that both ordinate (magnetization) and abscissa (field) are
given in non-SI units. Use Bean’s model and treat the wire, of diameter df , as a
slab of thickness 2a.

a) Show that the field interval, ΔHf , indicated in the trace, is consistent with
the measured magnitude of magnetization.

b) Estimate the dissipation energy density, eφ [J/m3], resulting from the flux
jump labeled A in Fig. 5.19. First, show that eφ is given by:

eφ =
(μ◦Hp)2

6μ◦
(5.41)

c) Estimate the temperature rise for flux jump A. Assume the heat capacity of
Nb-Zr to be independent of temperature and equal to 6 kJ/m3 K.
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Fig. 5.19 Magnetization vs. ambient field trace for a 0.5-mm dia. Nb-Zr monofilament.

* Based on Problem 5.7 in the 1st Edition (Plenum, 1994).
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Solution to PROBLEM 5.3

a) From Bean’s model, flux jumping can occur every Hp. Clearly, Hp = ΔHf ,
where ΔHf is indicated in Fig. 5.19. Also, full magnetization for a slab is Hp/2.

From Fig. 5.19, ΔHf � 5 kilogauss, μ◦ΔHf = 0.5 T. Also from Fig. 5.19, Hp/2 �
2.5 kilogauss, which is (1/2) ΔHf . They are consistent.

b) We can derive the flux jump energy density, eφ, using the Poynting energy
balance: es = eφ + Δem, where es is the Poynting energy density entering the
superconductor at x=a, and Δem is its change in stored magnetic energy density.
Let’s consider only 0 ≤ x ≤ a. ΔH(x) within the slab is given by:

ΔH(x) = Hp
(a − x)

a
(S3.1)

From Eq. S3.1, we have:

E(x) = μ◦
Hp

Δt

∫ x

0

a − x

a
dx =

μ◦Hp

aΔt

(
ax − x2

2

)
(S3.2)

�S at x = a is thus given by:

�S(a) = − μ◦
2Δt

HpaHe�ıx (S3.3)

�S(a) is directed towards the slab, and the Poynting energy density es is given by:

es =
∫

Sx(a) dt

a
=

μ◦
2

HpHe (S3.4)

The stored magnetic energy density after flux jumping (em2) is μ◦H2
e /2. The

stored magnetic energy density before flux jumping, em1, is given by:

em1 =
μ◦
2a

∫ a

0

[He + Jc(x − a)]2 dx (S3.5)

=
μ◦
2a

(
H2

e a − HeJca
2 +

J2
c a3

3

)
=

μ◦
2

H2
e − μ◦

2
HeHp +

μ◦
6

H2
p (S3.6)

Δem = em2 − em1 =
μ◦
2

HeHp − μ◦
6

H2
p (S3.7)

Because eφ = es − Δem, we obtain:

eφ =
μ◦
2

HpHe −
μ◦
2

HeHp +
μ◦
6

H2
p =

μ◦
6

H2
p (S3.8)

Equation S3.8 may be expressed as:

eφ =
(μ◦Hp)2

6μ◦
(5.41)

Inserting μ◦Hp =0.5 T into Eq. 5.41:

eφ � (0.5T)2

(6)(4π×10−7 H/m)
� 33×103J/m3

c) eφ = CsΔTs; 33×103 = 6×103ΔTs. Solving for ΔTs, we obtain: ΔTs = 5.5 K,
sufficient to drive the superconductor normal.
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PROBLEM 5.4: Wire twisting*

As discussed in PROBLEM 5.2, to avoid flux jumping requires a conductor diam-
eter less than 2ac, which for NbTi is ∼250 μm. With Jc◦ typically 2×109 A/m2

(at 4.2 K and 5 T), a 250-μm diameter NbTi filament has a critical current of only
∼100 A—insufficient for most magnet applications if used singly. The idea of using
many filaments, each small enough to avoid flux jumping, in a matrix of normal
metal, emerged in the late 1960s to build conductors with critical currents as high
as 1000 A. Today, 50-kA conductors are available.

In early (c. 1969) “multifilamentary” conductors, wires were untwisted. Coupling
between filaments caused the wire as a whole to flux jump, despite each filament
being small enough to satisfy the size criterion (Eq. 5.40). PROBLEM 5.5 deals
with such conductors. Results of a study of multifilamentary conductors, analytical
and experimental, by Wilson and others at the Rutherford Laboratory in the late
1960s launched a new era of multifilamentary conductors [5.11].

Simply stated, when filaments are embedded in a conductive metal (e.g., copper)
and subjected to a time-varying magnetic field, the filaments are electrically cou-
pled according to Faraday’s law. They then act as a single entity with an effective
conductor diameter nearly as great as that of the entire conductor. The basic
premise of the flux jumping criterion for isolated filaments is thus violated in an
untwisted multifilamentary conductor. In order to eliminate flux jumping in mul-
tifilamentary conductors, filaments must be decoupled. Twisting of the wires, or
more ideally transposition of the filaments (or strands of a multi-strand conduc-
tor), can do the trick of filament decoupling.

Consider a two-dimensional conductor model comprised of two Bean slabs, each
df wide, separated by a copper slab of width 2w and electrical resistivity ρcu.
Figure 5.20 shows the conductor as seen looking down the z-axis. Note that unlike
the one-dimensional Bean slab which extends into infinity in both the y- and z-
directions, this conductor is 2
 long in the y-direction.

df 2w df

y �E

x 2l

�E

Fig. 5.20 Two-dimensional conductor consisting of a normal
metal slab sandwiched between two Bean slabs.

* Based on Problem 5.8 in the 1st Edition (Plenum, 1994).
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PROBLEM 5.4: Wire twisting (continuation)

Suppose the conductor is subjected to a spatially uniform, time-varying magnetic
field pointed in the z-direction, Ḣ0z�ız.

a) Show that the x-directed electric field within the copper slab, E1x, varies
with y as given by:

E1x = μ◦Ḣ0zy (5.42)

Assume the electric field in each superconducting slab to be zero—strictly
speaking it is not, but compared with that in the copper, it is extremely
small; hence the approximation of zero �E field is valid. Also assume the field
to be quasi-static. Under these assumptions, it is apparent that the �E field
in the copper, as indicated in Eq. 5.42, has only an x component.

b) Show that the net current flowing through the copper (per unit conductor
depth in the z-direction), Icp [A/m], from one superconducting slab to the
other superconducting slab, over one half conductor length (from y = 0 to
y=
), is given by:

Icp =
∫ �

0

Jcu dy =
μ◦Ḣ0z

ρcu

∫ �

0

y dy =
μ◦Ḣ0z


2

2ρcu
(5.43)

c) At a critical length 
c, the net current Icp given by Eq. 5.43, becomes equal
to Jcdf , the slab’s critical current (per unit conductor depth). Show that
the critical length 
c is:


c =

√
2ρcuJcdf

μ◦Ḣ0z

(5.44)

d) Multifilamentary superconductors for 60-Hz power applications must have a
filament size (df ) that is extremely small, in the range 0.1∼0.5μm, which
is even smaller than the wavelength of visible light (∼0.7μm). This ex-
tremely small size is required to keep “manageable” the hysteresis energy,
generated within each filament every time a magnetic field is cycled. (As
will be discussed in CHAPTER 6, hysteresis loss per cycle of field excitation
is proportional to filament diameter.)

Compute 
c for a typical “submicron” superconductor having the following
parameters: ρm = 30 nΩ m; Jc = 2 GA/m2; df = 0.2 μm; μ◦Ḣ0z = 2 kT/s
(equivalent to a sinusoidal excitation of 5-T amplitude magnetic induction
at 60 Hz). ρm is the electric resistivity of the matrix, which is generally a
copper-nickel alloy.

e) Compute the number of filaments required for a submicron multifilamentary
conductor with a filament diameter of 0.2μm having a critical current of
100 A. Use the same values of parameters given in d).
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Solution to PROBLEM 5.4

a) From Faraday’s law, applied under the quasi-static assumption, we have:

∂E1y

∂ x
− ∂E1x

∂ y
= −μ◦Ḣ0z (S4.1)

Because �E is zero in the superconducting slabs, Ey = 0 at x = ±w, forcing E1y = 0
everywhere in the copper slab. Thus:

E1x = μ◦Ḣ0zy (5.42)

b) Once the E field is known, the current density Jcu in the copper slab is given
by: Jcu = E1x/ρcu. The net current flowing in the copper from one superconduct-
ing slab to the other over half the conductor length is given by:

Icp =
∫ �

0

Jcu dy =
μ◦Ḣ0z

ρcu

∫ �

0

y dy =
μ◦Ḣ0z


2

2ρcu
(5.43)

c) Equating Icp given by Eq. 5.43 with Jcdf and solving for 
c, we have:


c =

√
2ρcuJcdf

μ◦Ḣ0z

(5.44)

d) Inserting appropriate values into Eq. 5.44, we obtain:


c =

√
2(3×10−8 Ω m)(2×109 A/m2)(0.2×10−6 m)

2×103 T/s

= 1.1×10−4 m = 110μm

In typical submicron strands, the twist pitch length is thus ∼100 μm. This means
that the diameter of such strands, by mechanical requirements, should be ∼1 μm;
actually a thermal-magnetic stability criterion, similar to the flux jump criterion,
requires it to be even smaller than 1μm. This is because the strands, to reduce
coupling losses, use Cu-Ni alloys as the matrix materials, resulting in a magnetic
diffusion time constant that is smaller than the thermal diffusion time constant.

e) Critical current (Ic), critical current density (Jc), filament number (Nf ) and
diameter (df ) in a multifilamentary conductor are related by:

Ic = Nf

πd2
f

4
Jc (S4.2)

Solving for Nf from Eq. S4.2 with appropriate values of parameters, we obtain:

Nf =
4Ic

πd2
fJc

=
4(100 A)

π(0.2×10−6 m)2(2×109 A/m2)

= 1.6×106

In submicron strands, the number of filaments may approach ten million.
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PROBLEM 5.5: Magnetization of conductors*

This problem illustrates the effect of filament size and twisting on magnetization.
In the late 1960s, three NbTi composite superconductors of equal volume were
subjected to magnetization measurements [5.12]. Conductors 1, 2, and 3, respec-
tively, are: twisted multifilamentary wire with a twist pitch length �p1; twisted
multifilamentary wire with a twist pitch length �p2 > �p1; and a monofilament.

Figure 5.21 presents three magnetization curves, labeled A, B, and C, for the
three NbTi composite conductors. Each conductor was subjected to field pulses
indicated by arrows in the figure. Traces A, B, and C do not necessarily correspond
to Conductors 1, 2, and 3, respectively. Note that Traces B (B1, B2, B3) show a
dependence on field sweep rate; Trace C is independent of field sweep rate; Trace
A also is independent of field sweep rate, but shows “partial” flux jumps induced
by the field pulses.

a) Identify which magnetization trace corresponds to which conductor.

b) Estimate the ratio of filament diameter in the monofilament conductor to
that in the multifilament conductors.

c) Estimate the value of �p2. Take Jcdf = 4×104 A/m for Conductors 1 and 2.
Also comment on �p1.
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Fig. 5.21 Magnetization traces for Conductors 1, 2, and 3 [5.12].

* Based on Problem 5.9 in the 1st Edition (Plenum, 1994).
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Solution to PROBLEM 5.5

a) Note that Traces A and C are independent of field sweep rate and that the
corresponding magnetization—an indication of filament diameter—is much greater
for Trace A than that for Trace C. We therefore conclude that Trace A is for
Conductor 3 (monofilament) and that Trace C is for Conductor 1 (
p1). That
leaves Trace B for Conductor 2 (
p2). (Remember that each conductor has the
same volume of NbTi superconductor, and thus its measured magnetization should
be directly proportional to filament diameter.)

b) The ratio of magnetization width, (M(He ↑) − M(He ↓)) of Conductor 3
(monofilament, Trace A) to that of Conductor 1 (Trace C), is roughly 10 for μ◦He

below ∼1 T (10 kilo-oersted). Therefore, we conclude that the filament diameter
ratio is roughly 10.

c) Because a field sweep-rate of 900 oersted/sec (μ◦Ḣ0z = 0.09 T/s) makes the
magnetization of Conductor 2 (Trace B3) nearly equal to that of Conductor 3
(Trace A), we may conclude that this sweep rate makes Conductor 2’s filament
twist pitch length 
p2 critical. Thus from Eq. 5.44:


p2 = 2

√
2ρcuJcdf

μ◦Ḣ0z

(S5.1)

With ρcu = 2×10−10 Ω m; Jcdf = 4×104 A/m; and μ◦Ḣ0z = 0.09 T/s, we obtain:


p2 = 2

√
(2)(2×10−10 Ω m)(4×104 A/m)

0.09 T/s

= 2.7×10−2 m = 27 mm

This value is close enough to the actual twist pitch of 10 mm. Because the magneti-
zation of Conductor 1 (Trace C) at a sweep rate of 320 oersted/sec is considerably
smaller than that of Conductor 2 for the same field sweep rate, we conclude that

p1 is significantly shorter than 
p2.

DISCUSSION 5.6: Twisting

An important implication of the condition Icp = Jcdf , used to derive Eq. 5.44
(PROBLEM 5.4), is that the two superconducting slabs are electrically coupled.
Were the conductor length substantially shorter than 2
c, on the other hand, the
two would be decoupled. In reality, these slabs may be decoupled, even if each one
is much longer than 2
c, if they are alternated in their positions with a pitch length
less than 2
c. In multifilamentary conductors, we can achieve partial decoupling
by twisting the wires with a pitch length 
p 
 2
c; 2
c must be small when Ḣ0z

is large. Note that in a twisted conductor each filament remains at a fixed radial
distance from the strand axis. By contrast, in a cable of transposed strands, more
complete decoupling is possible, because when strands are transposed each strand
is made to occupy every radial position across the cable diameter as it spirals along
the cable’s transposition length.
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DISCUSSION 5.7: Flux Jumping in HTS?

A. Size Criterion for “Complete” Flux Jumping

The conductor size criterion (Eq. 5.40) was originally derived for LTS in the limit
Δeφ/ΔT = Cs, where Cs is the superconductor heat capacity per unit volume,
assumed constant. Because in LTS, the temperature excursion in a complete flux
jump, i.e., Tc−Top, is small, this size criterion is adequate.

A general condition for suppression of flux jumping, under adiabatic conditions, is
that the superconductor’s magnetic energy must be less than its thermal density.
Under adiabatic conditions a flux jump can proceed to completion only if the
initial magnetic energy density at Top, eφ(Top), exceeds the thermal energy density
required to heat the superconductor from Top to Tc:

eφ(Top) ≥ hs(Tc) − hs(Top) (5.45)

where hs(Tc) and hs(Top) are the superconductor enthalpies, respectively, at Tc and
Top. Because eφ(Top)= [μ◦Hp(Top)]2/6μ◦, and for Bean slab, Hp(Top)=aJc(Top),
the conductor size criterion, ac, for suppressing complete flux jumping is given by:

ac =

√
6[hs(Tc) − hs(Top)]

μ◦J2
c (Top)

(5.46)

Comparing these two size criteria (Eqs. 5.40 and 5.46), we may conclude that under
adiabatic conditions, a flux jump may initiate if the conductor size is greater than
that specified by Eq. 5.40, but it may be only “partial” if the size does not exceed
that of Eq. 5.46. Thus, flux jumps will be only partial in a superconductor that
either violates the size criterion of Eq. 5.40 but not Eq. 5.46, or the process is not
adiabatic. Note that even those flux jumps seen in Fig. 5.19 are, strictly speaking,
not complete, most probably because the process was not perfectly adiabatic.

B. Flux Jumping in HTS

Because Tc is ∼100 K in HTS, under adiabatic conditions the energy condition of
Eq. 5.45 is unlikely to be satisfied. Flux jumping is unlikely in HTS.

For YBCO with Top =77 K and Tc =93 K (zero field and current), for example, the
enthalpy difference is ≈ 20 MJ/m3 (60% of the enthalpy difference for copper—
from Cp differences of the two materials at 120 K), and with Jc(Top)=1010 A/m2,
we compute, from Eq. 5.46: ac � 1 mm (∼2 mm diameter). Note that a YBCO
wire of 2-mm diameter will have a “Bean” magnetization, μ◦M =μ◦aJc(Top)∼2 T.

Despite our expectation for HTS, flux jumps, not merely partial but also com-
plete, have been observed in HTS, for example, in “thin” crystals, 2a = 4.2 mm,
with a y-axis extent of 0.2 mm (thus “thin” rather than ∞ as in a Bean slab) of
BSCCO-2212 [5.13] and thin (∼100-μm) films of Type II superconductors includ-
ing YBCO [5.14]. Nevertheless, in a real magnet-grade-superconductor, even of
HTS, because it must satisfy many requirements, including limiting AC losses, the
requirement that imposes, among other conditions, a severe size restriction, flux
jumping should be one of the least troubling aspects for HTS magnets.



350 CHAPTER 5—REFERENCES

REFERENCES

[5.1] C.P. Bean, “Magnetization of hard superconductors,” Phys. Rev. Lett. 8, 250
(1962).

[5.2] Y.B. Kim, C.F. Hempstead, and A.R. Strnad, “Magnetization and critical super-
currents,” Phys. Rev. 129, 528 (1963).

[5.3] M.A.R. LeBlanc, “Influence of transport current on the magnetization of a hard
superconductor,” Phys. Rev. Lett. 11, 149 (1963).
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CHAPTER 6

STABILITY

6.1 Introduction

Reliability is one of the major requirements that all devices must meet, super-
conducting magnets included. Historically, reliability has been one of the most
troubling, and therefore most challenging, aspects of superconducting magnet
technology. As illustrated in Fig. 1.5, superconductivity exists within a phase
volume bounded by three parameters: current density (J), magnetic field (H),
and temperature (T ).

Of these parameters, as examined in CHAPTER 3, the designer can define, and more
importantly control, current density and magnetic field quite well, at least under
normal operating conditions. Even under a complex fault-mode condition such as
that involving more than one solenoid in a hybrid or nested multi-coil magnet,
the current density and magnetic field are tractable: the magnet designer has firm
control of these two parameters. This is not strictly the case with temperature: it is
the least tractable of the three. The magnitude of its excursion from the operating
point could vary unpredictably in time and, more intractably, in space within
the winding. The energy stored in the magnet, both magnetic and mechanical,
can easily be converted into heat, raising the conductor temperature to above its
critical value at one or more locations in the winding. Indeed, virtually every
“stability problem” of a superconducting magnet may be traceable to the magnet
designer’s inability to keep the winding temperature intact at its operating point.

In this chapter we shall consider: 1) basic physics controlling temperature in
a superconducting winding; and 2) stability evaluation methods to quantify the
likelihood of an unscheduled temperature rise within the winding. CHAPTERS 7
and 8 also deal with temperature rise in the winding under different contexts:
CHAPTER 7 on causes or sources of temperature rises; and CHAPTER 8 on methods
to protect magnets subsequent to unscheduled temperature rises. First, there is a
striking difference in this stability issue between LTS and HTS magnets.

LTS vs. HTS

As remarked in reference to Fig. 1.6, difficulty or cost of stability decreases with
increasing operating temperature. In a discussion below, we will compare “stability
margins” of LTS and HTS magnets and show that an HTS magnet is indeed very
stable. That is, every HTS magnet will reach its operating current without any
“premature quench.” Such incidents often still afflict “high-performance” (i.e.,
“adiabatic” and “high” overall current density) LTS magnets.

This means stability is no longer as pressing a design/operation issue for HTS
magnets as it is for LTS magnets. Nevertheless, stability remains a key issue for
HTS magnets [6.1–6.8].

© Springer Science + Business Media, LLC 2009
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6.2 Stability Theories and Criteria

We will discuss the thermal stability of a superconducting magnet carrying oper-
ating current Iop by examining the power density equation governing the temper-
ature, T , of a unit superconductor volume:

Ccd(T )
∂T

∂ t
= ∇·[kcd(T )∇T ] + ρcd(T )J2

cd◦(t) + gd(t) −
(

fpPD

Acd

)
gq(T ) (6.1)

In Eq. 6.1, the left-hand side represents the time rate of change of thermal energy
density of the conductor, where Ccd(T ) is the heat capacity per unit volume of the
conductor, which, after the development in 1964 by Stekly [6.9] of “composite” su-
perconductors, consists of superconductor and normal-metal matrix. For complete
steady-state stability, this term must remain zero at all times; in practice a modest
temperature excursion, ΔTop from the operating point, Top, is permitted during
operation in most windings, even “adiabatic” ones. Because this permissible ΔTop

is generally much greater in HTS magnets than in LTS magnets, as stated at the
outset, stability is almost a non-issue for HTS magnets. This point is elaborated
a bit more below.

In the right-hand side, each on a per unit volume basis, the first term describes
thermal conduction into the composite superconductor element, where kcd(T ) is
the thermal conductivity of the composite. The second term is Joule heating,
where ρcd(T ) is the composite’s electrical resistivity (zero in the superconducting
state), and Jcd◦(t) is the current density at operating current Iop(t), which can
depend on time. gd(t) describes non-Joule heat generation, primarily magnetic and
mechanical in origin. The last term represents cooling, where fp is the fraction
of the composite perimeter, PD, exposed to cryogen, Acd is the composite cross
sectional area, and gq(T ) is the convective heat transfer flux for the cryogen.

The history of the development of theories and concepts for stability (and protec-
tion to be discussed in CHAPTER 8 ) has evolved around solutions to simplifications
of Eq. 6.1. Table 6.1 lists various concepts derived from Eq. 6.1 under special con-
ditions. In the table, a parameter labeled 0 signifies that it is negligible or not
considered in the equation;

√
signifies inclusion. Before discussing each term of

Eq. 6.1, we briefly discuss the concepts listed in Table 6.1.

Table 6.1: Concepts Derived from Power Density Equation (Eq. 6.1)

Ccd(T )(∂T/∂ t) ∇·[kcd(T )∇T ] ρcd(T )J2
cd(t) gd(t) gq(T ) Concept

√
0 0

√
0 Flux jump

0 0
√

0
√

Cryostability√ √ √
0

√
Dynamic stability

0
√ √

0
√

“Equal area”

0
√ √

0 0 MPZ*√
0

√
0 0 Protection√ √ √
0 0 Adiabatic NZP†

* Minimum propagating zone.

† Normal zone propagation.
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6.2.1 Concepts Derived from Equation 6.1

Each concept derived from Eq. 6.1 and listed in Table 6.1 is briefly discussed below.

Flux Jumping

As examined in CHAPTER 5, criteria have been developed to eradicate most in-
stances of flux jumping, which generally afflicts LTS.

Cryostability

The basic concept of cryostability was developed in the mid 1960s as an engi-
neering solution to achieve reliable magnet operation [6.9]. In a “cryostable”
composite conductor, a superconductor is co-processed with a highly conductive
matrix metal [6.10], and a large portion of the conductor surface is exposed to
cryogen to ensure “local” cooling. As shown by Table 6.1, the terms other than
the Joule heating and cooling terms may be neglected. Many successful magnets in
the 1970s are cryostable [6.11, 6.12]; it is now applied only to “large” LTS magnets.
As we shall see later, it is not applied to HTS magnets. The cryostable concept is
further studied in this chapter’s PROBLEMS &DISCUSSIONS.

Dynamic Stability

As studied in CHAPTER 5, when the magnetic diffusivity is much greater than
the thermal diffusivity, as in Type II superconductors, flux jumping can occur
when the conductor size criterion to suppress it cannot be readily met, e.g., a tape
conductor. By loading the superconductor with a high thermal diffusivity material,
e.g., copper, we may balance the two diffusivities and achieve stable operation free
of flux jumping. Tape-LTS is now rarely used; flux jumping is unlikely in HTS
tapes (DISCUSSION 5.7). This criterion is not discussed further in this chapter.

Equal Area

The “equal-area” criterion is a special case of cryostability in which the thermal
conduction term (∇· [kcd(T )∇T ]) in Eq. 6.1 is included to improve the overall
current density at which the magnet may be cryostable. This will be further
discussed in the PROBLEMS &DISCUSSIONS.

MPZ

The concept of MPZ (minimum propagating zone) considers the effect on coil
performance of a local disturbance, gd(t) in Eq. 6.1, in the winding [6.13]. The
MPZ concept shows that it is possible for a magnet to remain superconducting
even in the presence of a small normal-state region in its winding, provided that the
normal-zone volume is smaller than a critical size defined by the MPZ theory. Its
importance in adiabatic magnets was recognized by Wilson in the late 1970s [1.27],
and it has since become an indispensable concept for analyzing the stability of
adiabatic magnets. The MPZ concept will be further studied in the PROBLEMS

&DISCUSSIONS.

Nonsteady Cases

The last two cases in Table 6.1 concern the non-steady-state thermal behavior of
the winding. Both are treated in CHAPTER 8.
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6.2.2 Thermal Energy

Long-term stability requires ∂T/∂ t � 0; for a given heat input, this is inversely
proportional to Ccd(T ), which varies by orders of magnitude over the temperature
range, 2–90 K, in which superconducting magnets may be operated. Table 6.2
gives approximate heat capacities of substances, over relevant temperature ranges
of NbTi (LTS), MgB2 (HTS), and YBCO (HTS), that constitute the winding,
or the immediate vicinity of the winding, of superconducting magnets, cooled by
methods discussed in CHAPTER 4.

In the table, operating ranges of NbTi, MgB2, and YBCO are set, respectively,
2–10 K, 2–30 K, and 2–90 K. For stability, the most influential substances in the
table are copper (that represents here an electrically conductive normal “matrix”
metal; others: aluminum and silver) and the superconductor itself. Because Cp(T )
of copper in the 10–20 K range (the likely range for MgB2) is several orders of
magnitude greater than at 2–4 K (NbTi), and at 50–90 K (YBCO) is another
order of magnitude greater still, it is quite clear, in terms of stability, that YBCO,
followed by MgB2, presents the easiest challenges to the magnet engineer. We may
conclude that stability is of real concern only for LTS.

6.2.3 Thermal Conduction

The thermal conduction term is neglected altogether in cryostability. In “adia-
batic” LTS magnets, it plays a subtle role in that it determines the MPZ (mini-
mum propagating zone) size, which in turn determines to what extent the adiabatic
winding can permit “localized” disturbances. As will be studied in the PROBLEMS

&DISCUSSIONS of this chapter, this term also determines the level of steady-state
dissipation density, e.g., AC losses, that can be tolerated in the cryocooled winding
of an adiabatic magnet to limit the maximum temperature. Table 6.3, similar to
Table 6.2 for Cp(T ), gives approximate values of thermal conductivity, k(T ).

Table 6.2: Heat Capacities of Substances in Superconducting Magnets

Superconductor ⇐= NbTi(Tc =9.8K) =⇒
Operating ⇐= MgB2 (Tc =39K) =⇒
Temperature ⇐= YBCO (Tc =93K) =⇒
Range Cp(T ) [J/cm3 K]

Material 2K 4K 10K 20K 30K 50K 90K

Copper 0.00025 0.00089 0.0076 0.067 0.236 0.857 2.07

NbTi 0.00018 0.0014 0.022 — — — —

MgB2 0.000040 0.00032 0.00181 0.0081 0.0242 — —

YBCO 0.000086 0.0007 0.120 0.454 1.12

Stainless steel 0.0014 0.003 0.01 0.04 0.1 0.4 1.5

Epoxy 0.00008 0.00066 0.014 0.080

Helium @3 atm — 0.47* 0.095* — — — —

Solid Neon 0.003 0.027 0.42 1.39 — — —

Solid Nitrogen 0.007 0.031 0.17 0.71 1.21 1.51 —

* Liquid (4K) & vapor (10K).
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Table 6.3: Thermal Conductivities of Substances in Superconducting Magnets
Electrical Resistivity of Copper and Stainless Steel

Superconductor ⇐= NbTi(Tc =9.8K) =⇒
Operating ⇐= MgB2 (Tc =39K) =⇒
Temperature ⇐= YBCO (Tc =93K) =⇒
Range k(T ) [W/cmK]

Material 2K 4K 10K 20K 30K 50K 90K

Copper 2 4.2 8.5 15 15 9 5

NbTi 0.0006 0.0017 0.0057 — — — —

MgB2 0.024 0.068 0.110 — —

YBCO 0.020 0.080 0.120 0.225 0.250 0.240 0.125

Stainless steel 0.001 0.0027 0.009 0.02 0.035 0.057 0.088

Epoxy 0.0001 0.0003 0.0012 0.0027 0.004 0.006 0.007

Helium @3 atm 0.00017* 0.0002 0.00018 — — — —

Solid Neon 0.030 0.038 0.0095 0.004 — — —

Solid Nitrogen 0.09 0.057 0.016 0.0042 0.003 0.002 —

Material ρ(T ) [μΩcm]

Copper (RRR=100) 0.015 0.015 0.015 0.017 0.02 0.07 0.3

Stainless steel (316) 54 54 54 54 55 56 57

* At 2.5K

Unlike its heat capacity, the thermal conductivity of each substance in the table
varies much less dramatically with temperature. Copper has the most remarkable
thermal conductivity. It is much greater than those of the rest, making it, par-
ticularly for stability (this chapter) and protection (CHAPTER 8), unquestionably
indispensable in any winding, LTS or HTS. As discussed in CHAPTER 7, because of
Joule dissipation from eddy currents in copper windings subjected to time-varying
electromagnetic fields, the presence of copper can present operational difficulties,
which are generally circumvented or minimized by a complex configuration for the
composite superconductor.

6.2.4 Joule Heating

Under normal operating conditions, the Joule heating term is zero in a super-
conducting magnet. Because Type II superconductors are, with the exception
of niobium, all some alloy or compound of elements, the normal-state electrical
resistivity of Type II superconductors is generally much greater than electrical
resistivities of matrix metals such as copper. This point was already studied in
DISCUSSION 5.5 (magnetic and thermal diffusion). One component of Stekly’s sta-
bility theory is to provide a highly conductive passage, in the form of a normal
metal shunt, to a highly resistive superconductor when it is not superconducting.
(The other is to provide sufficient cooling to remove this Joule dissipation.) Table
6.3 also lists electrical resistivities, ρ(T ), of copper and stainless steel, which may
be used to approximate a normal-state superconductor, except, as discussed later
in the PROBLEMS &DISCUSSIONS, when the effects of flux flow must be considered
in the vicinity of the critical current.



356 CHAPTER 6

6.2.5 Disturbance Spectra

The term gd(t) in Eq. 6.1 represents the so-called disturbance or heating density,
other than the Joule heating density that could arise within the winding. The
disturbance may be characterized in both time, i.e., transitory (and a disturbance
given in energy) vs. continuous (power), and space, i.e., localized (energy or power)
vs. global (energy density or power density). A sudden slippage of conductor—
wire motion—is a good example of a transitory and localized disturbance that
can best be quantified in terms of the total energy released in the winding by the
slippage. Perhaps the best example of continuous and global disturbances may
be AC losses that would invariably be released in the winding of an AC electric
power device. A design issue for an adiabatic winding subjected to a continuous
and global heating density is studied in the PROBLEMS & DISCUSSIONS.

Figure 6.1 shows the disturbance spectra of six prominent sources compiled over
the years for LTS magnets [6.14]. Of these sources, flux jumping, wire motion, and
AC losses are “intrinsic” in that they originate within the winding; heat leaks are
linked to the way the winding is coupled to the outside world; particle showers
and nuclear heat are device-specific and negligible in most magnets.

As discussed in CHAPTER 5, flux jumping may now be considered benign in LTS
and certainly in HTS. Wire motion and other mechanical events can still afflict
adiabatic LTS magnets. However, as studied here even adiabatic HTS magnets are
generally immune from these disturbances. Because Type II superconductors are
dissipative under time-varying electromagnetic fields, making HTS as vulnerable
to AC losses as LTS, how well AC losses are minimized will unquestionably make
or break HTS in the vast area of electric power applications.

AC Losses
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Motion
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Jumping Showers

Nuclear
Heat

Heat
Leaks
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Fig. 6.1 Spectra of gd(t) compiled for LTS magnets [6.14].
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6.2.6 “Stability Margin” vs. Disturbance Energy

The so-called “stability margin” or simply “energy margin” is a useful design
parameter especially for an adiabatic superconducting magnet. It is the maxi-
mum energy density, Δeh, that a composite superconductor—cooled or adiabatic
—carrying operating (transport) current, Iop (It), can absorb and still remain fully
superconducting. Unless the cooling balances this Δeh, the composite is heated
and its temperature is raised above the operating temperature Top; it remains com-
pletely superconducting until it is heated to the Iop-dependent “current-sharing”
temperature, Tcs(Iop). Figure 6.2 shows a critical current vs. temperature plot,
Ic(T ), of a Type II superconductor, defining Tcs(Iop)—here, Ic(T ) is approxi-
mated by a straight line connecting Ic(Top)≡ Ic◦ , the critical current at Top, and
Ic(Tc)=0. The solid circle defines Tcs(Iop) as the intersecting point of the Ic(T )
line and the dashed line at Iop. Note that Tcs(Iop) is the maximum temperature
to which a composite, carrying Iop, can remain completely superconducting even
under adiabatic conditions. Beyond Tcs(Iop) the matrix normal metal begins to
“share” the current, generating Joule dissipation. In an adiabatic winding, the
transition from Tcs(Iop) to the critical temperature, Tc, can be almost instanta-
neous, and at Tc and beyond the matrix carries virtually the entire current. Also
defined in the figure is [ΔTop(Iop)]st = Tcs(Iop)−Top, the temperature excursion
limit that a composite can tolerate from Top and still remain fully superconduct-
ing. Sometimes instead of Δeh, a “temperature margin,” [ΔTop(Iop)]st, is used to
quantify the degree of stability. Under adiabatic conditions, Δeh is given by:

Δeh =
∫ Tcs(Iop)

Top

Ccd(T ) dT =
∫ Top+[ΔTop(Iop)]st

Top

Ccd(T ) dT (6.2)

Note that Δeh depends not only on Ccd(T ), Top, and Tcs(Iop) or [ΔTop(Iop)]st but
also on Iop relative to Ic◦ , i.e., iop ≡ Iop/Ic◦ . Specifically, for the simple straight
line approximation of Ic(T ) of Fig. 6.2, [ΔTop(Iop)]st is given by:

[ΔTop(Iop)]st = (Tc − Top)(1 − iop)
(6.3)

From Eq. 6.3 we may conclude that for
an adiabatic magnet its current-sharing
temperature must be greater than its
operating temperature, Tcs > Top , i.e.,
its Iop (It) should be below the conduc-
tor’s lowest Ic◦ in the winding, because
Ic◦ depends on magnetic field, which
varies in the winding. Table 6.4 lists
selected values of Top and ΔTop typical
for LTS and HTS magnets, and corre-
sponding values of Δeh.

Ic(T )

Ic◦

Iop

(It)

0 T
Top Tcs(Iop) Tc

[ΔTop(Iop)]st︷ ︸︸ ︷

Constant magnetic field

Fig. 6.2 Straight line approximation of Ic(T ) plot of a Type II superconductor.
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Table 6.4: Selected Values of Top, ΔTop, and Δeh for LTS and HTS

LTS HTS

Top [K] [ΔTop(Iop)]st [K] Δeh [J/cm3] Top [K] [ΔTop(Iop)]st [K] Δeh [J/cm3]

2.5 0.3 1.2×10−4 4.2 25 1.6

4.2 0.5 0.6×10−3 10 20 1.8

4.2 2 4.3×10−3 30 10 3.7

10 1 9×10−3 70 5 8.1

LTS Comparison of energy margins in Table 6.4 with disturbance energy den-
sities in Fig. 6.1 clearly indicates that LTS magnets are very much susceptible to
quenching induced by a disturbance, the energy density of which is represented by
gd(t) in Eq. 6.1. Aptly, techniques have been developed over the years to suppress
these disturbances, e.g., wire motion and flux jumping, or minimize AC losses for
most “DC” LTS adiabatic magnets to make them operate stably most of the time.
Techniques to minimize or eradicate mechanical disturbances, e.g., wire motion,
important only to LTS magnets, discussed more extensively in the 1st Edition, are
briefly discussed in CHAPTER 7 of this Edition.

HTS With the exception of AC losses, the disturbance energy spectra for HTS
magnets should be those given in Fig. 6.1. Referring to Δeh values in Table 6.4,
we may conclude that HTS magnets, at least under DC conditions, are absolutely
stable: every DC HTS magnet should thus be designed to operate adiabatically.

6.2.7 Cooling

Although cooling is required for operation of every superconducting magnet, as
discussed in CHAPTER 4, only bath-cooled, cryostable magnets require cryogen
cooling within the winding. The −gq(T ) term in Eq. 6.1 thus refers to cooling
present only within the winding; cooling exterior to the winding, which every su-
perconducting magnet requires, is literally peripheral; it does not enter Eq. 6.1.
As discussed above, HTS magnets can, and really should always, be operated adi-
abatically. Furthermore most HTS magnets, except those coupled to LTS magnets
and which therefore must operate at liquid helium temperature, operate at tem-
peratures above ∼20 K. Therefore, liquid helium heat transfer data are no longer
as essential for the design of HTS magnets as for bath-cooled cryostable LTS mag-
nets; even liquid nitrogen heat transfer data are not essential for HTS magnets,
which are adiabatic, because liquid nitrogen is not present in the winding.

Bottura has summarized helium heat transfer coefficient, hq, vs. ΔT plots (Fig. 6.3)
for various cooling regimes [6.14]; here ΔT is the temperature difference between
the heated surface and the helium at 4.2 K, except where noted otherwise. The
plots include: 1) nucleate boiling and film boiling, including peak nucleate boiling
point (hpk) of 1.23 W/cm2 K; 2) transient nucleate; 3) Kapitza at 1.8 K (super-
fluid) and at 4.2 K; 4) forced-flow at 3.5 atm, 4.5 K, and Reynolds numbers of 104

and 105. Of these plots, the nucleate boiling plot, including hpk =1.23 W/cm2 K, is
for bath-cooled and cryostable magnets; the Kapitza (1.8 K) plot is for superfluid-
cooled cryostable magnets; forced-flow plots are for cryostable magnets wound
with cable-in-conduit (CIC) conductor.
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Fig. 6.3 Helium heat transfer coefficient, hq , vs. ΔT plots [6.14].

6.3 Current Densities

For computation of the magnetic field generated by a magnet, one key parameter
is λJ , the overall current density (Eq. 3.108), given by the total ampere-turns, NI,
divided by the magnet’s winding cross sectional area, which includes not only the
current-carrying conductor but also non-current-carrying elements in the winding.
Figure 6.4a shows components that comprise cross-sectional areas of “composite
superconductor.” Figure 6.4b does the same for the winding pack. Each figure
defines the symbol “commonly” used for each component.

Composite Structure (AS)

Superconductor &

(Acd) Others (Ain)

Coolant

(Aq)

Superconductor

Asc

Matrix Metal

Am

Non-Matrix Metals

Am

(a) (b)

Fig. 6.4 Schematic cross sectional area drawings of: (a) composite superconductor;
and (b) winding pack, showing their components and respective area symbols.
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6.3.1 Cross Sectional Areas

As illustrated in Fig. 6.4, there are at least seven separate cross-sectional areas in
the winding of a superconducting magnet that are used to define various current
densities: Asc, Am, and Am, identified in Fig. 6.4a for the composite supercon-
ductor; and Acd, AS , Ain, and Aq identified in Fig. 6.4b for the winding pack.
Am, non-matrix metals, is zero in alloys such as NbTi, but in compound super-
conductors such as Nb3Sn and YBCO it is not negligible. Note that the cross
section occupied by other materials such as insulator is not included in the total
composite superconductor cross section. AS is generally the cross sectional area
occupied by metallic reinforcing elements, while Ain includes those occupied by
insulator and organic filling material such as epoxy. Except in cable-in-conduit
(CIC) conductors, discussed below, AS and Ain may generally be combined as the
structural element. Two total cross sections, for the composite (Acd) and winding
pack (Awd) are:

Acd = Asc + Am + Am (6.4a)

Awd = Acd + AS + Ain + Aq (6.4b)

6.3.2 Composite Superconductor

Three common current densities for a composite are defined and described below.

Superconductor Critical Current Density

Superconductor critical density, Jc, is defined by the superconductor’s critical
current, Ic at a given temperature and field, divided by either Asc (for materials
such as NbTi and YBCO, in which Asc is clearly quantified) or else Asc+Am (for
conductors such as Nb3Sn, in which non-matrix metal is an integral part). Thus:

Jc ≡ Ic

Asc
(6.5a)

Jc ≡ Ic

Asc+Am
(6.5b)

During the materials development stage (Stage 1 in Table 1.4), Jc, especially
Jc≡Ic/Asc, together with Hc2 and Tc, is the most suitable, and useful, parameter
to characterize the superconductor performance.

Engineering (or Conductor) Critical & Operating Current Densities

Engineering (or conductor) critical density, Je (or Jcd), recognizes the manufac-
turing and magnet requirements that Am and Am are both crucial components of
a magnet-grade superconductor :

Je = Jcd ≡ Ic

Acd
=

Ic

Asc + Am + Am
(6.6)

In a cable-in-conduit (CIC) conductor (see DISCUSSION 6.6), the areas of other
components such as structural element (AS) and coolant (Aq) are integral parts of
the conductor and thus these are sometimes included in Acd. For a conductor at
its operating current, Iop, we may also define engineering (or conductor) operating
current density: Je◦ =Jcd◦ ≡Iop/Acd. Jcd◦(t) implies Iop(t) can vary with time.
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Matrix Current Density

Matrix current density, Jm, is an important parameter for stability and protection
of a magnet wound with a composite superconductor. Jm is defined by the current
through the matrix, Im, divided by Am:

Jm ≡ Im

Am
or Jm(t) ≡ Im(t)

Am
(6.7a)

Note that Im is a part or all of the operating (transport) current, Iop (or It),
depending on whether the superconductor is superconducting or not:

Iop = It = Im + Is or Iop(t) = It(t) = Im(t) + Is(t) (6.7b)

where Is is the current through the superconductor. Because the most relevant
matrix current is the normal operating current, Iop, i.e., when Is = 0, another
matrix current density based on Iop is often used:

Jm◦ ≡ Iop

Am
or Jm◦(t) ≡

Iop(t)
Am

(6.7c)

6.3.3 Current Density in Winding Pack

As studied in CHAPTER 3 and briefly restated above, the magnetic field generated
by a magnet is directly proportional to the magnet winding’s overall current den-
sity. We may define this current density by using two currents: I, which represents
any current; and Iop, which represents the magnet operating current. Thus:

λJ ≡ I

Awd
(6.8a)

λJop ≡ Iop

Awd
or λJop(t) ≡

Iop(t)
Awd

(6.8b)

Because λJop determines the field generated by a magnet, among the current
densities discussed here, it affects most directly the cost of the magnet. Therefore,
for a magnet to be competitive in the marketplace, λJop must be as large as
possible but still consistent with the magnet’s design/operation requirements. (In
CHAPTER 3, chiefly for the sake of simplicity, λJ is used in place of λJop.)

Current Density for Cable-In-Conduit (CIC) Conductor

Cable-in-conduit (CIC) conductor, as will be described in DISCUSSION 6.6, is used
in “large” and “high-field” magnets. Because in CIC conductor, the conductor and
winding pack are essentially combined, we make a special definition of “conductor”
current density, Jcic◦ , for CIC conductor at operating current Iop:

Jcic◦ ≡ Iop

Acic

or Jcic◦(t) ≡
Iop(t)
Acic

(6.9a)

where
Acic ≡ Acd + AS + Aq (6.9b)

“Mendel’s epoch-making discovery required little previous knowledge; what it
needed was a life of elegant leisure spent in a garden.” —Bertrand Russell
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DISCUSSION 6.1: Cryostability—Circuit Model*

We discuss here the theory of cryostability. A circuit model is used to study the
behavior of a composite superconductor comprised of a superconductor (generally
comprising many filaments) embedded in a matrix of copper.

Figure 6.5a shows an “ideal” Rs vs. I plot for a length of the superconductor,
where Rs is the superconductor’s resistance—this plot, quite applicable to most
LTS is not applicable to most HTS, as discussed later. The plot is ideal in the
sense that for Is <Ic, Rs =0, where Ic is the superconductor’s critical current. For
Is >Ic, Rs =Rn, where Rn is the superconductor’s resistance in the normal state;
at Is = Ic, 0≤Rs ≤Rn, i.e., it satisfies conditions imposed by the circuit. Figure
6.5b shows a circuit model for the composite superconductor carrying a transport
current It at temperature T . Is is the current through the superconductor, and
Rm is the matrix metal resistance; generally Rm � Rn.

It ≤ Ic Range Here, the superconductor carries the entire transport current,
Is = It ≤ Ic and, from Fig. 6.5a, Rs =0, and from Fig. 6.5b, Vcd =0, where Vcd is
the voltage across the composite. The total Joule dissipation, Gj , is zero.

It >Ic Range When It >Ic, almost all excess current greater than Ic now flows
through the copper matrix because Rm�Rn. That is, Im�It−Ic and Is�Ic. Im

is the current flowing through the matrix. We thus have:
Vcd = RmIm � Rm(It − Ic) (6.10a)

Gj = VcdIt (6.10b)
Combining Eqs. 6.10a and 6.10b, we obtain:

Gj � RmIt(It − Ic) (6.11)
Note that Gj is temperature-independent as long as Rm and Ic remain inde-
pendent of temperature. Because the resistivity of matrix metal such as copper
is nearly temperature-independent for the temperature range from 4 to ∼30 K
(APPENDIX IV), Rm is always assumed constant in a stability analysis of LTS.

Rs

Rn

0 Is
0 Ic

+ Vcd −
Matrix Rm

ImIt It

Is

(a) (b)

Fig. 6.5 (a) Rs vs. Is plot for superconducting filaments alone.
(b) Circuit model for a composite superconductor.

* Based on Problem 6.1 in the 1st Edition (Plenum, 1994).
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PROBLEM 6.1: Cryostability—temperature dependence*

We shall now investigate the temperature dependence of Gj , the total Joule dissi-
pation in the unit composite superconductor length considered in DISCUSSION 6.1
and given by Eq. 6.11. Figure 6.6 (same as Fig. 6.2) shows an Ic vs. T plot often
used to approximate a superconductor’s Ic(T ) function at a constant magnetic
field. (Equation 5.38 gives the same linear approximation for critical current den-
sity.) Note that Ic(Top) = Ic◦ and Ic(Tc) = 0. The net transport current through
the composite, It, remains constant as the conductor temperature is varied. The
current sharing temperature, Tcs, is given by It =Ic(Tcs), as indicated in the plot.

a) With Ic(T ) of the superconductor approximated by:

Ic(T ) = Ic◦

(
Tc − T

Tc − Top

)
(Top ≤ T ≤ Tc) (6.12)

show that Gj(T ) depends on temperature as:

Gj(T ) = 0 (Top ≤ T ≤ Tcs) (6.13a)

Gj(T ) = RmI2
t

(
T − Tcs

Tc − Tcs

)
(Tcs ≤ T ≤ Tc) (6.13b)

Gj(T ) = RmI2
t (T ≥ Tc) (6.13c)

Assume Rm to be temperature-independent.

b) Make a plot of Eq. 6.13 for the temperature range from Top to T >Tc.

c) Give a physical explanation of Gj(T ) given by Eq. 6.13b.

d) Discuss qualitatively how Eq. 6.13b must be modified above ∼30 K, at which
point Rm becomes temperature-dependent, Rm(T ), as may be the case with
a composite HTS.

Ic(T )

Ic◦

It

0 T
Top Tcs Tc

B◦ (CONSTANT)

Fig. 6.6 Linear approximation of Ic vs. T (Eq. 6.12) for the superconductor.

* Based on Problem 6.2 in the 1st Edition (Plenum, 1994).
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Solution to PROBLEM 6.1

a) Because Ic(T )≥It for Top≤T ≤Tcs (Fig. 6.6), we have:

Gj(T ) = 0 (Top ≤ T ≤ Tcs) (6.13a)

By inserting Ic(T ) given by Eq. 6.12 into Gj given by Eq. 6.11, we obtain:

Gj(T ) = RmIt

[
It − Ic◦

(
Tc − T

Tc − Top

)]
(Tcs ≤ T ≤ Tc) (S1.1)

Setting It =Ic(Tcs) and inserting this into Eq. 6.12, we can solve for Ic◦ :

Ic◦ = It

(
Tc − Top

Tc − Tcs

)
(S1.2)

where Ic◦ ≡Ic(Top). Combining Eqs. S1.1 and S1.2, we obtain:

Gj(T ) = RmI2
t

(
T − Tcs

Tc − Tcs

)
(Tcs ≤ T ≤ Tc) (6.13b)

Gj(T ) = RmI2
t (T ≥ Tc) (6.13c)

b) Equation 6.13 is plotted in Fig. 6.7.

c) Clearly, as long as It ≤ Ic(T ), all the transport current flows through the
superconductor, and Vcd = 0, making Gj(T ) = 0. At Tcs, the current-sharing
temperature, when It = Ic, the superconductor is carrying its maximum possible
current as a superconductor; beyond Tcs the current begins to “spill over” to the
copper matrix, and Joule heating is generated in the composite. This spilling
continues monotonically with T until Tc is reached, at which point, under the
condition Rm�Rn, which is generally valid, virtually the entire transport current
has shifted to the matrix. Because Rm is constant, the variation of Gj with T is
linear between Tcs and Tc, and constant beyond Tc. This constant Rm assumption
is valid for most matrix metals such as copper for Top up to ∼30 K.

Gj(T )

RmI2
t

0 T
Top Tcs Tc

Fig. 6.7 Gj(T ) plots for the composite superconductor, with Rm constant.

d) The assumption of constant Rm is
invalid for matrix metals if Top >∼30 K.
That is, for most HTS loaded with matrix
metal with Rm(T ), Eqs. 6.13b and 6.13c
are modified accordingly.

Tcs ≤ T ≤ Tc:

Gj(T ) = Rm(T )I2
t

(
T − Tcs

Tc − Tcs

)
(6.14a)

T ≥ Tc:

Gj(T ) = Rm(T )I2
t (6.14b)
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DISCUSSION 6.2: Stekly Cryostability Criterion

As remarked in 6.2.1 the so-called Stekly cryostability criterion balances the Joule
heating generated by the composite superconductor with cooling provided by the
coolant penetrating into the well-ventilated winding. Thus, Eq. 6.1 reduces to:

Ccd(T )
∂T

∂ t
= ∇·[kcd(T )∇T ] + ρcd(T )J2

cd(t) + gd(t) −
(

fpPD

Acd

)
gq(T ) (6.15)

		 		 		
0 0 0

where PD is the total conductor perimeter; the constant fp quantifies the fraction
of PD exposed to cryogen. Stekly first developed his theory by choosing It = Ic◦ ,
i.e., It equal to the superconductor’s critical current at Top. (Note that It also
stands for operating current, Iop.) The choice of It = Iop = Ic◦ makes Tcs = Top,
and Eq. 6.13b becomes:

Gj(T ) = RmI2
c◦

(
T − Top

Tc − Top

)
(Top ≤ T ≤ Tc) (6.16a)

ρcd(T )J2
cd(t) =

ρmI2
c◦

AcdAm

(
T − Top

Tc − Top

)
(Top ≤ T ≤ Tc) (6.16b)

Historically, Stekly’s choice of It = Ic◦ in developing his criterion was not for
stability of a superconducting magnet but for that of a superconductor test sample
as its current was pushed beyond Ic◦ during V vs. I measurement. Nowadays, the
operating current for every LTS magnet is chosen less than Ic◦ . For HTS magnets,
stability is not an important design issue; but as with LTS test samples, it is for
HTS test samples too. Stability as related to V vs. I characteristics is studied in
more detail in PROBLEM 6.5.

Stekly’s choice for cooling was one that is linear with temperature:

gq(T ) = hq(T − Tb) � hq(T − Top) (6.17)

T is the conductor surface temperature. Tb is the bath (cryogen) temperature,
assumed equal to Top: Tb � Top.

The Stekly cryostability criterion requires, from Eq. 6.15, that (fpPD/Acd)gq(T ) ≥
ρcd(T )J2

cd(t). From Eqs. 6.16b and 6.17, we obtain:

fpPDhq(T − Top)
Acd

≥ ρmI2
c◦

AcdAm

(
T − Top

Tc − Top

)

ρmI2
c◦

fpPDAmhq(Tc − Top)
≤ 1 (6.18)

The Stekly stability parameter, αsk, is given by Eq. 6.18:

αsk =
ρmI2

c◦

fpPDAmhq(Tc − Top)
(6.19)

Note that αsk, a dimensionless number, expresses the ratio of Joule dissipation
density to cooling density. Operation is thus stable when αsk ≤ 1 (sufficient
cooling) and unstable when αsk > 1 (insufficient cooling.)
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DISCUSSION 6.2: Stekly Cryostability Criterion (continuation)

Most large magnets built and reliably operated in the late 1960s and early 1970s
were “cryostable,” based on Stekly’s cryostability criterion. Equation 6.19 states
αsk ∝ 1/Am and implies that for a given cooling condition stability (or reliability)
is directly linked to Am and vice versa:

Am =
ρmI2

c◦

αskfpPDhq(Tc − Top)
(6.20)

To achieve a greater degree of stability for given cooling conditions, it is necessary
to increase Am in a bath-cooled cryostable magnet. The composite superconduc-
tor’s current density at operating current, Jop, is given by:

Jop =
Iop

Asc + Am + Am
(6.6)

=
(

γm/s

γm/s + 1

)
Jm◦ (6.21a)

where the area ratio, γm/s, is defined as:

γm/s ≡ Am

(Asc+Am)
(6.21b)

γm/s is known as the matrix-to-superconductor ratio as in composite NbTi (Am =
0) or matrix-to-nonmatrix ratio as in composite Nb3Sn (Am �= 0). Note that for
γm/s�1, Jop�Jm◦

Clearly, in these early “large” magnets, reliability was unquestionably favored over
efficiency. This philosophy continues to this day, particularly with large magnets in
which another issue is dominant, perhaps more so than stability: large electromag-
netic forces. Required reinforcement elements, AS , incorporated in the winding of
a large cryostable LTS magnet are even more a factor than is matrix metal, Am,
in limiting the winding’s overall current density.

Table 6.5 lists current parameters—Ic, Iop, γm/s, Jc(= Ic/Asc), Je(= Ic/Acd),
Jm◦(= Iop/Am), and λJop(= Iop/Awd)—for two cryostable LTS magnets, a “bub-
ble chamber” NbTi magnet of the late 1960s [6.12] and a more recent CIC Nb3Sn
magnet [3.24]. Compared with the NbTi magnet, the Nb3Sn magnet has a γm/s

significantly smaller, resulting in a much improved λJop. This improvement arises
in part due to a better understanding of stability and protection issues gained over
nearly 40 years of building real magnets, as well as to pressure to keep the cost
down even among these one-of-a-kind magnets dedicated solely for research use.

Table 6.5: Current Parameters in Cryostable Magnets

Composite γm/s Ic [kA] Iop [kA] Jc [MA/m2] Je [MA/m2] Jm◦ [MA/m2] λJop [MA/m2]

NbTi* 24 4.0a) 2.2 800 32.0 18.3 7.8

Nb3Sn† 21.5 15.8b) 10.0 627c) 74.4 184 39.2

* “Bubble chamber” magnet [6.12]. B=2.5 T; Top =4.2 K; a): measured (specified: 3.0 kA).

† NHMFL 45-T Hybrid [3.24]. Coil A (CICNb3Sn; see DISCUSSION 6.6), B =15.7 T; Top =1.8 K;
b): extrapolated from measurements; c): here Jc =Ic/(Asc+Am) not Jc =Ic/Asc.
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DISCUSSION 6.3: Composite Superconductors

Magnet-grade superconductors are generally available in two types, one known as
“monolithic” and the other known as “built-up.”

A. Monolith

The superconductor and the normal metal form one entity, achieved chiefly through
metallurgical processes. By visual inspection, it is impossible to distinguish, except
through the conductor cross section, the existence of more than one constituent in
a monolith. Most round composite superconductors are monolithic. For values of
γm/s above ∼10, however, it is difficult to manufacture monolithic superconductors
without breaking filaments in the metal forming processes, particularly for those
having filaments less than ∼100-μm diameter.

B. Built-Up

A built-up conductor is comprised of a monolithic superconductor having a γm/s

close to 1 and normal-metal stabilizer parts that are generally soldered to the
monolith after the monolith has been prepared. Mechanical properties of the sta-
bilizer parts are therefore unaffected by manufacturing processes of the monolith,
making it sometimes easier to satisfy conductor specifications. The CIC conductor
is a variant of built-up conductors.

PROBLEM 6.2: Cryostability—nonlinear cooling curves*

The parameter αsk derived in DISCUSSION 6.2 is based on a heat transfer coef-
ficient hq that is temperature independent. In reality, cooling curves are quite
nonlinear, even in the nucleate boiling heat transfer regime where these cryostable
magnets generally operate; see for example, Fig. 4.1. It is thus more accurate to
incorporate the heat transfer flux curve, q(T ) [W/cm2 or W/m2], directly in the
derivation of the cryostability criterion.

a) Show that an expression for [Jm◦ ]sk, the matrix current density at Iop satis-
fying a variation of Stekly cryostability criterion that incorporates the heat
transfer flux curve q(T ), may be given by:

[Jm◦ ]sk =

√
fpPDqfm

ρmAm
(6.22)

where qfm is the minimum heat transfer flux in the film boiling regime.

b) For Iop =Ic◦ , where Ic◦ is the superconductor’s Ic at Top, draw qualitatively,
on the same plot, a q(T ) curve and a dimensionally consistent generation
curve, and indicate on the plot the region of stable operation.

c) Generalize b) for the case Iop < Ic◦ on the same plot used in b). Show also
that for this case (Iop < Ic◦), gj(Tc) and dĝj(T )/dT in the current-sharing
temperature range are less than those corresponding to the case Iop =Ic◦ .

* Based on Problem 6.4 in the 1st Edition (Plenum, 1994).
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Solution to PROBLEM 6.2

a) In most applications where cryostability is applied, we must assume that the
conductor may operate in the fully normal state. Then, it is safest to use the
minimum heat flux (qfm in Table 4.2) in the film boiling regime. We thus have:

ρmI2
c◦

Am
= fpPDqfm (S2.1)

Solving for [Jm◦ ]sk, we obtain:

[Jm◦ ]sk =

√
fpPDqfm

ρmAm
(6.22)

b) Figure 6.8 presents a typical plot of q(T ) for liquid helium. Plotted also
is a curve of ĝj(T ) ≡ (Acd/fpPD)gj(T ) [W/m2]. Parameters are chosen to make
ĝj(Tc) = (Acd/fpPD)gj(Tc) slightly less than qfm.

c) The dotted line in Fig. 6.8 presents the case in which It < Ic◦ . Note that in the
temperature range Top ≤ T ≤ Tcs the conductor is fully superconducting. Because
Gj(Top)=RmI2

t , clearly, it is less for It <Ic◦ . From Eq. S1.2 of PROBLEM 6.1:

It = Ic◦

(
Tc − Tcs

Tc − Top

)
(S1.2)

Combining Eqs. 6.13b and S1.2, we have:

gj(T ) =
(

Acd

fpPD

)
RmI2

t =
(

Acd

fpPD

)
RmI2

c◦

(Tc − Tcs)2(T − Tcs)
(Tc − Top)3

dgj(T )
dT

=
(

Acd

fpPD

)
RmI2

c◦

(Tc − Tcs)2

(Tc − Top)3

Thus, Gj(Tc) for It =Ic◦ (Tcs =Top) is greater than that for It <Ic◦ (Tcs >Top).

q(T ), ĝj(T )

qpk

q(T )

qfm ĝj(Tc)=

(
Acd

fpPD

)
RmI2

c◦

ĝj(Tc)=

(
Acd

fpPD

)
RmI2

t (It <Ic◦)

T
TopTcs Tc

Fig. 6.8 Qualitative plots of q(T ) for liquid helium and ĝj(T ) for the case Iop = Ic◦
(solid straight lines) and Iop < Ic◦ (dashed straight lines).
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DISCUSSION 6.4: “Equal-Area” Criterion

The “equal-area” criterion of Maddock, James, and Norris [6.15], a variant to the
cryostability criterion, retains the thermal conduction term, ∇· [kcd(T )∇T ], in
Eq. 6.1. Thus, the equal-area criterion works only when Joule dissipation is not
spread globally over the entire winding. While in Stekly’s cryostability criterion
Joule dissipation is locally and entirely balanced by the cooling term, gq(T ), in
the equal-area criterion thermal conduction along the conductor axis aids the
local cooling to remove the Joule dissipation. Because the criterion applies to a
bath-cooled cryostable magnet, it is chiefly applicable to liquid helium cooled LTS
magnets. The equal-area criterion requires the following condition be satisfied:

∫ Teq

Top

[
gq(T ) −

(
Acd

fpPD

)
gj(T )

]
dT =

∫ Teq

Top

[gq(T ) − ĝj(T )] dT = 0 (6.23)

where Teq is the temperature above Top at which gq(T ) = q̂j(T ). gq(T ) [W/m2]
is the convective heat flux; gj(T ) [W/m3], the Joule dissipation density, may be
derived from Gj [W] of Eq. 6.13 for which Tcs =Top (or Eq. 6.14 for which Tcs >Top)
with Jm◦ =Iop/Am. Thus:

gj(T ) = ρm(T )J2
m◦

(
T − Top

Tc − Top

)
(Top ≤ T ≤ Tc) (6.24a)

gj(T ) = ρm(T )J2
m◦ (T ≥ Tc) (6.24b)

Figure 6.9 shows one example of ĝj(T ) curves satisfying the “equal area” cri-
terion. In this example, Eq. 6.23 is satisfied by having two cross-lined areas
in Fig. 6.9 equal, the one bounded by the gq(T ) > ĝj(T ) and ĝj(T ) curves
and the other bounded by the ĝj(T )>
gq(T ) and gq(T ) curves. Physically,
the “excess” heating in the “warmer”
region where the conductor tempera-
ture ranges from ∼Tc to Teq is con-
ducted to the “cooler” region where
the conductor temperature ranges be-
tween Top and ∼Tc; this cooler region
thus provides “excess” cooling. Figure
6.9 clearly shows that the Joule dissi-
pation line, ĝj(T ≥ Tc), for the com-
posite satisfying the equal-area crite-
rion is greater than that given by the
Stekly cryostability criterion.

Wilson extended this 1-D equal-area
criterion to the 2-D equal-area crite-
rion [6.16]; the 2-D criterion was ver-
ified by an experiment conducted on
pancake test coils.

q(T ), ĝj(T )

qpk

qfm

T
Top Tc Teq

gq(T )

ĝj(T )

Fig. 6.9 Example of ĝj(T ) curves sat-
isfying the “equal area” criterion. The
cross-lined area bounded by the gq(T ) >
ĝj(T ) and ĝj(T ) curves is equal to the
other cross-lined area bounded by the
ĝj(T )>gq(T ) and gq(T ) curves.
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DISCUSSION 6.5: Superconductor “Index” (n)

The voltage vs. current characteristic of a superconductor, “real” or “ideal,” may
be expressed by the following “phenomenological” relationship:

Vs = Vc

(
Is

Ic

)n

(6.25a)

where Vs and Is are, respectively, the superconductor voltage (over a unit axial
length) and current; Ic is the critical current at a specified criterion voltage Vc;
and n is the superconductor index. Equation 6.25a may be expressed in terms of
the superconductor electric field, Es, and current density, Js:

Es = Ec

(
Js

Jc

)n

(6.25b)

Obviously, Ec represents a specified critical electric field, generally 1×10−4 V/m
(1×10−6 V/cm) for HTS and one or two orders of magnitude smaller for LTS.

An “ideal” superconductor, i.e., zero resistance below Ic as assumed in DISCUSSION

6.1, may be characterized with n = ∞. Among magnet-grade-superconductors,
real and potential, e.g., NbTi, Nb3Sn, Bi2223, Bi2212, and coated YBCO, n ranges
from ∼30 to ∼80 for LTS and from ∼10 to ∼40 for HTS.

As stated at the outset, Eq. 6.25a (or Eq. 6.25b) is phenomenological. It is based
solely on experimental Vs vs. Is data: n is computed to curve-fit Vs vs. Is data in
the vicinity of Is. There is no theoretical basis to predict n, though poor quality
of a superconductor, e.g., nonuniform filament diameter, may be responsible for
low indices [6.17]. Because of practical difficulties in measuring Vs—nanovolts or
less—for Is below ∼0.8Ic, it is difficult to examine the validity of Eq. 6.25a below
∼0.8Ic [6.18]. This “index” issue on HTS has been studied [6.19], with the results
applied for the design of a YBCO coil [6.20].

Figure 6.10 shows Vs vs. Is plots based on Eq. 6.25a for three indices: n1 = 5,
n2 =50, and n3 =∞ at and in the vicinity of Ic for criterion voltage Vc. The Rs

vs. Is plot of Fig. 6.5 thus corresponds to an ideal superconductor (n=∞).

Vs

n3 =∞
n2 =50

n1 =5

Vc

n1

n2

0 Is
0 Ic

Fig. 6.10 Vs vs. Is plots for three indexes, n1 =5, n2 =50, and n3 =∞
in the vicinity of Ic, the critical current at a criterion voltage of Vc.
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PROBLEM 6.3: Composite superconductor (n)—circuit model

For a composite superconductor in which the superconductor is characterized by
Eq. 6.25a, the equivalent circuit of Fig. 6.5b is modified, as shown in Fig. 6.11.
It consists of an ideal voltage source (zero internal resistance) VS in series with a
differential resistance, Rdif ≡ ∂Vs/∂ Is, where Vs is the voltage across the super-
conductor. As in Fig. 6.5b the matrix is represented by a resistor Rm.

a) Show, with Rc≡Vc/Ic, that Rs≡Vs/Is and Rdif are given by:

Rs = Rc

(
Is

Ic

)(n−1)

(6.26a)

Rdif = nRc

(
Is

Ic

)(n−1)

(6.26b)

Note that Rdif =nRs. For a superconductor of n=1, its V -I curve becomes
similar to a regular resistor’s and, as may be expected, Rs =Rc =Rdif .

b) For a 10-cm long and 1-cm wide composite superconductor with Ic =100 A at
77.3 K, Vc =10μV, n=15, a matrix resistance of Rm =0.3 mΩ, and assuming,
for simplicity, that the composite, cooled by boiling nitrogen, always remains
at 77.3 K, compute: 1) Im and Is; 2) total voltage across the 10-cm long
composite; 3) total Joule dissipation in the composite; 4) Joule heat flux
over the composite cooling surface area of 10 cm2 (10 cm×1 cm); and 5) Rdif ,
at transport currents, It, of 90 A; 100 A; 120 A; 150 A; 300 A; and 500 A.

c) Discuss the assumption of constant temperature of 77.3 K and discuss, qual-
itatively, how results are modified if the composite superconductor’s temper-
ature increases with increasing Joule dissipation.

d) Repeat b), except with n=30.

e) Repeat b), now with n=60.

Im

Matrix Rm

It It

Rdif
+ −

VS

Is

Fig. 6.11 Circuit model for a composite superconductor with a superconductor of the Vs

vs. Is characteristic (Eq. 6.25a), shunted by a matrix resistance Rm. The superconductor
consists of VS , an ideal voltage source, in series with Rdif , the differential resistor.

TRIVIA 6.1 List the items below in descending order of length.

i) Charles river; ii) Interstate 90 (I-90);

iii) NbTi/Cu composite wire in an actively-shielded whole-body 1.5-T MRI magnet;

iv) Thread in a silkworm cocoon.
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Solution to PROBLEM 6.3

a) From the definition of Rs and using Eq. 6.25a for Vs, we have:

Rs =
Vs

Is
=

Vc

Is

(
Is

Ic

)n

=
Vc

Ic

(
Is

Ic

)(n−1)

(S3.1)

With Rc =Vc/Ic, Eq. S3.1 becomes:

Rs = Rc

(
Is

Ic

)(n−1)

(6.26a)

Rdif represents the superconductor’s differential resistance at Is, hence:

Rdif =
∂Vs

∂Is
=

nVc

Ic

(
Is

Ic

)(n−1)

(S3.2)

Rdif = nRc

(
Is

Ic

)(n−1)

(6.26a)

The partial differentiation is performed in Eq. S3.2 because in realistic situations
the temperature dependance of Ic, i.e., Ic(T ), must be included in the analysis in
the range Is >Ic, where the composite is expected to be heated, here above 77.3 K.

b) The circuit must satisfy the following current and voltage equations:

It = Im + Is (S3.3a)

Vm = RmIm = Vs = Vc

(
Is

Ic

)n

(S3.3b)

As an illustration, let us compute Im for It = 90 A. From Eq. S3.3a, we have:
Is =90 A−Im. Inserting this into Eq. S3.3b, we obtain:

3×10−4 Ω×Im [A] = 10−5 V
(

90 A − Im [A]
100 A

)15

(S3.3c)

From Eq. S3.3c: Im =0.00686 A and hence Is =89.99314 A.

The total power dissipation in the composite superconductor, Pcd, is given by:

Pcd = RmImIt = VsIt (S3.4)

The Joule dissipation flux, gjcd is given simply by Pcd divided by the composite’s
total cooling surface, here 10 cm2.

Table 6.5a gives a summary of solution to b).

Table 6.5a: Summary of Solution to b) (n=15)

It [A] Im [A] Is [A] RmIm [V] Pcd [W] gjcd [W/cm2] Rdif [Ω]

90 0.00686 89.99314 2.06×10−6 185×10−6 18.5×10−6 0.343×10−6

100 0.0332 99.967 9.95×10−6 995×10−6 99.5×10−6 1.49×10−6

120 0.483 119.517 145×10−6 17.4×10−3 1.74×10−3 18.2×10−6

150 7.07 142.93 2.12×10−3 318×10−3 31.8×10−3 223×10−6

300 126.75 173.25 38.0×10−3 11.4 1.14 3.29×10−3

500 315.88 184.12 94.8×10−3 47.4 4.74 7.72×10−3
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Solution to PROBLEM 6.3 (continuation)

c) Even when the composite is well-cooled by boiling cryogen, its temperature
must rise to transfer Joule dissipation to the cryogen. With liquid nitrogen boiling
at 77.3 K, this rise, which increases with heat flux, can be as high as ∼10 K in
the nucleate boiling range. The most obvious temperature-dependent parameter
in Eq. 6.25a is Ic, which decreases with increasing temperature; the temperature-
dependence of n is not well-documented, LTS or HTS—in an analysis of this
nature, we may assume n to be constant. In the equivalent circuit, Rm, if it
is a matrix of pure metal, remains constant at low temperatures and increases
nearly linearly with temperature beyond ∼30 K. Ic on the other hand may be
assumed to decrease linearly with T . The (Is/Ic)n term thus increases sharply with
temperature as does, consequently, Joule dissipation. Next, in PROBLEM 6.4, we
will perform a circuit analysis in which Ic and Rm are T -dependent.

d) Results for n=30 are summarized in Table 6.5b.

e) Table 6.5b also gives a summary of results with n=60.

Note that for It >Ic =100 A the smaller the n, the smaller are Im, RmIm =Vs(Is),
Pcd, gjcd, and Rdif ; for It <100 A, the opposite is true. This could pose practical
problems in a real situation. For instance, at It =150 A, RmIm =2.12 mV for an
n=15 composite, while it is 11.3 mV for an n=60 composite: clearly for detection
of a resistive voltage, the n=60 composite is preferable to the n=15 composite.

Table 6.5b: Summary of Solution to d), and e)

It [A] Im [A] Is [A] RmIm [V] Pcd [W] gjcd [W/cm2] Rdif [Ω]

n=30

90 0.00141 89.9986 0.424×10−6 38.1×10−6 3.81×10−6 0.127×10−6

100 0.0330 99.967 9.90×10−6 990×10−6 99.0×10−6 2.97×10−6

120 3.37 116.63 1.01×10−3 121×10−3 12.1×10−3 260×10−6

150 25.27 124.73 7.58×10−3 1.14 114×10−3 1.82×10−3

300 167.16 132.8 50.1×10−3 15.0 1.50 11.32×10−3

500 363.67 136.33 109×10−3 54.6 5.46 24.0×10−3

n=60

90 0.00006 89.99994 0.018×10−6 1.62×10−6 0.162×10−6 0.012×10−6

100 0.0327 99.9673 9.81×10−6 981×10−6 98.1×10−6 5.89×10−6

120 10.02 109.98 3.01×10−3 361×10−3 36.1×10−3 1.64×10−3

150 37.57 112.43 11.3×10−3 1.69 169×10−3 6.02×10−3

300 184.55 115.45 55.4×10−3 16.6 1.66 28.8×10−3

500 383.14 116.86 114.9×10−3 57.5 5.75 59.0×10−3
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PROBLEM 6.4: Composite YBCO under a current pulse

Here, we consider a sample of a 10-mm wide YBCO composite tape, cooled by
liquid nitrogen boiling at 77K. Figure 6.12a shows a schematic drawing of the
composite cross section. The composite is insulated on one side by a G-10 strip;
on the other side a copper strip is soldered over the silver layer, with a total Cu/Ag
layer thickness of 55µm; the Cu surface is exposed to boiling liquid nitrogen (LN2).
A transport current, It(t), is passed through the composite. As indicated by the
dashed trace in Fig. 6.12b, it begins at 100A, then increases quickly to 300A,
remains at 300A for the next 0.31 s, and returns to 100 A. The conductor voltage,
Vcd(t), over a distance of 5 cm is shown by the solid trace in Fig. 6.12b.

Although a real HTS magnet is very likely operated adiabatically, for measure-
ments such as Vs vs. Is plots it is always desirable to keep the test sample, LTS
or HTS, at a constant temperature in a well-cooled environment, which for HTS
is most easily achieved by immersion in a bath of liquid cryogen.

Cu/Ag (55 µm)

YBCO (1 µm)

Buffer Layer (0.5 µm)

Substrate (75 µm)

G-10 Backing (1mm)

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ LN2 ◦ ◦ ◦ ◦

←− −→10 mm
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Fig. 6.12 (a) Schematic drawing of the cross section of a 10-mm wide composite YBCO;
the Cu/Ag side is exposed to boiling LN2. (b) Transport current (dashed) and voltage
(solid) vs. time traces recorded with an over-current pulse applied to the composite.
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PROBLEM 6.4: Composite YBCO under a current pulse (continuation)

We may use the following T -dependent normal metal matrix resistance over a
composite distance of 5 cm, Rm(T ), Ic(T ), and Vs for this YBCO:

Rm(T ) = 0.190 + 1.530
(

T − 77
293 − 77

)
[mΩ] (6.27a)

Ic(T ) = 100
(

93 − T

93 − 77

)
[A] (6.27b)

Vs(T ) = 5
[
Is(T )
Ic(T )

]10
[μV] (6.27c)

where T is in kelvins. Equation 6.27a is valid for the range 77–293 K; Eqs. 6.27b
and 6.27c, only in the range ∼77–93 K.

a) Referring to Fig. 6.12b, very early in the current pulse (t � 2.54 s and It =
290 A), when it is safe to assume that the composite is still at 77 K, we have:
Vcd(t = 2.54 s)� 18 mV. By satisfying the voltage and current requirements
of the circuit model shown in Fig. 6.11, compute: 1) Is; 2) Im; and 3) Vcd.

Is Vcd computed here equal to the 18 mV measured?

b) Among Vcd (=Vs or RmIm), Is, and n measured in the experiment, n is the
least accurate. Show that n=12.24 in Eq. 6.27c gives Vcd =18 mV in a).

c) During the pulse, Vcd(t) continues to increase and reaches a peak value of
40 mV—the drop in Vcd(t) that occurs just before the end of the pulse is
believed to be caused by a sudden improvement in cooling. Compute the
heat flux, pcd [W/cm2], at the composite surface when Vcd(t=2.79 s)=40 mV.

d) Assuming that the Cu-Ag and YBCO layers are at the same temperature,
compute the temperature when Vcd =40 mV (t � 2.79 s). Use n=12.24.

Answer to TRIVIA 6.1

ii) I-90 (5000, in km); Charles (100); MRI magnet (50); cocoon (1).
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Solution PROBLEM 6.4

a) The circuit must satisfy both current and voltage requirements:

It = Is + Im (S4.1a)

RmIm = Vs(Is) (S4.1b)

Inserting appropriate values, we obtain:

Is = (290 A) − Im (S4.2a)

(0.19×10−3 Ω)Im = (5×10−6 V)
(

290 A − Im

100 A

)10

(S4.2b)

Solving for Im from Eq. S4.2b, we obtain: 1) Im =70 A. Once Im is known, Is and
Vcd≡RmIm =Vs(Is) may be computed easily: 2) Is =220 A; and 3) Vcd =13.3 mV.
That is, 13.3 mV, computed, does not quite agree with the 18 mV measured.

b) At 77 K, we know Rm =0.19 mΩ. Thus, solving for Im with RmIm =18 mV,
we obtain: Im =94.74 A; hence: Is =290 A − 94.74 A = 195.26 A. Inserting these
values of Im and Is into Eq. 6.27c with 10 replaced with an unknown n, we have:

(18×10−3 V) = (5×10−6 V)
(

195.26 A
100 A

)n

(S4.3)

Solving Eq. S4.3 for n, we have: n=12.24. An apparent error in the measured n
of ∼20% from the computed n is not unreasonable considering that n measured is
extracted from the measured Vs vs. Is plot. However, even a small error, because
n is an exponent, can make a significant error in other parameters.

c) The total power dissipation over a 5-cm section of the composite, Pcd, is given
by: Pcd = VcdIt. Hence: Pcd = (40 mV)(300 A) = 12 W. Because the total matrix
area exposed to liquid nitrogen, with the thin edge areas neglected, is 5 cm2, we
have a heat flux, pcd, of 2.4 W/cm2, well below the peak nucleate boiling heat flux
for liquid nitrogen of ∼10 W/cm2.

d) The circuit requirements are the same as those in a), except now T is no
longer at 77 K. The only known parameter: Vcd =40 mV. Thus for the matrix:

Vcd = 40×10−3 V = Rm(T )Im (S4.4)

Combining Eq. S4.4 with Eq. 6.27a and solving for Im, we have:

40×10−3 V =
{[

0.190+1.530
(

T−77
293−77

)]
×10−3 Ω

}
Im(T ) (S4.5a)

Im(T ) =
40×10−3 V[

0.190+1.530
(

T−77
293−77

)]
×10−3 Ω

(S4.5b)

=
40[

0.190+1.530
(

T−77
293−77

)] A (S4.5c)
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Solution PROBLEM 6.4 (continuation)

The superconductor side has the same Vcd, thus:

40×10−3 V = (5×10−6 V)
[
300A − Im(T )

Ic(T )

]12.24

(S4.6)

With Im(T ) and Ic(T ) given, respectively, by Eq. S4.5c and 6.27b, we obtain:

40×10−3 V = (5×10−6 V)

⎡
⎢⎢⎢⎢⎢⎢⎣

300A − 40 A[
0.190+1.530

(
T−77

293−77

)]

(100A)
(

93−T

93−77

)
⎤
⎥⎥⎥⎥⎥⎥⎦

12.24

(S4.7)

Equation S4.7 is simplified to the following algebraic equation for T :

8000 =
[

16(406200T − 28027799)
(93 − T )(135400T − 6793895)

]12.24

(S4.8)

Solving for T in Eq. S4.8, we obtain: T =83.125K. This translates to a tempera-
ture difference of ∼6 K between the composite surface and liquid nitrogen boiling
at 77.3K (in Eqs. 6.27a, 6.27b, and in subsequent equations the liquid temperature
is set at 77 K); for LN2 this is well within the nucleate boiling regime. Figure 6.13
shows heat transfer flux data for liquid nitrogen boiling at 77.3K. The data point
corresponding to 6.4 c) and d) is indicated by the solid circle in the figure.
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Fig. 6.13 Typical heat transfer flux data for liquid nitrogen boiling at 77.3K. The
data point corresponding to c) and d) is indicated by the solid circle in the figure.
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DISCUSSION 6.6: Cable-in-Conduit (CIC) Conductors

It was through consideration of stability and the desire to find an alternative to
bath-cooling that the concept of cable-in-conduit (CIC) conductors was proposed
by Hoenig and Montgomery in the early 1970s [6.21]. Indeed, this desire to find
an alternative to bath-cooling in the form of forced-cooling for a superconduct-
ing magnet was proposed in the mid 1960s by Morpurgo [6.22], who developed a
conductor with a cooling hole, similar to water-cooled copper conductor in some
resistive magnets. In terms of heat transfer, CIC conductor is superior to a single-
holed conductor because the cable can provide a much larger cooling area than
the interior wall of a single hole with the same coolant cross section. The idea is
thus to encase a cable of superconducting strands in a leak-tight conduit through
which supercritical helium is forced, guaranteeing a nearly complete penetration of
cryogen throughout the winding. Figure 6.14 presents sketches of CIC conductors.
There are many variations to these basic conduit-cable designs.

It is only after the initial development of CIC conductor that its second feature,
which was at first overlooked, has become recognized as its second asset: built-
in-reinforcement. Magnets which are “large” (winding i.d.>∼1 m) and high field
(>∼10 T) now use CIC conductor almost exclusively. A large, high-field magnet
is generally expensive. Furthermore it often is a component of an even larger
and more expensive device, e.g., a fusion reactor; the magnet must be absolutely
stable. Because a stable magnet must have cooling well-coupled to every part of
the conductor in the winding, CIC conductor, by virtue of its configuration, turns
out to quite naturally meet both stability and strength requirements.

A. Power Density Equations

The basic power density equation for composite temperature T is essentially the
same as given by Eq. 6.1, except here the cooling term is more specific than the
general form given in Eq. 6.1. Thus:

Ccd(T )
∂T

∂ t
= ∇·[kcd(T )∇T ]+ρcd(T )J2

cd◦(t)+gd(t)−
(

fpPD

Acd

)
hhe(T−The) (6.28a)

where hhe and The are, respectively, the heat transfer coefficient and temperature
of helium forced through the conduit. At present, every CIC conductor is based
on LTS and cooled by helium, hence the use of hhe and The in Eq. 6.28a. The
power density equation for The is given by:

Che(The)
∂The

∂ t
=

(
fpPD

Acd

)
hhe(T − The) (6.28b)

Fig. 6.14 Examples of CIC conductors.
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DISCUSSION 6.6: Cable-in-Conduit (CIC) Conductors (continuation)

B. Components of CIC Conductor

As we may infer from Fig. 6.14, the CIC conductor includes: 1) cable; 2) helium;
and 3) conduit. Each is briefly described.

Cable

The cable basically consists of many strands, each a composite of diameter ∼1 mm
or smaller containing many filaments of 10–100 μm diameter superconductor, NbTi
or Nb3Sn; often copper strands of the same diameter as that of either NbTi or
Nb3Sn strands are substituted for the superconducting strands either to enhance
the overall matrix metal cross sectional area, reduce the cable cost or both. Gen-
erally three or seven strands are “bundled” to form what we call here a “basic
cable.” The 3-strand basic cables may be deciphered from each of the CIC con-
ductors illustrated in Fig. 6.14. A typical CIC conductor is at least one cm or
two across—for fusion magnets this can exceed 5 cm—and therefore operates at
a high current, with an operating current, Iop, of at least 10 kA and, for some
fusion magnets, close to 100 kA. To meet this high Iop requirement, the bundling
process continues, in which generally 3, 5, or 7 basic cables are bundled to form
the 2nd-step cable, and so forth to additional steps, as required.

Table 6.6 lists three CIC conductors: Coils A and C of the 45-T Hybrid Magnet
at NHMFL; and a proposed CIC conductor for an ITER toroidal-field coil design.
The 45-T Hybrid Magnet is operating, while the ITER coil is still in the design
stage, though many model versions have been operated. The first part of Table
6.6 lists parameters of the cables for these coils.

Helium

Helium in supercritical state, i.e., its pressure above the critical pressure, 227.5 kPa
(2.25 atm), is forced through the windings at a nominal operating pressure Pop∼3–
5 atm. The operating temperature, Top, though, is generally maintained below its
critical temperature (5.2 K), by having the circulating helium cooled to typically
4.3–4.5 K, before it enters the winding. In the 45-T Hybrid the helium is subcooled
superfluid, at a nominal Pop of 1 atm and a nominal Top of 1.8 K. The remarkable
properties of superfluidity (high thermal conductivity and low viscosity) enable
this system to rely simply on “natural convection,” rather than forced flow, to
transport dissipation to a heat exchanger located outside the winding. The helium
parameters for the three coils are in the middle part of Table 6.6.

For forced-flow helium, its heat transfer coefficient, hhe [W/cm2 K], is based on the
so-called Dittus-Boelter-Giarratano-Yaskin correlation [6.23]:

hhe = 0.0259
(

khe

Dhy

)
Re0.8Pr0.4

(
The

Tcd

)−0.716

(6.29)

In Eq. 6.29 khe, Re, and Pr are, respectively, the thermal conductivity of helium,
Reynolds number, and Prandtl number; Dhy is the hydraulic diameter; and Tcd

is the conductor temperature. Heat transfer fluxes, gq, at 3.5 atm and 4.5 K, for
Re=104 and Re=105 are given in Fig. 6.3.
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DISCUSSION 6.6: Cable-in-Conduit (CIC) Conductors (continuation)

Table 6.6: Examples of CIC Conductors

CIC Conductor Coil 45-T Hybrid Magnet ITER

Parameters Coil A Coil C TF Coil

Nominal Iop [kA] 10 50

Total area (Acic) [mm2] 209.94 196.29 2601

Basic Cable # strands 6Nb3Sn/Cu+1Cu 3 NbTi/Cu 6 Nb3Sn/Cu

Strand diameter, dst [mm] 0.433 0.810 0.810

Cable Patterns 7×3×5×5 3×3×3×5 3×(43)×6

Total strand number, Nst 525 135 1152

Conductor area, Acd [mm2] 79.44* 70.49* 593.6

Asc+Am [mm2] 25.19 11.25 94.74

Am [mm2] 54.25 59.14 498.05

Acd/Acic 0.38 0.36 0.23

Helium Superfluid† Supercritical

Nominal Pop [atm] 1 5

Nominal Top [K] 1.8 4.5

Nominal flow rate [g/s] not-forced; natural convection 10

Dhy‡ [mm] 227.3 109.4 933.1

Flow area†† (Aq) [mm2] 50.30 36.50 276

Aq/Acic 0.24 0.19 0.106

Conduit Material Stainless steel‡‡ Incoloy

Area (AS) [mm2] 80.20 89.30 1466.9

height×width [mm×mm] 16.22×13.71 15.85×13.74 51×51

wall thickness [mm] 1.64 2.00 2.86

outer corner radius [mm] 3.40 4.77

AS/Acic 0.38 0.45 0.56

* Greater than the cross sectional area given by Nst(πd2
st/4), due to cabling.

† Forced, during cooldown to 4.5K.

‡ Computed wetted perimeter, given by Nstdst.

†† Often expressed by void fraction: Aq/(Acd+Aq).

‡‡ Coil A: modified 316LN (low carbon/high nitrogen); Coil C: pancakes near the ends, 316L;
pancakes near the center, standard 316LN.

Conduit

The conduit encases a bundle of cabled strands and provides space for coolant,
which is generally forced supercritical helium but can be stagnant if the coolant is
superfluid helium, like the superconducting coils of the 45-T Hybrid Magnet. For
composite Nb3Sn strands, which are brittle and must not be strained more than
∼0.3%, the final heat treatment for Nb3Sn reaction must be performed after the
unreacted strands are first encased in the conduit and wound into the coil. In the
1980s a nickel-iron based superalloy, Incoloy 908, was the preferred conduit metal,
but recently most conduits use stainless steel grade 316LN—the designation LN
indicates 316 stainless steel with low carbon and high nitrogen contents.
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DISCUSSION 6.6: Cable-in-Conduit (CIC) Conductors (continuation)

C. Stability

From the very beginning in the early 1970s, much attention was given to the
stability of CIC conductors. One of the important results from this early era was
the observation in 1977 of “recovery” in CIC conductor even in the absence of a
net coolant flow through the conductor [6.24]. Apparently, heating-induced high-
velocity local coolant flow in the heated region is responsible for supplying the
cooling necessary for recovery.

An important milestone early in the stability work for CIC conductors is the
discovery by Lue, Miller, and Dresner in 1979 of multivalued stability margins that
can exist under certain operating conditions [6.25]. Here the energy margin, Δeh, is
defined as the maximum dissipative energy density pulse (per unit strand volume)
to which a conductor can be exposed and still remain superconducting when it is
carrying a given transport current. Figure 6.15 presents a typical Δeh vs. It/Ic◦
for constant values of operating temperature (Top), field (B0), and coolant flow
rate. Here, It is the transport current and Ic◦(Top, B0) is the critical current. The
“dual stability” regime, characterized by multivalued stability margins, occurs
near It/Ic◦∼0.5. The regime below the dual stability regime is referred to as
“well-cooled” and that above as “ill-cooled” [6.26].

In the face of the requirement to guarantee stable operation of large superconduct-
ing magnets such as for fusion reactors, ITER magnets are designed to operate in
the well-cooled regime, i.e., It below Ilim, given by:

Ilim =

√
AmfpPDhhe(Tc − Top)

ρm
(6.30)

Note that Ilim satisfies the Stekly criterion, i.e., Ilim =Ic◦ with αsk =1 in Eq. 6.19.

→ ← DUAL STABILITY

WELL-COOLED

Δeh

0 It/Ic◦
0 ∼0.5 1

ILL-COOLED

Fig. 6.15 General energy margin vs. normalized transport current plot
for a CIC conductor [6.25].
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DISCUSSION 6.6: Cable-in-Conduit (CIC) Conductors (continuation)

D. Other Issues

AC Losses

Because superconducting magnets in fusion reactors are subjected to time-varying
magnetic fields, AC losses occur within CIC conductors. How to deal with AC
losses is a major topic in the design of CIC conductors [6.27–6.50]. AC losses are
discussed in CHAPTER 7.

Joint

A CIC conductor handles both strands that carry current and the conduit that
carries coolant. Therefore, joining of two CIC conductors is much more difficult
than joining two composites unconfined in a conduit. Several techniques have been
developed to deal with this issue [6.51–6.57].

Ramp-Rate Limitation

A conductor such as CIC conductor that is comprised of cabled composite strands
sometimes suffers from a phenomenon known as “ramp-rate limitation,” a form
of instability that quenches the conductor below its designated operating current.
The instability phenomenon occurs only when the current ramp rate exceeds a
critical rate or for a conductor carrying a constant current but exposed to a rapid
change in the background magnetic field. Clearly, nonuniform sharing of transport
current within the cabled strands is due chiefly to inequalities in inductances and
resistances of strands in the cable. The problem has been studied extensively in
the past decade [6.58–6.62]. Because the ramp-rate-limitation does not occur in
cabled strands that operate at currents below Ilim, perhaps it is another reason
for these large magnets to operate at the conservative level set by Ilim.

“In this very spot there are whole forests which were buried millions of years
ago; now they have turned to coal, and for me they are an inexhaustible mine.”

—Captain Nemo (c. 1870)

“The seas of this planet contain 100,000,000,000,000,000 tons of hydrogen
and 20,000,000,000,000 tons of deuterium. Soon we will learn to use these
simplest of all atoms to yield unlimited power.” —Arthur C. Clarke (c. 1960)
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PROBLEM 6.5: V vs. I traces of a cooled composite conductor*

This problem investigates V vs. I traces of a composite superconductor immersed
in a bath of 4.2-K liquid helium; we will generate V vs. I traces for three different
cooling conditions. The conductor parameters are as follows: Ic◦ = 1000 A, the
critical current at Top = 4.2 K; ρm = 4×10−10 Ω m, the electrical resistivity of the
matrix metal; Am = 2×10−5 m2, the total matrix cross section; Pcd = 2×10−2 m,
the total conductor perimeter (that exposed to liquid helium: fpPcd); and hq =
104 W/m2 K, the heat transfer coefficient. V is measured across a conductor length
� = 0.1 m. In deriving V vs. I traces, assume that Ic(T ) is given by Eq. 6.12.

a) For I < Ic◦ , we have V = 0 V. For I ≥ Ic◦ , show that V is given by the
following expression:

V =
Rm(I − Ic◦)

1 − RmIIc◦

fpPcd�hq(Tc − Top)

(6.31)

where Rm = ρm�/Am. Assume that the composite is in thermal equilibrium,
i.e., the resistive dissipation balanced by the cooling with the composite at
Top+ΔT . Note that Im =I−Is, where Im is the matrix current and Is is the
superconductor current at T = Top + ΔT , as given by Eq. 6.12.

b) By defining two additional dimensionless parameters, v≡V/RmIc◦ , i≡I/Ic◦ ,
and also using αsk, the Stekly parameter (Eq. 6.19), show that dimensionless
voltage, v(i), is given by:

v(i) =
i − 1

1 − αski
(6.32)

c) Condition 1: fp =1 (αsk =0.1). For Tc =5.2 K (and Top =4.2 K), compute v
at i=1, 1.1, 1.5, and 2.

d) Condition 2: fp =0.1 (αsk =1). Show that v is indeterminate at i=1.

e) Condition 3: fp = 0.05 (αsk =2). Here, the surface area is nearly insulated
from liquid helium, the composite will behave unstably, and as observed by
Stekly in his experiment using a real supply, the supply momentarily drops
its current from the designated level, matching the positive load voltage,
before settling back to the original current and the corresponding voltage
on the v = i line [6.63]. Although Eq. 6.32, derived from Eq. 6.31 based on
the premise that v =0 for i< 1, is not valid for i> 1 under the steady-state
conditions, you may use the equation to find values of v for for i = 1, 0.9,
0.8, 0.75, and 0.707.

f) Plot v(i) traces for the three conditions studied above. Plot v= i with a solid
line. Label αsk =0.1 for the curve corresponding to Condition 1; αsk =1 for
the Condition 2 curve; αsk =2 for the Condition 3 curve.

* Based on Problem 6.9 in the 1st Edition (Plenum, 1994).
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Solution to PROBLEM 6.5

a) For I > Ic◦ , V across the voltage taps is given by Rm(I − Is) where Is is the
current in the superconductor, i.e., Is = Ic(T ). Joule heat generation Gj(Top+ΔT )
in the composite is thus given by:

Gj(Top + ΔT ) = V I = Rm

{
I − Ic◦

[
Tc − (Top + ΔT )

Tc − Top

]}
I

= RmI

[
(I − Ic◦) +

Ic◦ΔT

Tc − Top

]
(S5.1)

Gj(Top + ΔT ) is matched by the cooling, which is given by fpPcd�hq(T − Top) =
fpPcd�hqΔT . Equating these two powers and solving for ΔT , we obtain:

ΔT =
RmI(I − Ic◦)(Tc − Top)

fpPcd�hq(Tc − Top) − RmIc◦I
(S5.2)

Combining Eqs. S5.1 and S5.2 and solving for V , we obtain:

V = Rm

{
(I − Ic◦) +

Ic◦

(Tc − Top)

[
RmI(I − Ic◦)(Tc − Top)

fpPcd�hq(Tc − Top) − RmIc◦I

]}
(S5.3a)

= Rm(I − Ic◦) +
R2

mIc◦I(I − Ic◦)
fpPcd�hq(Tc − Top) − RmIc◦I

(S5.3b)

From Eq. S5.3b we obtain:

V =
Rm(I − Ic◦)

1 − RmIIc◦

fpPcd�hq(Tc − Top)

(6.31)

b) By substituting Rm/� for ρm/Am in αsk (Eq. 6.19), we can rewrite Eq. 6.31:

V =
Rm(I − Ic◦)

1 − αsk(I/Ic◦)
(S5.4)

From which, we obtain:

v(i) =
i − 1

1 − αski
(6.32)

c) Rm =ρm�/Am =2 × 10−6 Ω. With fp =1, we have αsk:

αsk =
ρmI2

c◦

fpPcdAmhq(Tc − Top)

=
(4×10−10 Ω m)(1000 A)2

(1)(2×10−2 m)(2×10−5 m2)(104 W/m2 K)(5.2 K − 4.2 K)
= 0.1

Thus, Eq. 6.32 is given by:

v(i) =
10(i − 1)
10 − i

(S5.5)

Values of v(i) at selected values of i are given in Table 6.7.
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Solution to PROBLEM 6.5 (continuation)

Table 6.7: v vs. i for αsk =0.1

i 1 1.1 1.5 2

v 0 0.11 0.59 1.25

Table 6.8: i vs. v for αsk=2*

i 1 0.9 0.8 0.75 0.725 0.707 ≤0.707

v 0 0.125 0.333 0.5 0.611 0.707 0

* This is not under the steady-state conditions.

d) When fp =0.1, αsk becomes 1. For i<1, by definition, v=0. For i>1, from
Eq. 6.32, v(i)= i. At i=1, v(i) is really indeterminate; physically, as pointed out
in DISCUSSION 6.1, this means that v can be any point on the vertical line at i=1.
Note that at i=1 (I =Ic◦), V =0 according to Eq. 6.31.

e) Here, with fp = 0.05, αsk = 2, we may compute v(i) using Eq. 6.32. As
remarked above, Stekly observed [6.63] that v(i) is double-valued between i=0.707
(as computed here) and i=1, i.e., v=0 as i is increased from 0 to i=1, at which
point v suddenly appears, forcing i to drop (because the power supply, set at a
minimal voltage needed in the current range from i=0 and i=1, cannot sustain
the current at i = 1). First, v traces the curved line, labeled αsk = 2, shown in
Fig. 6.16 from i=1 to i=0.707, known as the “recovery” current (normalized) for
αsk =2. Subsequently, v returns to 0 as i is decreased below 0.707.

f)

2.0

1.5

1.0

0.5

0
0 0.5 1.0 1.5 2.0

i

v = i

αsk =1

αsk =2 αsk =0.1

v

Fig. 6.16 Normalized voltage vs. normalized current traces for αsk =0.1, 1, and 2.
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PROBLEM 6.6: Stability analysis of Hybrid III SCM*

This problem deals with the cryostability of the Hybrid III’s NbTi coil, whose
conductor specifications are given in Table 5.1 of PROBLEM 5.1. (The NbTi coil
in Hybrid III actually employs two grades of NbTi composite conductors; here it
is simplified to use only one grade.)

The NbTi coil consists of a stack of 32 double-pancake coils, with a total overall
winding height of 640 mm. Each pancake coil is of 658-mm winding i.d. and 907-
mm o.d. Figure 6.17 shows important details of the winding. As is evident from
the figure, each turn is separated by a thin insulator strip. The two pancakes
in each double-pancake unit are separated by a sheet of 0.5-mm thick insulator
bonded with epoxy resin. Between adjacent double pancakes are 1.0-mm thick
insulating strips extending radially from the inside radius to space the coils to
provide cooling. The spacer strips cover, on the average, 60% of the flat surface of
each coil exposed to liquid helium. Note that in each double-pancake set, helium
wets the top surface (40%) of the top pancake and the bottom surface of the
bottom pancake. Because the liquid helium is superfluid at 1.8 K, there are no
helium bubbles to impair the cooling of each bottom pancake facing downward.

The NbTi coil (and Nb3Sn coil) is designed to be operated while immersed in a
bath of 1-atm subcooled 1.8-K superfluid helium. Assume the cooling to be domi-

Fig. 6.17 Winding details for the NbTi pancakes.

* Based on Problem 6.10 in the 1st Edition (Plenum, 1994).
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PROBLEM 6.6: Stability analysis of Hybrid III SCM (continuation)

nated by Kapitza resistance; therefore qk given by Eq. 4.7 should be used for
cooling, q(T ):

qk = ak(Tnk

cd − Tnk

b ) (4.7)

Tcd [K] is the conductor temperature (really the temperature of the conductor
surface, which is of matrix metal copper) and Tb [K] is the bath temperature.
You may take ak = 0.02 W/cm2 K4 and nk = 4.0 (Table 4.7). At an operating
temperature Top of 1.8 K (Top = Tb), the coil carries a transport current Iop of
2100 A and is exposed to a maximum magnetic induction of ∼10 T. Table 5.1
gives useful data.

a) Make an appropriate Ic(T ) plot for this conductor covering the temperature
range, from 1.8 K, the nominal operating temperature, to 4.1 K, the critical
temperature at 10 T. Determine, from the plot, the current sharing temper-
ature Tcs for a transport current It of 2100 A. Indicate Tcs in the plot.

b) Make, and label, power flux [W/cm2] vs. temperature [K] plots for both cool-
ing and heat generation at 10 T when Top = Tb = 1.8 K, Iop = 2100 A. Based
on the plots, state whether the pancakes are stable, and, if so, by which cri-
terion. If not, explain why they are not stable. For the purpose of answering
this question you may assume that: 1) q(T ) given above is valid over the
entire temperature range of interest and that 2) heat generated within each
pancake is transported freely through the 1-mm high radial channels.

c) In the pancake coils in previous hybrid magnets built at the FBNML, each
turn in these windings was separated by thin (∼0.4 mm thick) spacers to
make the windings “ventilated” and thus cryostable. In the early phase
of the Hybrid III project, pancake designs with such turn-to-turn cooling
spacers were seriously considered but were abandoned in favor of a spacerless
winding design, because turn-to-turn spacers reduce the radial stiffness of the
winding. Assuming turn-to-turn cooling channels are present in the Hybrid
III NbTi pancakes, draw again neatly on another graph power flux [W/cm2]
vs. temperature [K] plots for both cooling and heat generation at 10 T when
Tb = 1.8 K, Iop = 2100 A. For this case, assume 50% of the total conductor
perimeter is exposed directly to liquid helium. Again, based on these plots,
comment on the stability of the pancakes.

“. . .there must be discipline. For many things are not as they appear.
Discipline must come from trust and confidence.” —Robert Jordan



388 CHAPTER 6—PROBLEMS & DISCUSSIONS

Solution to PROBLEM 6.6

a) Figure 6.18 presents the Ic(T ) plot for this conductor, constructed by joining
two points: one at 6000A at 1.8K and 10 T (Table 5.1) and the other at 0 A at
4.7K (Tc at 10T; Table 5.1; also indicated in Fig. 6.18). The current sharing
temperature Tcs is given by 2100A = Ic(Tcs): it is 3.7K.

6
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0
0 1 2 3 4 5

Iop

Top Tcs Tc

Temperature [K]

I c
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A
]

Fig. 6.18 Ic vs. T plot (solid) for a Hybrid III Nb-Ti conductor at 10 T. The
intersection of the line at Ic = 0 determines Tc = 4.7K. It = 2100A is given
by the dashed line, which intersects the solid line at Tcs = 3.7K.

TRIVIA 6.2 List the items below in the descending order of their surface heat fluxes.

i) Bottom wet surface, of a heated teapot keeping the water at 373K;

ii) LED bulb, of a lit Christmas tree miniature decoration light;

iii) Normal-state composite HTS, cryostabilized by boiling liquid nitrogen at 77K;

iv) Sunlight over Mars.
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Solution to PROBLEM 6.6 (continuation)

b) Let us first compute ĝj in the normal state valid for T ≥ Tc = 4.7K. Unlike
gj(Tc)=ρmI2

op/AmAcd [W/m3], ĝj(Tc) is the normal-state generation flux (per unit
of conductor surface exposed to liquid helium). That is, ĝj(Tc)=(Acd/fpPcd)gj(T ),
where fpPcd is the conductor perimeter exposed to liquid helium. Acd and Am are
the cross sectional areas, respectively, of the overall conductor and matrix metal.
We have: Acd =ab, where a and b are the overall conductor width and thickness,
respectively; and Am =abγc/s/(γc/s+1), where γc/s is the copper-to-superconductor
ratio. We thus have: ĝj(Tc)=ρmI2

op(γc/s+1)/γc/sabfpPcd.

With It =2100 A, ρm =4.5×10−10 Ω m, a=9.2×10−3 m, b=2.6×10−3 m, γc/s =3,
fpPcd =(0.4)(2.6×10−3 m)=1.04×10−3 m, we obtain: ĝj =1.06×105 W/m2.

ĝj(T ) is zero for 1.8K≤ T ≤ Tcs (3.7K), and starting at Tcs it rises linearly with
T until Tc (4.7K), at which point ĝj(Tc)=1.06×105 W/m2.

Figure 6.19 shows ĝj(T ) and q(T ) plots. From the plots, it is clear that the
pancakes are almost cryostable; they certainly satisfy the equal area criterion.
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Fig. 6.19 ĝj(T ) plot (solid) and q(T ) plot (dotted); ĝj(T )
(dashed) corresponds to question c).
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Solution to PROBLEM 6.6 (continuation)

c) Both gj(T ) and q(T ) are the same as those computed in b). The area exposed
to helium per unit conductor length will of course be much greater in this case
than in the spacerless winding. For this case, fpPcd = (0.5)(23.6×10−3 m) =
11.8×10−3 m and ĝj(Tc) = 9.34kW/m2.

The dashed curve in Fig. 6.19 shows the ĝj(T ) plot; the same q(T ) used in the
previous case is valid. From the plots, it is clear that the pancakes are cryostable.

DISCUSSION 6.7: Cryostable vs. Quasi-Adiabatic Magnets

As described in PROBLEM 6.6, the double pancakes of the Hybrid III NbTi coil
have no cooling channels between turns. The decision to make these double pan-
cakes “quasi-adiabatic” (QA) was to reduce stresses. The term “quasi-adiabatic”
was used because it was thought that the NbTi coil, without cooling channels,
would not be cryostable but would approximate adiabatic performance—later,
when the stability analysis presented above was performed as an exercise for stu-
dents, the coil was found to be stable. An internal (unpublished) study performed
at FBML in 1986 to examine the effects of mechanical disturbances on coil oper-
ation concluded that the NbTi coil, under quasi-adiabatic condition, would, and
indeed did, perform satisfactorily.)

Figure 6.20 shows an example of hoop stress (σh) vs. winding radius (r) plots of the
NbTi conductors, High-Field (HF) grade and Low-Field (LF) grade for cryostable
and QA windings [3.14]. For cryostable windings, because of the presence of struc-
turally “soft” turn-to-turn insulating strips, σh vs. r traces the local (r×J×Bz)
stresses. (A jump in the stress at the HF-LF transition is due to the reduction
in conductor cross section.) For the QA winding, because the winding is much
more rigid in the radial direction (no spacers), radial expansion of the inner turns
is supported by the outer turns, decreasing stresses in the inner turns. The net
result is a more uniform stress distribution. (In the analysis it was assumed that
both sections had the same conductor cross sectional area.) Equally important is
a substantial reduction in the overall size of the NbTi coil, from a winding o.d. of
1.06m to an o.d. of ∼0.9 m.
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Fig. 6.20 Hoop stress vs. radius plots for cryostable and quasi-adiabatic windings.
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DISCUSSION 6.8: The MPZ Concept*

As briefly stated in 6.2.1, the MPZ (minimum propagating zone) concept has
played a key role in advancing our understanding of “disturbances” that occur
within a magnet winding and their effects on the performance of virtually every
kind of magnet, adiabatic as well as cooled [1.27, 6.14]. The concept showed the
minuteness of disturbances degrading the performance of LTS magnets [6.64, 6.65].

Consider an isotropic winding geometry of infinite radial extent (Fig. 6.21) operat-
ing at Iop, which in a spherical region 1 (r ≤ Rmz) is fully normal and dissipating
Joule heating density of ρmJ2

m, where ρm is the temperature-independent matrix
resistivity and Jm = Iop/Am; region 2 (r ≥ Rmz) is superconducting; far away
from Rmz, the winding temperature is Top. Assuming that the winding is charac-
terized by a uniform and temperature-independent thermal conductivity kwd, we
may derive, under time-independent and “adiabatic” conditions, with no dissipa-
tion other than Joule dissipation, i.e., Ccd∂T/∂ t =0, gd(t)= 0, and gq(T )= 0, in
Eq. 6.1, an expression for Rmz:

Rmz =

√
3kwd(Tc − Top)

ρmJ2
m

(6.33)

If we insert values of kwd, Tc, Top, ρm, and Jm typical for an LTS magnet oper-
ating at liquid helium temperature, Rmz is 0.1–10 mm. (If kwd is anisotropic but
orthotropic, as within a real winding, the MPZ shape will be an ellipsoid, not a
sphere.) The MPZ volume is minute compared with the winding volume, but it
is possible to sustain a minute amount of gd(t) even within an adiabatic winding,
provided its extent is limited to less than Rmz.

Although (Tc−Top) in Eq. 6.33 can be an order of magnitude greater for an HTS
winding than an LTS winding, because ρm increases with Top and kwd remains
relatively constant, the MPZ size of an
HTS winding at Top = 77.3 K is about
the same as that for an LTS magnet op-
erating at Top =4.2 K. A parameter that
dramatically increases with Top is the
enthalpy densities of the winding mate-
rials, making it virtually impossible, as
stated at the outset of this chapter, to
drive any HTS magnet above its criti-
cal temperature with disturbance ener-
gies such as those originating from me-
chanical events, e.g., wire motion and
epoxy cracking, that still, though rarer
than in the early 1980s, continue to af-
flict high-performance LTS magnets for
high-energy physics accelerators, NMR,
and MRI.

y

2

1

x
Rmz

Fig. 6.21 Isotropic winding where in re-
gion 1 (r ≤ Rmz) the winding is gener-
ating Joule heating and in region 2 (r ≥
Rmz) the winding is superconducting.

* Based on Problem 6.8 in the 1st Edition (Plenum, 1994).
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PROBLEM 6.7: Dissipation density in adiabatic winding

Consider an infinitely long solenoid of winding i.d. 2a1 and o.d. 2a2. The magnet,
cryocooled and maintained at operating temperature Top at the magnet bound-
aries, i.e., i.d. and o.d. of the winding, experiences a uniformly distributed dissi-
pation within the winding. This model approximates a cryocooled magnet sub-
jected to AC losses within the epoxy-impregnated winding. Under steady-state
conditions in which the winding temperature T (r) is time-independent and the
composite superconductor is fully superconducting, i.e., no Joule dissipation, the
power density equation applied to the thermally isotropic winding is an extreme
simplification of Eq. 6.1:

0 = ∇·[kwd(T )∇T ] + gd(t) (6.34)

where kwd(T ) is the “average” thermal conductivity of the winding.

a) Show that under the condition that kwd(T )=kwd is constant, the tempera-
ture, T (ρ), in the winding, 1≤ρ ≤α, where ρ≡r/a1, subjected to a spatially
uniform and constant dissipation density, gd(t)=gd, is given by:

T (ρ) =
a2
1gd

4kwd

[
(1 − ρ2) +

(
α2 − 1
lnα

)
ln ρ

]
+ Top (6.35)

b) Show that the maximum winding temperature, Tmx, occurs at ρmx:

ρmx =

√
α2 − 1
2 lnα

(6.36)

c) Show that the critical dissipation density, gdc , at which the maximum tem-
perature rise within the winding from Top, ΔTmx≡Tmx−Top, is given by:

gdc
=

4kwdΔTmx

a2
1

{
1 +

α2 − 1
2 lnα

[
ln

(
α2 − 1
2 lnα

)
− 1

]} (6.37a)

Note that gdc is proportional to ΔTmx≡Tmx−Top.

We may express Eq. 6.37a as:

gdc
=

(
kwdΔTmx

a2
1

)
γ

dc
(α) (6.37b)

where the dimensionless parameter γ
dc

(α) is given by:

γ
dc

(α) ≡ 4

1 +
α2 − 1
2 lnα

[
ln

(
α2 − 1
2 lnα

)
− 1

] (6.37c)

d) Construct a graph of γ
dc

(α) given by Eq. 6.37c in the α range 1.25–5.
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Solution to PROBLEM 6.7

a) Equation 6.34 in 2-D cylindrical coordinates with kwd(T ) assumed constant,
kwd, is given by:

kwd

r

d

dr

(
r
dT

dr

)
+ gd = 0 (S7.1a)

Substituting ρ≡r/a1, we have:

kwd

ρ

d

dρ

(
ρ
dT

dρ

)
+ gda

2
1 = 0 (S7.1b)

Integrating Eq. S7.1b twice with respect to ρ, we obtain:

T (ρ) = − gda
2
1

4kwd
ρ2 + A ln ρ + B (S7.2)

With boundary conditions T (1)=Top and T (α)=Top, we have:

T (ρ) =
a2
1gd

4kwd

[
(1 − ρ2) +

(
α2 − 1
lnα

)
ln ρ

]
+ Top (6.35)

b) Differentiating Eq. 6.35 with respect to ρ and setting the resultant expression
equal to zero, we obtain:

dT

dρ
=

gda
2
1

4kwd

[
−2ρ +

(
α2 − 1
lnα

)
1
ρ

]
= 0 (S7.3)

Solving for ρ, we have:

ρmx =

√
α2 − 1
2 lnα

(6.36)

c) At ρ=ρmx, T (ρmx)=Tmx. Thus, from Eq. 6.35, Tmx is given by:

T (ρmx) ≡ Tmx =
a2
1gd

4kwd

[
(1 − ρ2

mx) +
(

α2 − 1
lnα

)
ln ρmx

]
+ Top (S7.4)

Noting that ΔTmx =Tmx−Top and gd =gdc
at Tmx, and combining Eqs. 6.36 and

S7.4, we obtain:

ΔTmx =
gdca

2
1

4kwd

{
1 +

α2 − 1
2 lnα

[
ln

(
α2 − 1
2 lnα

)
− 1

]}
(S7.5)

Solving Eq. S7.5 for gdc
, we have:

gdc =
4kwdΔTmx

a2
1

{
1 +

α2 − 1
2 lnα

[
ln

(
α2 − 1
2 lnα

)
− 1

]} (6.37a)

d) A graph of γ
dc

(α) for the α range of 1.25–5 is shown in Fig. 6.22.

Answer to TRIVIA 6.2 Teapot (50, in W/cm2); HTS (10); LED bulb (0.2); Mars (0.05).
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Solution to PROBLEM 6.7 (continuation

200
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Fig. 6.22 γdc
(α) for the α range of 1.25–5.

Illustration Let us consider a few examples that may approximate real cases.
Case 1 Here we consider α = 2; a1 = 10 cm; kwd = 0.01 W/cm K (a “typical”
winding at ∼30 K, consisting of metal and insulator); and ΔTmx = 3 K. Because
γ

dc
(2)=7.9, applying Eq. 6.37b, we obtain:

gdc
=

(
kwdΔTmx

a2
1

)
γ

dc
(α) (6.37b)

=
(0.01 W/cm K)(3 K)

(10 cm)2
(7.9) � 2.4×10−3 W/cm3 � 2.4×103 W/m3

For this HTS solenoid, of a1 =10 cm and a2 =20 cm (and of infinite axial length),
in which the winding is kept at ∼30 K and cooled by conduction from its i.d. and
o.d., a uniform dissipation density, for example by AC losses, up to 2.4 kW/m3

(2.4 mW/cm3) within the winding will not destroy superconductivity, provided the
superconductor has a temperature margin, ΔTmx, of at least 3 K. Note that this
upper limit of dissipation density increases proportionately with ΔTmx. Of course,
even if the HTS can remain fully superconducting under a dissipation density of
2.4 kW/m3, the system cryogenic load may be prohibitively high.

As studied in CHAPTER 7, for an HTS tape of width w and thickness δ exposed
to a cyclic magnetic field of (amplitude Hm), directed parallel to the tape’s width
(see Fig. 7.1d), hysteresis energy density, ehy, one of three major AC losses in mul-
tifilamentary superconductor composite, for example, is given by: ehy �μ◦JcδHm

(Eq. 7.29d), where Jc is the superconductor critical current density. For YBCO at
30 K and 2 T, Jc≈2×109 A/m2 and δ≈1×10−6 m; thus for μ◦Hm =Bm =2 T, we
find: ehy = 4 kJ/m3 = 4 mJ/cm3. This dissipation energy density translates to a
power density, at 60 Hz, of 240 kW/m3, 100 times greater than the maximum per-
missible level computed above! To limit the hysteresis dissipation power density
to 2.4 kW/m3, for the same Jc, Bm has to be limited to 0.02 T. Note that this is
for the field parallel to the tape.

Case 2 Here, we consider a thinner solenoid: α=1.25, with the other parameters
the same. With γ

dc
(1.25)�128, we have: gdc

�38 kW/m3.
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Solution to PROBLEM 6.7 (continuation)

Case 3 For a “thick” solenoid, e.g., α = 4, γ
dc

(4) � 0.85: gdc � 260 W/m3.
This critical dissipation density may be too low for HTS tape—a magnetic field of
0.01 T at 60 Hz has a magnetic power density of 1200 W/m3! We may increase gdc

,
though obviously at increased cryogenic loads, by enhancing kwd, or subdividing
the winding into thin-walled coils, each cooled at its i.d. and o.d.
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CHAPTER 7
AC AND OTHER LOSSES

7.1 Introduction

Although the perfect conductivity of superconductors is what makes supercon-
ductivity perpetually fascinating for scientists and enticing to engineers and en-
trepreneurs, Type II superconductors, suitable for magnets, operate in the mixed
state and, as seen in CHAPTER 5, are magnetically hysteretic. They are intrinsi-
cally dissipative under time-varying conditions of magnetic field, transport current,
or both. Furthermore, when a Type II superconductor is processed into a compos-
ite conductor in the form of multifilaments embedded in a normal metal matrix,
other magnetic losses besides hysteresis come into play. These magnetic losses
are commonly known as AC losses. In addition, the magnet is subjected to other
dissipations, the sources of which include: 1) conductor splices; 2) Lorentz-force
induced conductor, and even winding, motion, which results in frictional heat-
ing; and 3) Lorentz-force induced cracking in the winding impregnants, which also
results in dissipation. Although not discussed here, there is another source of
dissipation in fusion magnets: neutron radiation.

The dissipation power density, expressed by gd in Eq. 6.1 of CHAPTER 6, lumps all
these chiefly non-Joule heating dissipation densities. Generally, its size is miniscule
compared with the Joule dissipation density, ρcd(T )J2

cd◦
(t) of Eq. 6.1. Despite its

small magnitude, it can play a critical role in adiabatic superconducting magnets,
particularly LTS, because the steady-state dissipation base line for LTS magnets is
zero or nearly so. As seen in CHAPTER 6, an adiabatic HTS magnet, on the other
hand, can remain “superconducting” despite a large dissipation density within
its winding—as much as ∼400 kW/m3 in an illustrative case, though at a great
cryogenic load. For comparison, the dissipation density base line for water-cooled
magnets can be tens of GW/m3; dissipations other than Joule heating are com-
pletely negligible.

In CHAPTER 7 we discuss and study three types of the disturbance term gd: 1)
magnetic (AC losses); 2) electrical (splice resistance); and 3) mechanical (frictional
and epoxy cracking). For LTS magnets AC losses have proven devastating: only
LTS magnets having windings “locally” cooled with liquid helium—cryostable—
can tolerate AC losses, limiting their applications (e.g., “research” and fusion)
and essentially excluding commercially relevant applications, where, for efficiency,
“adiabatic” windings are preferred. Only those in which AC losses may be reduced
at will (i.e., for “DC” applications, e.g., NMR and MRI), are adiabatic LTS mag-
nets usable and applied successfully. With AC losses controllable and remedies
against mechanical disturbances in place, most adiabatic LTS NMR/MRI mag-
nets nowadays operate successfully most of the time. Remarkably, as noted on
the disturbance spectra of Fig. 6.1, there are no major “intractable” disturbances,
except AC losses, in HTS magnets. CHAPTER 7 thus focuses chiefly on AC losses;
splice dissipation and mechanical disturbances are treated as “other losses.”
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7.2 AC Losses

Following the basic philosophy of this book, only those cases amenable to analytical
expressions with which to compute ballpark figures of AC losses are considered;
i.e., only a few “simple” cases are presented and studied. Thus a complex “real-
world” case may have to be either simplified to an analytically solvable model—a
recommended approach for every problem—or computed head-on with a code at
the outset, an unattractive and much less revealing approach.

Three distinguishable AC loss energy densities [J/m3] in a multifilamentary com-
posite conductor or strand are: 1) hysteresis, ehy; 2) coupling, ecp; and 3) eddy-
current, eed. AC losses in the conductor are generated by a magnetic field and/or
transport current, with one or both varying in time; here only selected field-current
excitations are considered. Subjected to one of these field-current excitations, AC
losses in the conductor generally depend on 1) the conductor cross-section shape—
considered here are “Bean” slab, cylinder, tape—and 2) the magnetic field direc-
tion with respect to the conductor axis—either longitudinal, parallel to the broad
face (if any), or perpendicular to it.

AC losses within a magnet winding add to the system cryogenic load and, be-
cause an HTS magnet can operate at temperatures much higher than 4.2 K, it
can tolerate “some” AC losses. Still, for any “AC” superconducting magnet to
compete with a room-temperature magnet, its total AC losses multiplied by the
ratio of compressor power input to heat load at operating temperature (Wcp/Q)
must be less than those of a room-temperature counterpart. Note that, as shown
in Fig. 4.5, the range of Wcp/Q is 250–8000 at 4.2 K and 10–50 at 77 K. These
ratios alone make the task of enabling an AC superconducting magnet to succeed
in the marketplace daunting.

Work on AC losses for Type II superconductors as applied to magnets started in
the late 1960s and has continued to date. The bases for the work were established
in the 1970s and early 1980s [1.27, 7.1–7.16]. More recent articles are cited where
appropriate, including those on HTS.

Superconductor Orientations Relative to External Field

As stated above, superconductor cross sections considered for computation of AC
losses are: Bean slab; circle (as in round wire); and rectangle (represented often
by tape). Figure 7.1 shows these conductors exposed to a spatially uniform time-
varying magnetic field, He(t), vector: a) Bean slab of width 2a; b) and c) wire of
diameter df ; d) and e) tape of width w and thickness δ. Note that the external field
He(t) may be in any of three directions with respect to the wire or tape orientation:
longitudinal, He||(t) for wire; parallel, He//(t), for tape; and perpendicular, He⊥(t),
for wire and tape. For Bi2223 and YBCO conductors, available only in tape, AC
losses are a serious issue.

In each superconductor, transport current flows along the superconductor axis.
The transport current is limited to the superconductor critical current, Ic, where
for the Bean slab Ic [A/m] is per unit slab length along the field direction—note
that the Bean slab is infinite in the field direction (y-axis) and in the current
direction (z-axis), with the width (2a) in the x direction.
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2a

He(t)

df

He||(t)
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He⊥(t)

δ

w

He//(t)

δ

w

He⊥(t)

(a) (b) (c)

(d) (e)

Fig. 7.1 Superconductors exposed to a spatially uniform, time-varying magnetic field,
He(t), directed as indicated by the arrowed lines. a) Bean slab of width 2a; b) and c)
circular wire of diameter df ; d) and e) tape of width w and thickness δ.

Time-Varying Magnetic Field

For computation of AC losses we may, most of the time, characterize a time func-
tion of magnetic field (and transport current) by its maximum extent or amplitude,
Hm for field and Im for current, and its frequency f or period τm—if more than
one frequency is involved, f is assigned its dominant frequency. AC losses in “real-
world” situations are so complex that even with a code it is virtually impossible
to accurately simulate the problem and thus expect a high-degree of accuracy in
AC loss computation. Characterizing most time-functions with a single frequency
or period is thus quite adequate, certainly for a ballpark estimate.

Tables for Energy Densities of AC Losses

The closed-form analytic expressions of AC loss energy densities are summarized
in Tables 7.3–7.9 (pages 439–443), presented in PROBLEMS&DISCUSSIONS which
follow this introductory section. The expressions are valid only for the supercon-
ductor configurations and field directions shown in Fig. 7.1; those corresponding
to a Bean slab (Fig. 7.1a) are derived in this chapter.
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7.2.1 Hysteresis Loss

As noted in CHAPTER 2, dissipation within a volume may be treated as the flow
of Poynting vector �S (Eq. 2.20). In integral form, neglecting the electric energy
term, Eq. 2.20 may be expressed by:

∫ [
−

∫
S
�E× �H ·d �A

]
dt =

∫
V

[∫
�E · �J dt + 1

2μ◦H
2 + μ◦

∫
�H · d �M

]
dV (7.1)

Although the definition �B=μ◦( �H+ �M) is used by Bean in his purely phenomenolog-
ical (“critical-state”) model of the magnetic behavior of Type II superconductors,
as discussed in CHAPTER 5, B is computed as the “average” magnetic induction,
Bs (Eq. 5.4a), based on the magnetic field distribution within the superconductor,
Hs(x), i.e., Bs(x)=μ◦Hs(x). Because the Bean slab is finite in only one dimension
(x), Hs(x) and the supercurrent density induced in the slab, Jc, field-independent
in the Bean model, varies only in the x direction. Jc is established by the �E
field, which in turn is induced by d �B(t)/dt, which, for the Bean slab, is equal to
μ◦d �He(t)/dt, the time rate of change of the uniform external magnetic field.

Hysteresis Loss for Bean Slab

Therefore, in the Bean critical state model for Type II superconductors �M is really
represented by �Hs(x), which in turn is represented by �Jc. Accordingly, Eq. 7.1 for
a Bean slab of width 2a is modified:

∫ [
−

∫
S
�E(x)× �He ·d �A

]
dt =

∫ 2a

0

[∫
�E(x)· �Jc(x) dt + 1

2μ◦H
2
s (x)

]
dx (7.2)

where the integration is performed from x=0 to x=2a (or from x=−a to x=a).
Because �Jc(x) is induced by �E(x), it is parallel to the E field. The

∫
�E(x)· �Jc(x) dt

term in Eq. 7.2 represents dissipation, and this dissipation is known as hysteresis
loss. Hysteresis loss energy density, ehy [W/m3], for the Bean slab is given by:

ehy =
1
2a

∫ 2a

0

[∫
JcE(x) dt

]
dx (7.3a)

By combining Eqs. 7.2 and 7.3a, we have another expression for ehy:

ehy =
1
2a

{∫ [
−

∫
S
�E(x)× �He ·d �A

]
dt − 1

2μ◦

∫ 2a

0

H2
s (x) dx

}
(7.3b)

Equation 7.3b states that the hysteresis energy density in the slab is equal to the
total energy density supplied by the Poynting energy density to the slab minus
the magnetic energy density in the slab.
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When the external field �He makes one complete cycle in which the initial and final
fields, respectively, �Hei and �Hef

as well as magnetizations, �M( �Hei) and �M( �Hef
),

are identical, ehy may also be given by:

ehy = μ◦

∮
�He d �Me( �He) (7.4a)

Equation 7.4a may be algebraically given by:

ehy = −μ◦

∮
M(He) dHe (7.4b)

In Eq. 7.4b, the vector symbols are dropped because each vector parameter points
in only one direction: He and M in the y direction.

Bean Slab under External Field Time Sequences

In PROBLEMS 7.1–7.4 and DISCUSSIONS 7.1–7.2, hysteresis energy densities are
studied for a Bean slab subjected to an external magnetic field, He(t), of different
time sequences (Cases). Cases 1–6 and Cases 1i–6i, respectively, in the absence
and presence of DC transport current in the slab, are identified in Eq. 7.5 below.

He(t) = 0∗(Virgin slab)→Hm→0→−Hm→0→Hm→0→−Hm→0 (7.5)

CASES 1 (AND 1i )︷ ︸︸ ︷ CASES 4 (AND 4i )︷ ︸︸ ︷
︸ ︷︷ ︸

CASES 2 (AND 2i )

︸ ︷︷ ︸
CASES 5 (AND 5i )︸ ︷︷ ︸

CASES 3 (AND 3i )

︸ ︷︷ ︸
CASES 6 (AND 6i )

Each time sequence of He(t) of Eq. 7.5 is briefly described below.

Case 1 He(t) is increased from 0∗ to Hm, where 0∗ denotes the slab is virgin,
i.e., no supercurrent density, Jc, in the slab.

Case 2 This is a field-decreasing sequence that follows Case 1: He(t)=Hm → 0.

Case 3 This is a combination of Cases 1 and 2: He(t)=0∗ → Hm → 0.

Case 4 Similar to Case 1, but the slab is no longer virgin.

Case 5 Similar to Case 2, but it follows Case 4: He(t)=Hm → 0.

Case 6 Starting with a non-virgin slab, He(t) makes one complete cycle.

Cases Each of these, in the presence of DC transport current, is identical to
the zero-current counterpart described above.1i–6i

Hs(x) plots for Cases 1, 2, and 4 are shown, respectively, in Figs. 7.2–7.4. In
the absence of transport current the magnetic behavior of a slab (of width 2a) is
symmetric about its midpoint (x = a); therefore, Hs(x) plots are shown only for
(0≤x≤a). Hs(t) plots for selected Cases 1i–6i are shown later.



404 CHAPTER 7
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Fig. 7.2 Field profiles for Case 1, He =0∗ →Hm, at 0∗ < He < Hm (solid lines) and at
Hm (heavy dashes): (a) “small” field (Hm ≤Hp); (b) “medium” (Hp ≤Hm ≤2Hp); and
(c) “large” (Hm ≥2Hp). ↑He indicates that He is increasing. In each graph, x+ =He/Jc

and xm =Hm/Jc, which becomes xm =a for (b) and (c).
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Fig. 7.3 Field profiles for Case 2, He = Hm → 0: ↓ He (the arrow indicating He is
decreasing) between Hm and 0 (solid lines) and when He returns to 0 (heavy dashes). (a)
“small” field (Hm ≤Hp); (b) “medium” (Hp ≤Hm ≤2Hp); and (c) “large” (Hm ≥2Hp).
In each graph, the heavy dotted line represents the field profile at Hm, the start of Case 2;
x− =(Hm−He)/2Jc; and x0 =Hm/2Jc, which becomes x0 =xm =a for (c).
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Fig. 7.4 Field profiles for Case 4, in each graph, starting at He =0 (heavy “square-dots”)
after He returns from −Hm; i.e., the slab is no longer virgin at the start of Case 4: ↑He

(the arrow indicates He is increasing) between 0 and Hm (solid lines) and at He = Hm

(heavy dashes). (a) “small” field (Hm ≤Hp); (b) “medium” (Hp ≤Hm ≤ 2Hp); and (c)
“large” (Hm ≥ 2Hp). Note that x0 = Hm/2Jc, x+ = (Hm +He)/2Jc, and xm = a for (b)
and xm =x0 =x+ =a for (c).

TRIVIA 7.1 List the items below in descending order of energy.

i) Caloric, of a grain of granulated sugar;

ii) Kinetic, of a snail crawling at a speed of 0.01mph (mile per hour);

iii) Minimum quenching, in a high-performance LTS magnet at 4.2K;

iv) Potential, of a flea atop the Empire State Building.
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7.2.2 Coupling Loss in Multifilamentary Composite

Coupling loss is another form of Joule heat dissipation within a multifilamentary
composite. It results from the inter-filament (coupled) current induced in the
multifilamentary composite exposed to a time-varying magnetic field. Because
the coupling current flows through the resistive matrix metal, it decays with time
which, for the sake of simplicity, is characterized generally by an exponential with
a single “coupling” time constant, τcp. Clearly, the larger the τcp, the longer
the coupling current flows through the matrix metal, and thus the greater will
be ecp, coupling energy loss density. τcp is the ratio of the inductance L and
resistance R of the coupling current path; L/R decreases with increasing tightness
of “twist pitch” length, �p, of a multifilamentary composite and decreases with
increasing matrix metal resistivity. Figure 7.5 shows a schematic drawing of a
two-filament composite. The complex geometry of a multifilamentary conductor,
with “transposed” filaments as one source of complications, makes analysis based
on the Bean slab model nearly impossible.

Coupling Time Constant

The key parameter for ecp is the coupling time constant, τcp. It defines the decay
time constant of inter-filament (coupled) currents induced in the multifilamentary
composite when it is exposed to a time-varying magnetic field. In reality, the
current decay function contains many time constants, not just the dominant one.
Experimentally, however, only the dominant term can be determined, and it is
used in most of the “phenomenological” approaches. τcp is given by:

τcp =
μ◦�2p

8π2ρef
(7.6)

where �p is the “twist pitch” length of filaments and ρef is the effective matrix
resistivity for inter-filament currents. Because, as stated above, the longer the
coupled currents last, the greater the energy dissipated, the greater τcp is, the
greater will be ecp. As Wilson points out [1.27], ecp may be viewed as a fraction of
the total magnetic field energy density in the composite, μ◦H2

m/2, and as τcp → 0,
ecp → 0. As stated above, useful formulas for ecp are presented later in Table
7.8; it includes formulas of ecp for multifilamentary wire under four time functions
of external magnetic field: 1) sinusoidal; 2) exponential; 3) triangular; and 4)
trapezoidal. Key time parameters for these functions are defined in Fig. 7.18.

Fig. 7.5 Two-filament model of a multifilamentary composite,
defining twist pitch length �p used in Eq. 7.6.

p
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Effective Matrix Resistivity

We shall briefly discuss the resistivity, ρef , appearing in Eq. 7.6. It represents the
matrix’s effective resistivity for the flow of current perpendicular to the axis of
filamentary conductors. Two models have been proposed by Carr for ρef [7.18]:

ρef0 =
1 − λf

1 + λf
ρm (7.7a)

ρef∞ =
1 + λf

1 − λf
ρm (7.7b)

where λf is the volumetric fraction of the superconducting filaments in the com-
posite superconductors and ρm is the matrix resistivity.

Equations 7.7a and 7.7b are based on the two limiting current distributions shown
in Fig. 7.6: in (a) the contact resistance at the filament surface is zero and current
is drawn into the filaments as shown schematically, making the “apparent” cross
section and distance for the passage of current, respectively, large and small, and
hence Eq. 7.7a; in (b) the opposite is true and Eq. 7.7b. Neither expression has
been tested rigorously, analytically or experimentally. In practice, Eqs. 7.7a and
7.7b are applied to composite superconductors, respectively, of Nb3Sn and NbTi.

7.2.3 Eddy-Current Loss

The basics of eddy-current loss have been discussed in PROBLEM 2.7. The for-
mulas for its energy density, eed, in the “low” frequency limit, for wire (Figs. 7.1b
and 7.1c) and tape (Figs. 7.1d and 7.1e) are summarized in Table 7.9.

Fig. 7.6 Current distributions in a multifilamentary composite conductor
perpendicular to the conductor axis. (a) Contact resistance between filament
and matrix is zero—Eq. 7.7a; (b) Contact resistance is infinite—Eq. 7.7b.

)b()a(
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7.3 Other Losses

There are two other sources of dissipation: 1) splice—or joint—resistance; and 2)
mechanical disturbances. For “dry” magnets in driven mode, LTS and HTS, dis-
sipation generated at resistive joints, for obvious reasons, must be minimized—it
directly adds to the thermal load on the cryocooler. Clearly, it is not an issue
for persistent-mode magnets in which each splice resistance is virtually zero, i.e.,
in the order of pico-ohms. Mechanical disturbances—those occurring within the
winding in the form of conductor motion or epoxy cracking in epoxy-impregnated
windings—are important only for “adiabatic” LTS magnets; for well-cooled LTS
magnets in which the biggest dissipation is Joule heating of the composite super-
conductor itself, mechanical disturbances may be ignored entirely. For a different
reason, as stated in CHAPTER 6, HTS magnets, well-cooled or “adiabatic,” are
immune from these mechanical disturbances.

7.3.1 Splice Resistance

A resistive splice becomes a design issue only when: 1) it must be confined within
a restricted space or conform to a specific configuration; 2) it is located deep inside
the winding where there is limited or zero “local” cooling; 3) it must withstand
large forces; 4) there are so many of them that the cumulative dissipation can tax
the system’s refrigeration capacity. 5) it is not in direct contact with coolant, such
as in cryocooler-cooled magnets.

There are basically two types of joint, lap and butt. For most applications, a lap
joint is better than a butt joint for three reasons: 1) it is easier to make than
a butt joint; 2) splice resistance may be arbitrarily reduced by simply increasing
the lap length; and 3) it is generally easier than a butt joint to meet strength
requirements. Here, we discuss the lap splice.

Lap Splice (Joint)

A “hand-shake” lap splice, shown in Fig. 7.7, is the most widely used splice design;
it is also quite suitable even for use within the winding. The splice between
Conductor A and Conductor B is electrically joined by a solder layer of overlap
length �sp, width a, and thickness δsd. The solder layer resistance, Rsd, with
solder resistivity of ρsd is given by:

Rsd =
ρsdδsd

a�sp
(7.8)

Generally, a is equal to the width of the conductors being spliced.

Fig. 7.7 Sketch of a typical “hand-shake” lap splice of a solder layer
of length �sp, width a, and thickness δsd

a δsd SOLDER LAYER

sp

CONDUCTOR A

CONDUCTOR B
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Contact Resistance

The splice resistance, Rsp, is the sum of three components:

Rsp = RcA + Rsd + RcB (7.9a)

=
Rct

Act
(7.9b)

where RcA is the contact resistance between Conductor A and the solder layer
and RcB is that between Conductor B and the solder layer. Rct is the contact
resistance in the unit of [Ω m2], and Act = a�sp is the contact area. If the solder
“wets” the surface of each conductor, it is reasonable to assume RcA�RcB � 0 or
at least RcA�RcB �Rsd:

Rsp =
Rct

Act
� Rsd (7.9c)

Note that Rsp can be made arbitrarily small by making �sp sufficiently long. Com-
bining Eqs. 7.8 and 7.9c, we obtain:

Rct � ρsdδsd (7.10)

Thus, we may achieve “small” Rct by selecting a low-resistivity solder and, equally
important, by minimizing δsd, certainly no thicker than 10–50μm. Indeed, if a
“superconducting” solder is used, Rct becomes zero, provided such a splice is placed
in a low field region and enough area (a�sp) provided for current passage. With
a superconducting solder, it is possible to create an essentially superconducting
joint with a resistance in the range of pico-ohms. Such a joint must be in a very
low-field (≤1 T) and cold (≤9 K) environment, with the contact area large enough
to keep the solder superconducting as the joint carries the operating current.

Table 7.1 presents values of Rct for selected tin-lead solders. Rct is magnetic field-
dependent, increasing linearly with B. In some data, a nonlinearity is observed
between zero and 1 T. These data are presented only as a general guide. In projects
involving large magnets and where splice resistance is an important design issue,
it is prudent to rely on actual measurements.

Table 7.1: Solder Contact Resistances at 4.2K

Solder Rct [pΩ m2]

0 T 1T 2T 9T

60Sn-40Pb 3.0* 3.3* 3.6* 5.5*

(2nd set of data) 1.1* 1.6* 2.0* 5.3*

50Sn-50Pb] 0.8 1.5* 1.7* 2.9*

(2nd set of data) 1.8 3.3* 3.7* 6.8*

50Sn-50Pb [7.19] ρsd = 5.90(1 + 0.0081B) nΩm (B in [T])

60Sn-40Pb [7.19] ρsd = 5.40(1 + 0.0089B)

USW† [7.20] 0.45 (B = 0 T)

60Sn-40Pb‡ Rsd(B)/Rsd(0) = 1 + 0.57B (B in [T])

* Linear with B in this range.
† Between two scarfed copper surfaces ultrasonically welded.
‡ Splice resistance between two CIC conductors.
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Table 7.2: Electrical Resistivities of Solder Alloys at Selected Temperatures [7.21]

Solder Alloy Resistivity [nΩm] (Cu: 18 nΩm @293K)

Tsl[
◦C] Tlq [◦C] Tc [K] 4.2K 10K 20K 50K 77K 100K 200K 293K

100In 157 157 3.41 0.3 0.3 1.6 9.3 17 23 54 87

50In-50Pb 184 210 6.35 0 162 164 175 187 196 236 290

52In-48Sn 118 118 ≈7.5 0 62 63 71 79 87 123 169

63Sn-37Pb 183 183 ≈7 0 4.0 6.5 24 36 48 105 162

60Sn-40Pb 183 191 ≈7.1 0 2.8 4.5 18 33 44 99 152

50Sn-50Pb 183 212 ≈7.1 0 8.3 11 26 42 54 112 169

40Sn-60Pb 183 238 ≈7.1 0 9.5 13 27 44 57 118 177

Table 7.2 presents zero-field electrical resistivity vs. temperature data, by Fu-
jishiro [7.21], of indium (In) and six “common” solder alloys of In, lead (Pb), and
tin (Sn), listed in the table, where Tsl and Tlq are, respectively, solidus and liquidus
temperatures. (The smaller the differences in these temperatures, the easier the
soldering; when Tsl =Tlq, an alloy has a well-defined melting point.) As indicated
in the table, these common solder alloys are superconducting above 4.2 K; Tc is
the zero-field critical temperature [4.41, 4.42, 7.20].

Mechanical-Contact Switch

For some applications it is advantageous to use a mechanical-contact switch rather
than a heater-activated persistent-current switch (PCS). Resistances of mechani-
cal contacts between copper or indium-coated copper surfaces, though small, are
not superconducting even at 4.2 K [7.22]. Recently, mechanical contacts between
HTS bulk disks operating at 77 K have been explored by Sawa and others to build
mechanical-contact switches [7.23, 7.24]. Although obviously not superconducting
at 77 K, if operated below ∼10 K and with HTS bulk disks coated with a supercon-
ducting solder, it may be possible to achieve a superconducting disk-to-disk contact
for a superconducting mechanical-contact switch.

7.3.2 Mechanical Disturbances

Until the mid 1970s, most magnets (all LTS, of course) were built according to the
Stekly stability criterion, i.e., well-(and locally-)cooled and thus low-λJop magnets,
and therefore mechanical disturbances were not a great concern—the windings
were designed to deal with the much greater Joule dissipation. Only when it be-
came necessary to make magnets operate at high λJop (≥ 100 A/mm2), in dipole
and quadrupole magnets of high-energy physics particle accelerators and “com-
mercially viable” NMR and MRI magnets—did mechanical disturbances become
a critical design issue. One obvious way to enhance λJop is to abolish the space
occupied by coolant and replace it with field-generating conductor or load-bearing
material—the birth of adiabatic LTS magnets. These magnets are susceptible to
quench with a minuscule level of gd. Through the use of an acoustic emission (AE)
technique described below, it was established by the mid 1980s that a mechanical
disturbance event, primarily either conductor motion or fracture of the impreg-
nated filling material, was responsible for virtually every incident of “premature
quench” in these adiabatic LTS magnets.
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The absence of cooling makes adiabatic magnets prone to quench prematurely,
sometimes at currents well below their intended operating currents. Fortunately,
these mechanical events usually obey what is known in acoustic emission as the
“Kaiser effect.” It describes mechanical behavior observed during a sequence of
cyclic loading in which mechanical disturbances such as conductor motion and
epoxy fracture appear only when the loading responsible for events exceeds the
maximum level achieved in any previous loading sequence. Thus an adiabatic mag-
net suffering premature quenches generally “trains” and improves its performance
progressively to the point where it may finally reach its intended operating cur-
rent. Obviously, the goal in designing an adiabatic magnet is to make it reach the
operating current on the first try; such a remarkable feat is achieved occasionally,
e.g., a 750-MHz (17.6 T) NMR magnet [7.25].

Remedies against these mechanical disturbances have been introduced since the
mid 1980s and nowadays, as remarked at the outset, most adiabatic LTS magnets
now escape these menacing episodes most of the time. Conductor motion and
fracture of the filler material, and remedies against these mechanical disturbances,
are briefly described below.

Conductor Motion and Remedy

Even if the conductor is wound “tightly” in a perfectly ordered arrangement,
e.g., close-packed hexagonal, the winding would still be sufficiently loose for the
conductor to move against a frictional force under the action of Lorentz forces. We
may estimate the extent of the frictional displacement needed to adiabatically drive
a unit conductor volume normal in a typical operating condition and show that
this displacement is indeed likely. For example, a conductor at r=0.2 m, exposed
to a z-directed field, Bz, of 5 T and carrying a current density (over conductor
cross section) in the θ direction of Jθ =200×106 A/m2, experiences an r-directed
Lorentz force density fLr = JθBz of 2×108 N/m3. Suppose that the conductor
slides against the frictional force opposing this fLr

by a distance Δrf ; a frictional
energy density, ef , of this motion over a unit conductor volume may be given by:

ef = μffLrΔrf (7.11)

where μf is the frictional coefficient. Inserting values of μf =0.3 and ef =1300 J/m3,
which is copper’s enthalpy difference between 4.2 K and 5.2 K, and fLr = 2×
108 N/m3, and solving Eq. 7.11 for Δrf , we find:

Δrf =
ef

μffLr

=
(1300 J/m3)

(0.3)(2×108 N/m3)
� 20×10−6 m = 20 μm

Sliding of such a small distance is nearly impossible to avoid even in tight, orderly-
packed windings. Slips as small as ∼10 μm are sufficient to trigger a quench, as
observed in a series of experiments [7.26–7.31].

A remedy to eliminate these microslips is impregnation of the winding with an
insulating material, which is usually fluid when filling up the void space but later
becomes solid. The impregnation transforms the entire winding into a monolithic
structural element. Today, virtually every adiabatic LTS magnet is impregnated
with a filling material, ranging from paraffin wax to epoxy, some mixed with fine
powder to “strengthen” it and/or improve its thermal conductivity.
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Fracture of Filler Material and Remedy

Although conductor motion may be absent in the impregnated windings, two prob-
lems still remain. First, by the action of Lorentz forces, the entire winding body—
in solenoidal magnets—tries to become barrel-shaped. Unless the winding is firmly
anchored to the coil form to prevent this barrel-shaped deformation, interface mo-
tion occurs between the winding and the coil form; this motion generates heating,
which may result in a premature quench. It is possible to decouple the conductor
from such frictional heating by means of a low-thermal-conductivity sheet bonded
to the inner surface of the winding [7.32]. Second, if the winding is firmly held to
the coil form, high stresses are developed in the winding, and the impregnant may
fracture, resulting in another source of thermal disturbance.

In impregnated windings, there are two possible approaches to prevent a prema-
ture quench caused by a fracture of the filler material: 1) minimize the amount
of energy induced by the fracture; and 2) eliminate fracture incidents altogether.
Although there have been attempts to measure fracture-induced energies at cryo-
genic temperatures [7.33, 7.34], our understanding of the fracture mechanisms is
not sufficiently advanced to permit this approach to be useful.

Great progress has been achieved in the second remedy for eliminating the frac-
ture incidents. The techniques developed include: 1) graded pretensioning of
the conductor during the winding process [7.35]; and 2) allowing the winding sec-
tion to “float” in the coil form [7.35, 7.36]. Maeda has pushed to the limit this
floating winding concept and achieved successful performance with “coilformless”
solenoids [7.37]. Today, most impregnated windings “float” in the coil form, en-
abling adiabatic LTS operating at 4.2 K or below to achieve their operating cur-
rents, perhaps not at the very first try but usually after a few training premature
quenches.

Some Consequences of Friction

—Passage from Ernest Rabinowicz’s Friction and Wear of Materials*

In walking, the forward foot comes into contact with the floor surface at a low
speed, typically 30mm/sec. To avoid slipping, the kinetic friction coefficient fk
between foot and floor (measured at a speed of about 30mm/sec) should be above
0.25. . . When the kinetic friction coefficient drops below 0.20, people walking at a
full stride begin to feel that the floor is slippery. However, because people carry
in their brains a built-in warning and servo system based on the nature of the
contact between foot and floor, they adjust readily and rapidly on encountering a
low friction surface. They slow down and change their stride, and in this way they
are able to walk even when the friction coefficient is as low as 0.10 or lower. Most
falls occur when people first step onto a low-friction surface (e.g., a highly waxed
floor), or when they encounter a low-friction patch on an otherwise high-friction
surface (the infamous banana peel). Then slipping occurs before the warning system
can be activated.

* John Wiley & Sons, Inc., New York, 1995. For many years until his retirement in 1993,
Ernest Rabinowicz (1927–2006) taught mechanical engineering at M.I.T. While still a
student in Cambridge University, he once handed back a crystal radio, restored by his
friend, to the great English physicist Paul Andrien Maurice Dirac (1902-1984), who
thanked and commended him, “You’re a promising young man.”
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7.4 Acoustic Emission Technique

7.4.1 Detection of Mechanical Events—LTS Magnets

Generally, time-varying strains create AE signals in a superconducting magnet
when it is being stressed (or being unstressed) by magnetic forces. Beginning in
the late 1970s [7.38–7.40], it was established in the 1980s that the two principal
mechanical events afflicting high-performance LTS magnets—conductor motion
and epoxy fracture—could be detected by the AE technique [7.41–7.54]. The most
effective use of AE for superconducting magnets is the AE/voltage technique first
reported by Brechna and Turowski in 1978 [7.40]. Because a sudden conductor
motion event generates an AE signal—which travels within the winding at speeds
typically 2–5 km/s—and at the same time induces a voltage spike across the mag-
net terminals, the simultaneous detection of AE and voltage signals at the time
of a quench shows that it is induced by conductor motion—a sudden shift in the
position of a short length of the conductor in the presence of a magnetic field gen-
erates, through Faraday’s law, a voltage pulse across the terminals of the winding.
The AE technique can also be used to demonstrate that a quench accompanied by
an AE signal but not by a voltage spike is caused most likely by other mechanical
events such as epoxy cracking. Figure 7.8 shows a premature quench of a Nb3Sn
coil; AE signals appearing at the onset of the voltage pulse that precedes the re-
sistive quench voltage strongly suggest that this premature quench was triggered
by conductor motion [7.54].

7.4.2 Application to HTS Magnets

Besides magnetic forces, another important source of time-varying strains in a
superconducting magnet is a time-varying nonuniform temperature distribution.
Abundant AE signals are in fact generated as a magnet is cooled down (or warmed
up). Indeed, AE signals have been observed in LTS magnets in which time-varying
nonuniform temperature distributions are primary sources [7.55, 7.56]. Figure 7.9
presents one oscillogram recorded on a dipole reaching its critical current [7.57].
Because the quench was “natural,” no AE signals were triggered at the onset of
the quench. However, as registered by SENSOR 1, ∼5 ms after the quench onset,

AE

V

0 2 4 6 8 10 12 14 16 18

TIME [s]

1 V

Fig. 7.8 AE and voltage signals from an Nb3Sn coil prematurely quenching [7.57].
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AE SENSOR1

AE SENSOR2

AE SENSOR3

VOLTAGE

Fig. 7.9 Oscillogram traces of AE signals and voltage from a “natural” quench of
a superconducting magnet at its critical current (time scale: 2ms/div) [7.57].

AE signals appear. It is likely that the signals were caused by a nonuniform tem-
perature distribution created by the quench, which, though “naturally” triggered,
was localized to the high-field region.

AE signals could become useful complements to voltage signals for detecting the
onset of overheating in HTS magnets, particularly as the resistive voltage of HTS,
owing chiefly to its low index, does not rise with current as sharply as that of LTS.
Woźny and others recorded the AE signals generated by the temperature rise at
the superconducting-normal transition in YBCO bulk samples [7.58]; Arai detected
heating-induced AE signals in a test pancake coil wound with Bi2223 [7.59]. Fur-
ther work towards making AE signals complement voltage signals for protection
of HTS magnets is in progress [7.60].

“Time, time, what is time?

Swiss manufacture it.

French hoard it.

Italians squander it.

Americans say it is money.

Hindus say it does not exist . . .” —O’Hara

“We can know the time, we can know a time. We can never know Time.” —Ada
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PROBLEM 7.1: Hysteresis energy density—“Virgin”Bean slab
Under “small” field sequences (Cases 1–3)

Consider a “virgin” Bean slab of width 2a first subjected to an increasing-field
sequence, Case 1 (Eq. 7.5), He =0∗→Hm ≤Hp (“small” field), where 0∗ denotes
that the Bean slab is virgin, and Hp = Jca. It is then subjected to a decreasing-
field sequence, Case 2, He = Hm → 0. The field sequence for Case 3 is Case 1
followed by Case 2. −M(He) for Case 1 is given by Eq. 5.5 and that for Case 2
by a modified form of Eq. 5.7. Thus:

−M(He) = He −
H2

e

2Hp
(He =0∗→Hm≤Hp) (5.5)

−M(He) = He +
H2

e − 2HmHe − H2
m

4Hp
(He =Hm→0) (7.12)

Figure 7.10 shows −M(He) as given by Eqs. 5.5 and 7.12.

a) Applying Eq. 7.3a for one half of the slab (0≤x≤a), show that ehy for Case
1, He =0∗→Hm, is given by:

ehy =
μ◦H3

m

6Hp
(0≤Hm≤Hp) (7.13a)

b) Similarly, applying Eq. 7.3a for one half of the slab (0 ≤ x ≤ a), show that
ehy for Case 2, He =Hm→0, is given by:

ehy =
μ◦H3

m

24Hp
(0≤Hm≤Hp) (7.14a)

c) Using Eq. 7.3b, show that ehy for Case 3, He = 0∗ → Hm → 0, which is
obviously the sum of Eqs. 7.13a and 7.14a, is given by:

ehy =
5μ◦H3

m

24Hp
(0≤Hm≤Hp) (7.15a)

−M(He)

1
2
Hp

A

B

0 He
Hm Hp

− 1
2
Hp

Fig. 7.10 −M(He) for “small” field excitation (Hm≤Hp). Case 1: Trace A;
Case 2: Trace B; Case 3: Traces A and B. Sequence A begins at the origin
(0,0), with a “virgin” Bean slab.
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Solution to PROBLEM 7.1

a) In an increasing-field sequence, He =0∗→Hm, let us first find an expression
for Ez(x)dt when the external field is increasing. Hs(x) within the slab is shown
by the solid line in Fig. 7.2a. Within the slab between x=0 and x=x+(= He/Jc),
Ez(x) due to this field change, dHe/dt, may be given by:

Ez(x) = μ◦
dHe

dt
(x+ − x) (S1.1a)

Ez(x) dt = μ◦(x+ − x) dHe (S1.1b)

Applying Eqs. 7.3a for the first half of the slab, and S1.1b, we have:

ehy =
1
a

∫ a

0

[∫
JcE(x) dt

]
dx (S1.2a)

=
μ◦Jc

a

∫ Hm

0

[∫ x+

0

(x+ − x) dx

]
dHe (S1.2b)

Note that in Eq. S1.2b the order of integration is reversed from that of Eq. S1.2a
because x+ depends on He. Equation S1.2b leads to:

ehy =
μ◦Jc

a

∫ Hm

0

(
x+

2 − x+
2

2

)
dHe (S1.2c)

=
μ◦Jc

a

∫ Hm

0

H2
e

2J2
c

dHe =
μ◦H3

m

6aJc
(S1.2d)

ehy =
μ◦H3

m

6Hp
(Hm≤Hp) (7.13a)

Note that ehy ∝ H3
m; i.e., in a “small” field excitation ehy increases as the 3rd power

of Hm; this has been verified by many experiments.

b) Similarly in a decreasing-field sequence, He =Hm→0, Ez(x) dt is given by:

Ez(x) dt = μ◦(x − x−) dHe (S1.3)

where x−=(Hm−He)/2Jc, as indicated in Fig. 7.3a. Thus ehy is given by:

ehy =
μ◦Jc

a

∫ 0

Hm

[∫ x−

0

[
(x − x−) dx

]
dHe =

μ◦Jc

a

∫ 0

Hm

(
x−2

2
− x−

2

)
dHe (S1.4)

= −μ◦Jc

a

∫ 0

Hm

(Hm−He)2

8J2
c

dHe =
μ◦H3

m

24aJc

ehy =
μ◦H3

m

24Hp
(0≤Hm≤Hp) (7.14a)

Note that in the decreasing-field sequence, ehy is 1/4 that of the increasing-field
sequence. This is, as may be evident from Figs. 7.2a and 7.3a, because Ez induced
within the slab in Case 1 is between x = 0 and xm = Hm/Jc (Fig. 7.2a), while in
Case 2 it is between x=0 and x0 =Hm/2Jc (Fig. 7.3a); again, ehy ∝ H3

m.
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Solution to PROBLEM 7.1 (continuation)

c) The E-field in the slab, as may be noted by its subscript z, points in the z
direction, specifically in the −z direction when He(t) points in the +y direction.
Thus at the slab surface (x = 0), the Poynting vector �S(= �E × �H) points, as
expected, in the +x direction, because during the first field sequence, He =0∗ →
Hm, energies, dissipated and stored, flow to the slab from the external source. In
the first field sequence, Ez(0) is given by Eq. S1.1b, with x+ =He/Jc:

Ez(0) = μ◦
He

Jc

(
dHe

dt

)
(S1.5a)

The first term of the right-hand side of Eq. 7.3b, the Poynting energy density in
Case 1, epy1, thus may be expressed as:

epy1 ≡ 1
a

∫ [
−

∫
S
�E(x)× �He ·d �A

]
dt =

μ◦
aJc

∫ Hm

0

H2
e dHe

epy1 =
μ◦H3

m

3Hp
(S1.6a)

In Case 2, Ez(0) is given by Eq. S1.3, with x−=(Hm−He)/2Jc:

Ez(0) = −μ◦

(
Hm − He

2Jc

)
dHe

dt
(S1.5b)

The Poynting energy density in Case 2, epy2, thus is given by:

epy2 =
μ◦

2aJc

∫ 0

Hm

(Hm − He)He dHe

epy2 = −μ◦H3
m

12Hp
(S1.6b)

The −sign in Eq. S1.6b indicates that epy2 was returned to the source. At the end
of the full field sequence, He = 0∗ → Hm → 0 (Case 3), as may be inferred from
Eq. 7.12, −M(0)=−H2

m/4Hp: the slab stores magnetic (or magnetization) energy
density, emf

, through Hs(x), which, with x0 =Hm/2Jc, is given by:

Hs(x) = Jcx (0≤x≤ x0) (S1.7a)

Hs(x) = Hm − Jcx (x0≤x≤Hm/Jc) (S1.7b)

Using Eqs. S1.7a and S1.7b, we may evaluate emf
:

emf
=

μ◦
2a

∫ a

0

H2
s (x) dx =

μ◦
2a

⎛
⎝2 ×

∫ Hm

2Jc

0

J2
c x2 dx

⎞
⎠

emf
=

μ◦H3
m

24Hp
(S1.8)
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Solution to PROBLEM 7.1 (continuation)

Combining Eqs. 7.3b, S1.6a, S1.6b, and S1.8, we obtain ehy for Case 3:

ehy = epy1 + epy2 − emf

=
μ◦H3

m

3Hp
− μ◦H3

m

12Hp
− μ◦H3

m

24Hp

ehy =
5μ◦H3

m

24Hp
(0≤Hm≤Hp) (7.15a)

Energy Flow

Here, let us check the energy flow from the source to the slab during each field
sequence. In each sequence, the energy densities must be balanced:

epy = ehy + emf
− emi

(S1.9)

where emf
and emi are the magnetic energy densities in the slab, respectively, at

the final and initial states. Note that Eq. S1.9 is essentially the same as Eq. 7.2.

For the first field sequence, epy =epy1 (Eq. S1.6a), ehy (Eq. 7.13a), emi =0 (because
the slab is in the virgin state), and emf1 may be evaluated from Hs(x)=Hm−Jcx:

emf1 =
μ◦
2a

∫ a

0

H2
s (x) dx

=
μ◦
2a

[ ∫ Hm
Jc

0

(Hm − Jcx)2 dx

]

emf1 =
μ◦H3

m

6Hp
(S1.10)

Inserting Eqs. 7.13a and S1.10 into the right-hand side of Eq. S1.9, we obtain:

epy1 =
μ◦H3

m

6Hp
+

μ◦H3
m

6Hp
=

μ◦H3
m

3Hp
(S1.11a)

epy1 of Eq. S1.11a is identical to Eq. S1.6a, demonstrating that the energy density
flow in the first field sequence is balanced.

We may also check the energy balance during the second field sequence, He =
Hm→0. During this sequence, appropriate energy densities in the right-hand side
of Eq. S1.9 are: ehy (Eq. 7.14a), emf

(Eq. S1.8), and emi =emf1 (Eq. S1.10):

epy2 =
μ◦H3

m

24Hp
+

μ◦H3
m

24Hp
− μ◦H3

m

6Hp
= −μ◦H3

m

12Hp
(S1.11b)

epy2 of Eq. S1.11b indeed equals epy2 given by Eq. S1.6b, once again demonstrating
that the energy balance of Eq. S1.9 is valid in the second field sequence. The −sign
indicates, as remarked above, a net flow of energy back to the external source during
the second field sequence: this energy density plus the hysteresis energy density
are “paid” for by a net reduction in the magnetic energy storage in the slab.
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PROBLEM 7.2: Hysteresis energy density—“Virgin”Bean slab
Under “medium” field sequences (Cases 1–3)

Here Cases 1–3 are studied for a “medium” field excitation, specifically, Hp≤Hm≤
2Hp =2Jca. In the increasing-field, He =0∗→Hm sequence (Cases 1 and 3), ehy is
independent of Hm for Hm≥Hp—this is, of course, because Jc in the Bean critical-
state model is field-independent. −M(He) functions for the increasing-field and
decreasing-field sequences are given by:

−M(He) = He −
H2

e

2Hp
(He =0∗→Hp) (5.5)

= 1
2Hp (He =Hp→Hm) (5.6)

−M(He) = 1
2Hp − (Hm − He) +

(Hm − He)2

4Hp
(He =Hm→0) (5.7a)

Figure 7.11 shows −M(He) plots given by Eqs. 5.5, 5.6, and 5.7a.

a) Applying Eq. 7.3a for one half of the slab (0≤x≤a), show that ehy for Case
1 is given by:

ehy = 1
2μ◦HpHm

(
1 − 2Hp

3Hm

)
(Hp≤Hm≤2Hp) (7.13b)

b) For Case 2, explain why ehy is still given by Eq. 7.14a (p. 415).

c) Using Eq. 7.3b, show that ehy for Case 3, which is obviously the sum of
Eqs. 7.13b and 7.14a, is given by:

ehy = 1
2μ◦HpHm

[
1 − 2Hp

3Hm
+ 1

12

(
Hm

Hp

)2
]

(Hp≤Hm≤2Hp) (7.15b)

d) Show that for Hm =Hp, Eqs. 7.15a (p. 415) and 7.15b give the same ehy.

−M(He)

1
2
Hp

A
B

0 He
Hp Hm

− 1
2
Hp

Fig. 7.11 −M(He) for “medium” field excitation. Case 1: Trace A; Case 2:
Trace B; Case 3: Traces A and B. Note that Hp≤Hm≤2Hp =2Jca.
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Solution to PROBLEM 7.2

a) For the first part of Case 1, He =0∗→Hp, we obtain hysteresis energy density,
ehy1′ , by inserting Hm =Hp into Eq. 7.13a (p. 415):

ehy1′ = 1
6μ◦H

2
p (He =0→Hp) (S2.1)

For the second part of Case 1, He = Hp → Hm, field penetrates the entire slab
(here, invoking symmetry, we show only half the slab, from x = 0 to x = a), as
shown by the dashed line in Fig. 7.2b. Ez(x) due to dHe/dt may be given by:

Ez(x) = μ◦
dHe

dt
(a − x) (S2.2)

From Eqs. 7.3a and S2.2, applied to one half of the slab (0≤x≤a), we have ehy1′′ :

ehy1′′ =
1
a

∫ a

0

[∫
JcE(x) dt

]
dx =

μ◦Jc

a

∫ a

0

[∫ Hm

Hp

(a − x) dHe

]
dx (S2.3a)

= μ◦Jc(Hm − Hp)
∫ a

0

a−x

a
dx = 1

2μ◦Hp(Hm − Hp) (S2.3b)

Adding ehy1′ and ehy1′′ given respectively by Eqs. S2.1 and S2.3b, we obtain ehy

for Case 1:

ehy = 1
6μ◦H

2
p + 1

2μ◦Hp(Hm − Hp)

= 1
2μ◦HpHm − 1

3μ◦H
2
p

ehy = 1
2μ◦HpHm

(
1 − 2Hp

3Hm

)
(Hp≤Hm≤2Hp) (7.13b)

b) For Case 2, He =Hm → 0, Hs(x) at 0<He <Hm, given by the solid lines in
Fig. 7.3b, is essentially identical to that given by the solid lines of Fig. 7.3a—each
covers the slab from x = 0 to x = x0. Thus, Ez(x) dt for this field sequence is
identical to Eq. S1.3, leading to the same ehy given by Eq. 7.14a.

c) For the first part of this field sequence, the Poynting energy density, epy1′ , is
given by Eq. S1.6a with Hm =Hp:

epy1′ = 1
3μ◦H

2
p (S2.4a)

In the second part of the field sequence, He =Hp→Hm, Ez(0) is given by Eq. S2.2:

Ez(0) = μ◦a
dHe

dt
(S2.5)

The first part of the right-hand side of Eq. 7.3b, the Poynting energy density, epy1′′ ,
thus may be expressed as:

epy1′′ ≡
1
a

∫ [
−

∫
S
�E(x)× �He ·d �A

]
dt = μ◦

∫ Hm

Hp

He dHe

epy1′′ = 1
2μ◦(H2

m − H2
p ) (S2.4b)
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Solution to PROBLEM 7.2 (continuation)

In the second field sequence, He =Hm→0, Ez(0) is the same as given by Eq. S1.5b;
the corresponding Poynting energy density, epy2, thus is given by Eq. S1.6b:

epy2 = −μ◦H3
m

12Hp
(S1.6b)

Again the −sign indicates that epy2 was returned to the source. At the end of
the full field sequence (Case 3), as may be inferred from Fig. 7.11, the slab stores
magnetic (or magnetization) energy density, emf

, through Hs(x), which, with
x0 =Hm/2Jc, is again given by Eq. S1.7. Using Eq. S1.7, we may evaluate emf

.
Here, unlike in the previous integration (Eq. S1.8), where the integration from
x = 0 to x = x0 = Hm/2Jc is doubled to compute emf

, the integration must be
performed separately for the two ranges, x=0→x0 and x0→a (Fig. 7.3b):

emf
=

μ◦
2a

∫ a

0

H2
s (x) dx =

μ◦
2a

[∫ Hm
2Jc

0

J2
c x2 dx +

∫ a

Hm
2Jc

(Hm − Jcx)2 dx

]

emf
= 1

2μ◦H
2
m − μ◦H3

m

8Hp
− 1

2μ◦HmHp + 1
6μ◦H

2
p (S2.7)

Combining Eqs. 7.3b, S2.4a, S2.4b, S1.6b, and S2.7 we obtain ehy for Case 3:

ehy = epy1′ + epy1′′ + epy2 − emf

= 1
3μ◦H

2
p + 1

2μ◦(H2
m − H2

p ) − μ◦H3
m

12Hp

−
(

1
2μ◦H

2
m − μ◦H3

m

8Hp
− 1

2μ◦HmHp + 1
6μ◦H

2
p

)

= − 1
3μ◦H

2
p +

μ◦H3
m

24Hp
+ 1

2μ◦HpHm (S2.8)

Equation S2.8 is equivalent to Eq. 7.15b:

ehy = 1
2μ◦HpHm

[
1 − 2Hp

3Hm
+ 1

12

(
Hm

Hp

)2 ]
(Hp≤Hm≤2Hp) (7.15b)

d) At Hm =Hp, ehy may be given by either Eqs. 7.15a (p. 415) or 7.15b:

ehy =
5μ◦H3

m

24Hp
(Hm≤Hp) (7.15a)

= 5
24μ◦H

2
p

ehy = 1
2μ◦HpHm

[
1 − 2Hp

3Hm
+ 1

12

(
Hm

Hp

)2 ]
(Hp≤Hm≤2Hp) (7.15b)

= 1
2μ◦H

2
p

[
1 − 2

3
+

1
12

]
= 5

24μ◦H
2
p
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PROBLEM 7.3: Hysteresis energy density—“Virgin”Bean slab
Under “large” field sequences (Cases 1–3)

For a “large” field excitation, specifically, Hm ≥ 2Hp = 2Jca, the magnetization
curve in the increasing-field sequence, He = 0∗ → Hm, is essentially identical to
that for a “medium” field excitation studied in PROBLEM 7.2, and therefore ehy

in the increasing-field range for Cases 1 and 3 is given by Eq. 7.13b (p. 419).

−M(He) for Case 2 is given by Eqs. 5.7a and 5.7b, respectively, in the first field
range, He =Hm→(Hm−2Hp), and in the second field range, He =(Hm−2Hp)→0.
Figure 7.12 shows −M(He) over the entire field range.

a) Show that ehy2′ , the hysteresis energy density in the first part of Case 2,
He =Hm→(Hm−2Hp), is given by:

ehy2′ = 1
3μ◦H

2
p (7.16a)

b) Show that ehy2′′ , the hysteresis energy density in the second part of Case 2,
He =(Hm−2Hp)→0, is given by:

ehy2′′ = 1
2μ◦HpHm

(
1 − 2Hp

Hm

)
(7.16b)

c) Show that ehy for Case 2, He =Hm→0, is given by:

ehy = 1
2μ◦HpHm

(
1 − 4Hp

3Hm

)
(Hm≥2Hp) (7.14b)

d) Show that ehy for Case 3, He =0∗→Hm→0, is given by:

ehy = μ◦HpHm

(
1 − Hp

Hm

)
(Hm≥2Hp) (7.15c)

e) Show that Eqs. 7.15b (p. 419) and 7.15c agree at Hm =2Hp.

−M(He)

1
2
Hp

A

B

0 He
Hm−2Hp Hp 2Hp Hm

− 1
2
Hp

Fig. 7.12 −M(He) for “large” field excitation. Case 1: Trace A; Case 2:
Trace B; Case 3: Traces A and B. Note that Hm≥2Hp =2Jca.
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Solution to PROBLEM 7.3

a) As in the “small” field sequence, Ez(x) is given by Eq. S1.3, where, once
again, x−=(Hm−He)/2Jc. Thus, ehy2′ is given by Eq. S1.4, except that here the
field range is from Hm to Hm−2Hp. Thus:

ehy2′ =
μ◦Jc

a

∫ Hm−2Hp

Hm

[∫ x−

0

[
(x − x−) dx

]
dHe = −μ◦Jc

2a

∫ Hm−2Hp

Hm

x−
2 dHe

= − μ◦
8Hp

∫ Hm−2Hp

Hm

(Hm−He)2 dHe = − μ◦
8Hp

∫ Hm−2Hp

Hm

(H2
m−2HmHe + H2

e ) dHe

ehy2′ = 1
3μ◦H

2
p (7.16a)

b) Again, Ez(x) is given by Eq. S1.3 and ehy2′′ by Eq. S1.4 with x−=a:

ehy2′′ =
μ◦Jc

a

∫ 0

Hm−2Hp

[∫ a

0

[
(x − a) dx

]
dHe = −μ◦Jc

2a

∫ 0

Hm−2Hp

a2 dHe

ehy2′′ = 1
2μ◦HpHm

(
1 − 2Hp

Hm

)
(7.16b)

c) Adding ehy2′ and ehy2′′ , we obtain:

ehy = ehy2′ + ehy2′′

= 1
3μ◦H

2
p + 1

2μ◦HpHm

(
1 − 2Hp

Hm

)

ehy = 1
2μ◦HpHm

(
1 − 4Hp

3Hm

)
(Hm≥2Hp) (7.14b)

d) We may simply add Eq. 7.13b (ehy for He =0→Hm) and Eq. 7.14b:

ehy = 1
2μ◦HpHm

(
1 − 2Hp

3Hm

)
+ 1

2μ◦HpHm

(
1 − 4Hp

3Hm

)

ehy = μ◦HpHm

(
1 − Hp

Hm

)
(Hm≥2Hp) (7.15c)

e) At Hm =2Hp, ehy may be given by either Eqs. 7.15b (p. 419) or 7.15c:

ehy = 1
2μ◦HpHm

[
1 − 2Hp

3Hm
+ 1

12

(
Hm

Hp

)2 ]
(7.15b)

= μ◦H
2
p

(
1 − 1

3
+

4
12

)
= μ◦H

2
p

ehy = μ◦HpHm

(
1 − Hp

Hm

)
(7.15c)

= 2μ◦H
2
p

(
1 − 1

2

)
= μ◦H

2
p
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DISCUSSION 7.1: Hysteresis Energy Density—
Magnetized Bean Slab (Cases 4–6)

Once exposed to an external field, a virgin Bean slab is magnetized even after the
field is reduced to 0—see the “square-dot” lines in Figs. 7.4a, 7.4b, and 7.4c.

For a magnetized Bean slab in Case 4, He =0→Hm. −M(He) is given by:

“Small” (He =0→Hm)

−M(He) = He −
H2

e +2HmHe−H2
m

4Hp
(7.17a)

“Medium” (He =0→2Hp−Hm)

−M(He) = − 1
2Hp + (Hm + He) −

(Hm + He)2

4Hp
(7.17b)

“Medium” (He =2Hp−Hm→Hm) & “Large” (He =0→Hm)

−M(He) = 1
2Hp (5.6)

Similarly, for Case 5, He =Hm→0, −M(He) is one of the functions below:

“Small” (He =Hm→0)

−M(He) = He +
H2

e +2HmHe−H2
m

4Hp
(7.18)

“Medium” (He =Hm→0) & “Large” (He =Hm→Hm−2Hp)

−M(He) = 1
2Hp − (Hm − He) +

(Hm − He)2

4Hp
(5.7a)

“Large” (He =Hm−2Hp→0)

−M(He) = − 1
2Hp (5.7b)

Figure 7.13 shows −M(He) plots over the field range from −Hm to Hm. The dash-
dotted, dashed, and solid lines correspond, respectively, to “small,” “medium,” and
“large” field excursions, each applicable to Case 6.

−M(He)

1
2
Hp

He−2Hp −Hp Hp 2Hp

− 1
2
Hp

Fig. 7.13 −M(He) plots from −Hm to Hm: dash-dotted; dashed; and solid lines
correspond, respectively, to “small,” “medium,” and “large” field excursions.
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DISCUSSION 7.1: Hysteresis Energy Density—
Magnetized Bean Slab (Cases 4–6) (continuation)

Case 4—“Small” The same approach used in PROBLEM 7.1 may be used here,
where Ez(x) dt is given by Eq. S1.1b:

Ez(x) dt = μ◦(x+ − x) dHe (S1.1b)

Here, as noted in the Fig. 7.4 caption, x+ =(Hm+He)/2Jc, rather than x+ =He/Jc

as in PROBLEM 7.1. Equation S1.1b leads to Eq. S1.2c:

ehy =
μ◦Jc

a

∫ Hm

0

(
x+

2 − x+
2

2

)
dHe (S1.2c)

Then, inserting x+ =(Hm+He)/2Jc into Eq. S1.2c, we have:

ehy =
μ◦Jc

2a

∫ Hm

0

(
Hm + He

2Jc

)2

dHe

=
μ◦

8Hp

∫ Hm

0

(H2
m + 2HmHe + H2

e ) dHe

ehy =
7μ◦H3

m

24Hp
(0≤Hm≤Hp) (7.19a)

Case 4—“Medium” As may be inferred from Fig. 7.4b, when He reaches such
that He +Hm = 2Hp, i.e., He = 2Hp −Hm (remember here Hp ≤ Hm ≤ 2Hp),
Hs(x)=He−Jcx throughout the slab (of course, from x=0 to x=a) and Ez(x) is
given simply by Eq. S2.2 of Solution to PROBLEM 7.2:

Ez(x) = μ◦
dHe

dt
(a − x) (S2.2)

Until He = 2Hp−Hm, as may be inferred from Fig. 7.4b, He penetrates only to
x+. Thus, ehy must be computed over two field ranges, He = 0→ 2Hp−Hm and
He =2Hp−Hm→Hm, with Ez(x) dt given, respectively, by Eq. S1.1b and Eq. S2.2:

ehy =
μ◦Jc

2a

[∫ 2Hp−Hm

0

(
Hm + He

2Jc

)2

dHe +
∫ Hm

2Hp−Hm

a2 dHe

]

=
μ◦

8Hp

∫ 2Hp−Hm

0

(H2
m + 2HmHe + H2

e ) dHe + 1
2μ◦Hp

∫ Hm

2Hp−Hm

dHe

=
(

1
3μ◦H

2
p − μ◦H3

m

24Hp

)
+ (μ◦HpHm − μ◦H

2
p )

Thus:

ehy = μ◦HpHm

[
1 − 2Hp

3Hm
− 1

24

(
Hm

Hp

)2
]

(Hp≤Hm≤2Hp) (7.19b)

Note that Eqs. 7.19a and 7.19b, as expected, agree at Hm =Hp: ehy =7μ◦H2
p/24.
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DISCUSSION 7.1: Hysteresis Energy Density—
Magnetized Bean Slab (Cases 4–6) (continuation)

Case 4—“Large” As may be inferred from Fig. 7.4c, the field penetrates the
slab completely over the entire field range. Thus:

ehy =
μ◦Jc

2a

(∫ Hm

0

a2 dHe

)
= 1

2μ◦Hp

∫ Hm

0

dHe

ehy = 1
2μ◦HpHm (Hm≥2Hp) (7.19c)

Note that Eqs. 7.19b and 7.19c, as expected, agree at Hm =2Hp: ehy =μ◦H2
p .

Case 5 Comparing Fig. 7.4 with Fig. 7.3 for Case 2, we note that the Hs(x)
profiles for Case 5 for “small,” “medium,” and “large” fields are identical to the
respective Hs(x) profiles for Case 2; therefore, the ehy’s for Case 5 are identical to
the Case 2 counterparts, given, respectively, by Eq. 7.14a (p. 415) for “small” and
“medium,” and Eq. 7.14b (p. 422) for “large.”

Case 6—“Small” ehy is obviously twice the sum of the ehy’s given by Eqs. 7.19a
and 7.14a (p. 415) valid for Case 2, “small.” Thus, we have:

ehy = 2 ×
(

7μ◦H3
m

24Hp
+

μ◦H3
m

24Hp

)

ehy =
2μ◦H3

m

3Hp
(0≤Hm≤Hp) (7.20a)

Of course, because here the field goes through one complete cycle, we may derive
ehy of Eq. 7.20a by applying Eq. 7.4b. Because −M(He) is antisymmetric, the
integral between −Hm and Hm is equal to twice the integral between 0 and Hm.
Thus:

ehy = μ◦

∮
−M(He) dHe (7.4b)

= 2μ◦

∫ Hm

0

−M(He) dHe

= 2μ◦

∫ Hm

0

{
− [M(He)]He=0→Hm + [M(He)]He=Hm→0

}
dHe (7.21)

Inserting M(He) given by Eqs. 7.17a and 7.18 into Eq. 7.21, we have:

ehy = 2μ◦

∫ Hm

0

[ (
He −

H2
e + 2HmHe − H2

m

4Hp

)

−
(
He +

H2
e − 2HmHe − H2

m

4Hp

)]
dHe

= 2μ◦

∫ Hm

0

(
− H2

e

2Hp
+

H2
m

2Hp

)
dHe = 2μ◦

(
− H3

m

6Hp
+

H3
m

2Hp

)
Hence:

ehy =
2μ◦H3

m

3Hp
(0≤Hm≤Hp) (7.20a)
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DISCUSSION 7.1: Hysteresis Energy Density—
Magnetized Bean Slab (Cases 4–6) (continuation)

Case 6—“Medium” Similarly, ehy is twice the sum of ehy’s given by Eqs. 7.19b
valid for Case 4 and 7.14a (p. 415) valid for Case 2 (and Case 5):

ehy = 2 ×
{

μ◦HpHm

[
1 − 2Hp

3Hm
− 1

24

(
Hm

Hp

)2
]

+
μ◦H3

m

24Hp

}

ehy = 2μ◦HpHm

(
1 − 2Hp

3Hm

)
(Hp≤Hm≤2Hp) (7.20b)

We may also derive Eq. 7.20b above from Eq. 7.21, the equivalent of Eq. 7.4a.

ehy = −2μ◦

∫ Hm

0

{
[M(He)]He=0→Hm

− [M(He)]He=Hm→0

}
dHe (7.21)

Because −M(He) is given by Eq. 7.17b for He = 0 → 2Hp−Hm and by Eq. 5.6
for He = 2Hp−Hm → Hm, the M(He) dHe integral of Eq. 7.21 consists of three
components. With Eqs. 7.17b, 5.6, and 5.7a into Eq. 7.21, we have:

ehy = 2μ◦

{∫ 2Hp−Hm

0

[
− 1

2Hp + (Hm+He) −
(Hm+He)2

4Hp

]
dHe

+
∫ Hm

2Hp−Hm

1
2Hp dHe −

∫ Hm

0

[
1
2Hp − (Hm−He) +

(Hm−He)2

4Hp

]}
dHe

= 2μ◦

{∫ 2Hp−Hm

0

[
− 1

2Hp + Hm+He −
H2

m

4Hp
− HmHe

2Hp
− H2

e

4Hp

]
dHe

+ Hp(Hm−Hp) −
∫ Hm

0

[
1
2Hp − Hm + He +

H2
m

4Hp
− HmHe

2Hp
+

H2
e

4Hp

]}
dHe

= 2μ◦

[ (
1
3H2

p + 1
2HpHm − 1

2H2
m +

H3
m

12Hp

)

+ Hp(Hm−Hp) −
(

1
2HpHm − 1

2H2
m +

H3
m

12Hp

) ]

= 2μ◦
(
− 2

3H2
p + HpHm

)

Thus:

ehy = 2μ◦HpHm

(
1 − 2Hp

3Hm

)
(Hp≤Hm≤2Hp) (7.20b)
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DISCUSSION 7.1: Hysteresis Energy Density—
Magnetized Bean Slab (Cases 4–6) (continuation)

Case 6—“Large” Here too ehy is twice the sum of the ehy’s given by Eqs. 7.19c
valid for Case 4 and 7.14b (p. 422) valid for Case 2 (and Case 5):

ehy = 2 ×
[

1
2μ◦HpHm + 1

2μ◦HpHm

(
1 − 4Hp

3Hm

)]

ehy = 2μ◦HpHm

(
1 − 2Hp

3Hm

)
(Hm≥2Hp) (7.20c)

Equation 7.20c may also be derived from Eq. 7.21. Here too, although −M(He) is
given by Eq. 5.6 for the entire field range in the increasing-field sequence (Case 4),
because in the decreasing-field sequence (Case 5) −M(He) is given by Eq. 5.7a in
the range He =Hm→Hm−2Hp and by Eq. 5.7b in the range He =Hm−2Hp→0,
the M(He) dHe integral (Eq. 7.21) consists of three components:

ehy = 2μ◦

∫ Hm

0

{
− [M(He)]He=0→Hm + [M(He)]He=Hm→0

}
dHe (7.21)

= 2μ◦

{∫ Hm

0

1
2Hp dHe

−
∫ Hm

Hm−2Hp

[
1
2Hp − (Hm−He) +

(Hm−He)2

4Hp

]
−

∫ Hm−2Hp

0

(
− 1

2Hp

)}
dHe

= 2μ◦

[
Hp(Hm−Hp)

+
∫ Hm

Hm−2Hp

(
− 1

2Hp + Hm − H2
m

4Hp
− He +

HmHe

2Hp
− H2

e

4Hp

)
dHe

]

= 2μ◦
[
Hp(Hm−Hp) + 1

3H2
p

]
ehy = 2μ◦HpHm

(
1 − 2Hp

3Hm

)
(Hm≥2Hp) (7.20c)

Note that for Hm�Hp, the condition which is generally met in most applications,
ehy is proportional to Hm; because Hp =Jca, ehy also increases with Jc and a:

ehy = 2μ◦HpHm (Hm�Hp) (7.20d)

= 2μ◦JcaHm (Hm�Hp) (7.20e)

Answer to TRIVIA 7.1

Sugar (1, in J); flea (10−2); LTS magnet (10−5); snail (10−7).
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DISCUSSION 7.2: Bean Slab Carrying DC Current

When transport current, It, flows uniformly in the z direction in a Bean slab of
2a width, the y-directed magnetic field distribution within the slab, Hs(x), no
longer has mirror symmetry about the slab’s midpoint, as illustrated in Fig. 5.5
(CHAPTER 5). Note that It is the current per unit length in the y direction; it has
the unit of ampere/meter [A/m]. Define i as the normalized transport current:
i = It/Ic, where Ic = 2aJc [A/m]. We shall examine Hs(x) distributions in a
current-carrying Bean slab exposed to an external magnetic field, He(t).

Cases 1i and 2i

We begin with time sequences Cases 1i and 2i—given by Eq. 7.5. Graphs of Hx(t)
plots for selected instances in Cases 1i and 2i are shown in Figs. 7.14(a)–(d). In

Hs(x)

Hp Hp

Hm+Hpi

Hpi

Hm−Hpi
0

−Hpi

0 a 2a

(a)

Hs(x)
Hm+Hpi

2Hp 2Hp

Hm−Hpi

Hp H∗
m+Hpi

Hpi
H∗

m−Hpi

0

−Hpi

0 a 2a

(c)

Hs(x)

Hp Hp

Hm+Hpi

Hpi

Hm−Hpi
0

−Hpi

0 a 2a

(b)

Hs(x)
Hm+Hpi

2Hp 2Hp

Hm−Hpi

Hp Hp

Hpi

0

−Hpi

0 a 2a

(d)

Fig. 7.14 Graphs of Hs(x) plots for a Bean slab of width 2a carrying DC transport
current of It(=2iHp), subjected to He(t) of Cases 1i and 2i, where Hm is the maximum
external field. In each graph, the dotted and dashed lines correspond, respectively, to
Hs(x) at the start and the end of a field sequence. Graphs (a) and (b), respectively Cases
1i and 2i, are for Hm < Hp(1−i); graphs (c) and (d), respectively Cases 1i and 2i, are
Hm ≥Hp(1−i). The dash-dot-dot lines in (c) and (d) represent Hs(x) at the end of a
field sequence when Hm =Hp(1−i)≡H∗

m.
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DISCUSSION 7.2: Bean Slab Carrying DC Current (continuation)

each graph the dotted and dashed lines correspond to Hs(x), respectively, at the
start (He = 0) and the end (He = Hm) of each field sequence. Note that the
dotted lines in graphs (a) and (b) give Hs(x) after the application of It to a virgin
slab; the light dashes are Hs(x) plots at He(t) = Hp and 2Hp in the absence of
transport current. Graphs (a)–(d) are for Cases 1i and 2i; graphs (a) and (b)
are for Hm < Hp(1− i), while graphs (c) and (d) are for Hm > Hp(1− i). The
dash-dot-dot lines in (c) and (d) correspond to Hs(x) at the end of each sequence
when Hm =Hp(1−i)≡H∗

m.

Cases 4i and 5i—“Small” Field Excitation

Hs(x)

Hp Hp

Hm+Hpi

↑He+Hpi

Hpi

Hm−Hpi

↑He−Hpi

−Hpi

−Hp −Hp

x ξ

0 x+ a ξ+ 0

(a)

Hs(x)

Hp Hp

↓He+Hpi
Hpi

↓He−Hpi
−Hpi

−Hp −Hp

x ξ
0 x+ ξ+ 0

(b)

We now examine Hs(x) plots for Cases 4i and 5i, shown in Fig. 7.15, in which
Hm, the maximum amplitude of external field He(t), is “small,” specifically,
Hm≤Hp(1 − i). Note that, as evident from the figure, because the field distribu-
tion is asymmetric with respect to the midpoint of the slab, later when hysteresis
energy densities are computed, the hor-
izontal distance is measured from either
the left-hand end, x=0 (x-axis) or the
right-hand end ξ = 0 (ξ-axis), which is
x=2a—either way the field distribution
is designated by Hx(x). Graph (a) is for
Case 4i, in which the external field is in-
creasing (↑He), i.e., He(t)=0→Hm, af-
ter the field sequence He(t)=−Hm→0;
graph (b) is for Case 5i, in which the
external field is decreasing (↓He), i.e.,
He(t) = Hm → 0. In each graph, the
dotted and dashed lines correspond to
Hs(x), respectively, at the start and the
end of a field sequence; the solid lines
are for Hs(x) at 0 <↑He <Hm (Case 4i)
or Hs(x) at Hm >↓He >0 (Case 5i).

Fig. 7.15 Hs(x) plots for Cases 4i and
5i, in which Hm ≤Hp(1−i). Graph (a)
is for Case 4i, i.e., He(t)=0→Hm, after
the field sequence from −Hm to 0; graph
(b) is for Case 5i, i.e., He(t) = Hm → 0.
In each graph the dotted and dashed
lines correspond to Hs(x), respectively,
at the start and end of each sequence;
the solid lines correspond to Hs(x) for
↑He (Case 4i) or ↓He (Case 5i) between
0 and Hm. Note that the horizonal co-
ordinate is either x or ξ, measured, re-
spectively, from the left-hand end or the
right-hand end of the slab.
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DISCUSSION 7.2: Bean Slab Carrying DC Current (continuation)

Cases 4i and 5i—“Large” Field Excitation

Hs(x)

Hm+Hpi

2Hp 2Hp

Hm−Hpi

↑He+Hpi

Hp Hp

↑He−Hpi
Hpi

0 0

−Hpi

x ξ
0 �∗ a 0

(a)

Hs(x)

Hm+Hpi

2Hp 2Hp

↓He+Hpi
Hm−Hpi

Hp H∗
m+Hpi

↓He−Hpi ↓H∗
e +Hpi

H∗
m−Hpi

↓H∗
e −Hpi

Hpi

−Hpi

x ξ
0 x+ a �∗ ξ+ 0

(b)

Next, we examine Hs(x) plots for Cases 4i and 5i, shown in Fig. 7.16, in which
Hm is “large,” i.e., Hm ≥ 2Hp(1 − i). Again, both x- and ξ-axes are used. In
each graph, the dotted and dashed lines correspond to Hs(x), respectively, at the
start and end of a field sequence. Graph (a) is for Case 4i after the field sequence
He(t) =−Hm → 0. From the beginning field penetrates the slab fully, from both
sides, Hm > Hp(1−i). Here, �∗ = a(1−
i) on the x-axis or �∗ = a(1+i) on the
ξ-axis; the solid lines are for Hs(x) at
0 <↑He <Hm, and this field distribution
remains the same for 0≤He≤Hm.

Graph (b) is for Case 5i, a decreasing
field sequence, in which ↓He does not
penetrate the slab fully until it is de-
creased from Hm to H∗

m, which is given
by: H∗

m = Hm −2Hp(1− i). Hs(x) at
↓He =H∗

m is drawn by the dash-dot-dot
lines; Hs(0)=H∗

m−Hpi, and Hs(ξ=0)=
H∗

m+Hpi; the dash-dot lines in the graph
correspond to Hs(x) for H∗

m≤He≤ Hm.

For ↓ H∗
e ≡ He ≤ H∗

m, the field pene-
tration is full, and the solid lines corre-
spond to ↓H∗

e for the remainder of the
field sequence. Here, as may be inferred
from graph (b), �∗ = a(1+i) on the x-
axis, and �∗=a(1−i) on the ξ-axis.

Note that Hs(x) under full field pene-
tration in Case 5i is a mirror image of
that in Case 4i.

Fig. 7.16 Hs(x) plots for Cases 4i and
5i, in which Hm ≥ 2Hp(1− i). Graph
(a) for Case 4i, i.e., He(t)=0→Hm, af-
ter the field sequence He(t)=−Hm→0;
graph (b) for Case 5i, i.e., He(t)=Hm→
0. In each graph the dotted and dashed
lines correspond to Hs(x), respectively,
at the start and end of a field sequence.
Note that in Case 5i field penetration is
not full from Hm to H∗

m≡Hm−2Hp(1−i);
it is full for the remainder of the decreas-
ing field sequence.
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PROBLEM 7.4: Hysteresis energy density—Bean slab with
DC transport current (Cases 4i–6i)

Here we study hysteresis energy dissipation of a Bean slab carrying DC transport
current It (per unit length in the y direction) subjected to a uniform magnetic field,
He(t), applied in the y direction, under time sequences of Cases 4i–6i. As discussed
above, It may also be expressed as Hpi, where i ≡ It/Ic. Use the JcE(x) dt
approach, i.e., Eq. 7.3a, for deriving ehy expressions below.

a) Show that the hysteresis energy density for Case 4i, He = 0 → Hm, for a
“small” field excursion, i.e., Hm≤Hp(1−i), is given by:

ehy =
7μ◦H3

m

24Hp
[0 ≤ Hm ≤ Hp(1 − i)] (7.22a)

b) Show that the hysteresis energy density for Case 5i, He = Hm → 0, after a
“small” field excursion, i.e., Hm≤Hp(1−i), is given by:

ehy =
μ◦H3

m

24Hp
[0 ≤ Hm ≤ Hp(1 − i)] (7.22b)

c) Show that the hysteresis energy density for Case 6i, He = 0 → Hm → 0 →
−Hm→0, after a “small” field excursion, i.e., Hm≤Hp(1−i), is given by:

ehy =
2μ◦H3

m

3Hp
[0 ≤ Hm ≤ Hp(1 − i)] (7.22c)

Note that ehy given by Eq. 7.22c is identical to ehy given by Eq. 7.20a (p. 426)
for a slab carrying no transport current: for a “small” field excursion, trans-
port current has no effect on hysteresis dissipation.

d) Show that the hysteresis energy density for Case 4i, He = 0 → Hm, for a
“large” field excursion, i.e., Hm≥2Hp(1−i), is given by:

ehy = 1
2μ◦HpHm(1 + i2) [Hm ≥ 2Hp(1 − i)] (7.23a)

e) Show that the hysteresis energy density for Case 5i, He = Hm → 0, after a
“large” field excursion, i.e., Hm≥2Hp(1−i), is given by:

ehy = 1
2μ◦HpHm(1 + i2) − 2

3μ◦H
2
p (1 − i3) [Hm ≥ 2Hp(1 − i)] (7.23b)

f) Show that the hysteresis energy density for Case 6i, He = 0 → Hm → 0 →
−Hm→0, after a “large” field excursion, i.e., Hm≥2Hp(1−i), is given by:

ehy = 2μ◦HpHm(1 + i2) − 4
3μ◦H

2
p (1 − i3) [Hm ≥ 2Hp(1 − i)] (7.23c)

g) Show that Eq. 7.23c with i=0—zero transport current—reduces to Eq. 7.20c
(p. 428), an expression for ehy with no transport current in the slab.



AC AND OTHER LOSSES—PROBLEMS & DISCUSSIONS 433

Solution to PROBLEM 7.4

a) We first derive ehyx, the hysteresis energy density in the “x” side of the slab,
Hs(x); Hs(0) =↑He−Hpi, as shown in Fig. 7.15a. Inside the slab between x = 0
and x=x+, with x+ =(Hm+He)/2Jc, Ez(x) due to this field change, dHe/dt, may
be given by:

Ez(x) = μ◦
dHe

dt
(x+ − x) (S4.1a)

Ez(x) dt = μ◦(x+ − x) dHe (S4.1b)

Combining Eqs. S4.1b and 7.3a, we have for the half-slab, 0≤x≤a:

ehyx =
1
2a

∫ a

0

[∫
JcE(x) dt

]
dx (7.3a)

=
μ◦Jc

2a

∫ Hm

0

[∫ x+

0

(x+ − x) dx

]
dHe (S4.2a)

Inserting x+ =(Hm+He)/2Jc into Eq. S4.2a and performing the integration, we
obtain:

ehyx =
7μ◦H3

m

48Hp
(S4.2b)

Next, we derive ehyξ, the hysteresis energy density in the “ξ” side of the slab,
Hs(ξ); Hs(0)=↑He+Hpi, as shown in Fig. 7.15a. With ξ+ =(Hm+He)/2Jc, it is
quite clear that ehyξ =ehyx and hence ehy =2ehyx. Thus:

ehy =
7μ◦H3

m

24Hp
[0 ≤ Hm ≤ Hp(1 − i)] (7.22a)

b) We consider the “x” side of the slab. Similar to Eq. S4.2a, ehyx is given by:

ehyx =
μ◦Jc

2a

∫ 0

Hm

[∫ x+

0

(x − x+) dx

]
dHe (S4.3a)

where, in this decreasing field sequence, x+ =(Hm−He)/2Jc. Thus:

ehyx = −μ◦Jc

4a

∫ 0

Hm

x2
+dHe = − μ◦

16Hp

∫ 0

Hm

(Hm − He)2dHe (S4.3b)

=
μ◦H3

m

48Hp
(S4.3c)

Again, the hysteresis energy density in the ξ side of the slab, ehyξ, is the same as
ehyx. Therefore ehy for this case is twice ehyx given by Eq. S4.3c:

ehy =
μ◦H3

m

24Hp
[0 ≤ Hm ≤ Hp(1 − i)] (7.22b)
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Solution to PROBLEM 7.4 (continuation)

c) ehy for Case 6i is the sum of ehy for Case 4i and ehy for Case 5i multiplied by 2
to include those for the field sequences He(t)=0→−Hm and He(t)=−Hm→0:

ehy = 2 ×
(

7μ◦H3
m

24Hp
+

μ◦H3
m

24Hp

)
(S4.4)

From Eq. S4.4 we obtain:

ehy =
2μ◦H3

m

3Hp
[0 ≤ Hm ≤ Hp(1 − i)] (7.22c)

Note that, as stated above, for a “small” field excursion, i.e., Hm≤Hp(1 − i), ehy

is independent of transport current flowing in the slab.

d) We first consider the “x” side of the slab. Similar to Eq. S4.2a, we have:

ehyx =
μ◦Jc

2a

∫ Hm

0

[∫ �∗

0

(�∗ − x) dx

]
dHe (S4.5a)

where, measured from x=0, �∗=a(1−i). Thus:

ehyx =
μ◦Jca

2(1−i)2

4a

∫ Hm

0

dHe = 1
4μ◦HpHm(1 − i)2 (S4.5b)

Next, we consider the “ξ” side of the slab. Similar to Eq. S4.2a, we have:

ehyξ =
μ◦Jc

2a

∫ Hm

0

[∫ �∗

0

(�∗ − ξ) dξ

]
dHe (S4.6a)

where, measured from ξ=0, �∗=a(1+i). Thus:

ehyξ =
μ◦Jca

2(1+i)2

4a

∫ Hm

0

dHe = 1
4μ◦HpHm(1 + i)2 (S4.6b)

Because ehy =ehyx+ehyξ, combining Eqs. S4.5b and S4.6b, we obtain:

ehy = 1
2μ◦HpHm(1 + i2) [Hm ≥ 2Hp(1 − i)] (7.23a)

e) For a decreasing field sequence, Case 5i, we first consider the range between
Hm and Hm∗≡Hm−2Hp(1−i). Considering the “x” side of the slab, we have:

ehyx =
μ◦Jc

2a

∫ H∗
m

Hm

[∫ x+

0

(x − x+) dx

]
dHe (S4.7a)

where, in this decreasing field sequence, x+ =(Hm−He)/2Jc. Thus:

ehyx =
μ◦Jc

4a

∫ Hm

H∗
m

(
Hm − He

2Jc

)2

dHe (S4.7b)

=
μ◦

16Hp
(H2

mHe − HmH2
e + 1

3H3
e )

∣∣∣Hm

Hm−2Hp(1−i)

= 1
6μ◦H

2
p (1 − i)3
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Solution to PROBLEM 7.4 (continuation)

From Fig. 7.16a it is quite clear that ehyx = ehyξ, and thus for He = Hm →
Hm−2Hp(1−i), ehy is given by:

ehy = 1
3μ◦H

2
p (1 − i)3 (S4.7c)

Next, we consider the sequence He =H∗
m→0. In the “x” side, we have:

ehyx =
μ◦Jc

2a

∫ 0

H∗
m

[∫ x+

0

(x − x+) dx

]
dHe = −μ◦Hp(1+i)2

4

∫ 0

H∗
m

dHe

= 1
4μ◦Hp(1+i)2[Hm − 2Hp(1 − i)]

= 1
4μ◦HpHm(1 + i)2 − 1

2μ◦H
2
p (1 + i)2(1 − i) (S4.8a)

In the ξ side we find ehyξ to be very similar to that given by Eq. S4.8a:

ehyξ = 1
4μ◦HpHm(1 − i)2 − 1

2μ◦H
2
p (1 − i)3 (S4.8b)

In the range from Hm−2Hp(1− i) to 0, we have: ehy = ehyx +ehyξ; combining
Eqs. S4.8a and S4.8b, we obtain:

ehy = 1
2μ◦HpHm(1 + i2) − μ◦H

2
p (1 − i)(1 + i2) (S4.8c)

ehy for Case 5i is given by the sum of those given by Eqs. S4.7c and S4.8c:

ehy = 1
2μ◦HpHm(1 + i2) − 2

3μ◦H
2
p (1 − i3) [Hm ≥ Hp(1 − i)] (7.23b)

f) ehy for Case 6i, Hm≥Hp(1−i), is the sum of ehy for Case 4i and ehy for Case 5i
multiplied by 2 to include those for the field sequences He(t) = 0 → −Hm and
He(t)=−Hm→0:

ehy = 2 ×
[

1
2μ◦HpHm(1 + i2) + 1

2μ◦HpHm(1 + i2) − 2
3μ◦H

2
p (1 − i3)

]
(S4.9)

From Eq. S4.9 we obtain:

ehy = 2μ◦HpHm(1 + i2) − 4
3μ◦H

2
p (1 − i3) [Hm ≥ Hp(1 − i)] (7.23c)

g) By inserting i=0 to Eq. 7.23c, we find:

ehy = 2μ◦HpHm − 4
3μ◦H

2
p (S4.10)

We note that Eq. S4.10 is equivalent to Eq. 7.20b:

ehy = 2μ◦HpHm

(
1 − 2Hp

3Hm

)
(7.20b)
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PROBLEM 7.5: Self-field hysteresis energy density—Bean slab

When a Bean slab carries a cyclic AC transport current, I(t), it dissipates energy
because of a cyclic AC surface (external) field, He(t), generated on the slab by
the transport current. This dissipation, per unit volume, is known as self-field
hysteresis energy density, esf . The current-time sequence is given by:

I(t) = 0∗(Virgin slab)→Im→0→−Im→0→Im→0→−Im→0 (7.25)

CASE1sf︷ ︸︸ ︷
︸ ︷︷ ︸
CASE2sf︸ ︷︷ ︸

CASE3sf

In Eq. 7.25 Im is the amplitude of the cyclic AC current. Note that in Cases 1sf–3sf
considered here the slab is no longer virgin. Figure 7.17 shows Hs(x) plots for a
Bean slab of width 2a, in which graphs (a) and (b) correspond, respectively, to
Cases 1sf, i(t)=0→ im, and 2sf, i(t)= im→0, where i≡I/Ic≤ im≡Im/Ic≤1. As
seen in each graph, Hs(x) is antisymmetric about the slab’s midpoint: to derive
expressions of ehy below, consider only one half of the slab, from x=0 to x=a.

a) Applying Eq. 7.3a (p. 402), show that esf for Case 1sf is given by:

esf = 7
24μ◦H

2
p i3m (7.26a)

b) Applying Eq. 7.3a, show that esf for Case 2sf is given by:

esf = 1
24μ◦H

2
p i3m (7.26b)

c) Applying Eq. 7.3a, show that esf for Case 3sf is given by:

esf = 2
3μ◦H

2
p i3m (7.26c)

d) Derive Eq. 7.26c from Eq. 7.20a (p. 426), ehy valid for Case 6 (“small”).

Hp Hp

Hpim Hpim

↑Hpi

−↓Hpi

−Hpim −Hpim

−Hp −Hpx

0 x+ a

(a)

Hp Hp

Hpim Hpim

↓Hpi

−↑Hpi

−Hpim −Hpim

−Hp −Hpx

0 x+ a

(b)

Fig. 7.17 Hs(x) plots for Cases 1sf and 2sf, in which i≡ I/Ic ≤ im ≡ Im/Ic ≤1. Graph
(a) for Case 1sf; graph (b) for Case 2sf. In each graph the dotted and dashed lines
correspond to Hs(x), respectively, at the start and end of a current sequence.
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Solution to PROBLEM 7.5

a) For Case 1sf we apply Eq. 7.3a to one half of the slab, 0≤x≤a, as transport
current is increased from 0 to im and the self field at x=0, Hsf , is decreased from
0 to−Hpim:

esf x =
μ◦Jc

2a

∫ −Hpim

0

[∫ x+

0

(x − x+) dx

]
dHsf (S5.1a)

=
μ◦Jc

4a

∫ −Hpim

0

(−x2
+) dHsf (S5.1b)

Substituting Hsf =−Hpi into Eq. S5.1b and, with x+ =Hp(im+i)/2Jc, we obtain:

esf x =
μ◦H2

p

16

∫ im

0

(i2m + 2imi + i2)di (S5.2a)

= 7
48μ◦H

2
p i3m (S5.2b)

Because the same dissipation energy density is generated over the other half of the
slab, a≤x≤2a, esf for Case 1sf is twice esf x:

esf = 7
24μ◦H

2
p i3m (7.26a)

b) Similarly to Case 1sf, for Case 2sf we have, with x+ =Hp(im−i)/2Jc:

esf x =
μ◦Jc

2a

∫ 0

−Hpim

[∫ x+

0

(x+ − x) dx

]
dHsf (S5.3a)

=
μ◦H2

p

16

∫ 0

im

(i2m − 2imi + i2)di (S5.3b)

= 1
48μ◦H

2
p i3m (S5.3c)

Thus, esf for Case 2sf is twice esf x given by Eq. S5.3c:

esf = 1
24μ◦H

2
p i3m (7.26b)

c) For Case 3sf ehy is the sum of those of Cases 1sf and 2sf multiplied by 2,
because Case 3sf covers a full cycle, i(t)=0→ im→0→−im→0:

esf = 2 ×
(

7
24μ◦H

2
p i3m + 1

24μ◦H
2
p i3m

)
(S5.4)

Equation S5.4 reduces to:
esf = 2

3μ◦H
2
p i3m (7.26c)
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Solution to PROBLEM 7.5 (continuation)

d) For hysteresis energy density computations the field profiles shown in Fig. 7.17
are identical with those shown in Fig. 7.4a, which correspond to Case 4 (“small”
field), when Hpim in Fig. 7.17 is substituted for Hm. Thus:

ehy =
2μ◦H3

m

3Hp
(7.20a)

=
2μ◦(Hpim)3

3Hp

= 2
3μ◦H

2
p i3m (7.26c)

Tables Summarizing Formulas for AC Losses
Expressions of AC energy density derived above, in PROBLEMS 7.1–7.5 and
DISCUSSIONS 7.1 and 7.2, for Bean slab of width 2a (Fig. 7.1a) as well as those
available in the literature for circular-cross-section conductor (Figs. 7.1b and 7.1c)
and tape (Figs. 7.1d and 7.1e) are summarized in the tables below. Italic equation
numbers are those equations derived by others [1.27, 7.3, 7.5, 7.13, 7.15].

Table 7.3A: Hysteresis energy density, ehy, for Bean slab, no transport current.

Table 7.3B: ehy for Bean slab, with DC transport current.

Table 7.4: Self-field energy density, esf , for Bean slab.

Table 7.5: ehy, for wire and tape, no transport current.

Table 7.6: esf for wire and tape.

Table 7.7: Energy density, eih, for Bean slab, with sinusoidal in-phase current
and field excitation.

Table 7.8: Coupling energy density, epy, for multifilamentary wire under si-
nusoidal, exponential, triangular, or trapezoidal field excitation, as
defined and illustrated in Fig. 7.18.

Table 7.9: Eddy-current energy density, eed, for wire and tape.

Sinusoidal: He(t) = Hm sin(2πt/τm) Exponential: He(t) = Hm exp(−t/τm)

Triangular: Trapezoidal:

Hm

t
2τm

t
τm1 τm2 τm1

Hm

Fig. 7.18 He(t) functions for coupling and eddy-current energy densities.



AC AND OTHER LOSSES—PROBLEMS & DISCUSSIONS 439

Table 7.3A: Hysteresis Energy Density, ehy [J/m3]—Bean Slab (Width: 2a)

No Transport Current

CASE1︷ ︸︸ ︷ CASE4︷ ︸︸ ︷
He(t) = 0∗(Virgin slab)→Hm→0→−Hm→0→Hm→0→−Hm→0 (7.5)︸ ︷︷ ︸

CASE2
︸ ︷︷ ︸
CASE5︸ ︷︷ ︸

CASE3
︸ ︷︷ ︸

CASE6

Case 1

ehy =
μ◦H

3
m

6Hp
(0≤Hm≤Hp) (7.13a)

ehy = 1
2
μ◦HpHm

(
1 − 2Hp

3Hm

)
(Hm≥Hp) (7.13b)

Cases 2 and 5

ehy =
μ◦H

3
m

24Hp
(0≤Hm≤2Hp) (7.14a)

ehy = 1
2
μ◦HpHm

(
1 − 4Hp

3Hm

)
(Hm≥2Hp) (7.14b)

Case 3

ehy =
5μ◦H

3
m

24Hp
(0≤Hm≤Hp) (7.15a)

ehy = 1
2
μ◦HpHm

[
1 − 2Hp

3Hm
+ 1

12

(
Hm

Hp

)2
]

(Hp≤Hm≤2Hp) (7.15b)

ehy = μ◦HpHm

(
1 − Hp

Hm

)
(Hm≥2Hp) (7.15c)

Case 4

ehy =
7μ◦H

3
m

24Hp
(0≤Hm≤Hp) (7.19a)

ehy = μ◦HpHm

[
1 − 2Hp

3Hm
− 1

24

(
Hm

Hp

)2
]

(Hp≤Hm≤2Hp) (7.19b)

ehy = 1
2
μ◦HpHm (Hm≥2Hp) (7.19c)

Case 6

ehy =
2μ◦H

3
m

3Hp
(0≤Hm≤Hp) (7.20a)

ehy = 2μ◦HpHm

(
1 − 2Hp

3Hm

)
(Hp≤Hm≤2Hp) (7.20b)

ehy = 2μ◦HpHm

(
1 − 2Hp

3Hm

)
(Hm≥2Hp) (7.20c)

ehy = 2μ◦HpHm (Hm�Hp) (7.20d)

ehy = 2μ◦JcaHm (Hm�Hp) (7.20e)
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Table 7.3B: Hysteresis Energy Density, ehy [J/m3]—Bean Slab (Width: 2a)

With DC Transport Current It (i=It/Ic)

CASE1i︷ ︸︸ ︷ CASE4i︷ ︸︸ ︷
He(t) = 0∗(Virgin slab)→Hm→0→−Hm→0→Hm→0→−Hm→0 (7.5)︸ ︷︷ ︸

CASE2i
︸ ︷︷ ︸
CASE5i︸ ︷︷ ︸

CASE3i
︸ ︷︷ ︸

CASE6i

Cases 1i–3i

Only Hs(x) profiles for Cases 1i and 2i are studied—see Figs. 7.14 and 7.15.

Case 4i

ehy =
7μ◦H

3
m

24Hp
[0≤Hm≤Hp(1−i)] (7.22a)

ehy = 1
2
μ◦HpHm(1 + i2) [Hm≥2Hp(1−i)] (7.23a)

Case 5i

ehy =
μ◦H

3
m

24Hp
[0≤Hm≤Hp(1−i)] (7.22b)

ehy = 1
2
μ◦HpHm(1 + i2) − 2

3
μ◦H

2
p(1 − i3) [Hm≥2Hp(1−i)] (7.23b)

Case 6i

ehy =
2μ◦H

3
m

3Hp
[0≤Hm≤Hp(1−i)] (7.22c)

ehy = 2μ◦HpHm(1 + i2) − 4
3
μ◦H

2
p(1 − i3) [Hm≥2Hp(1−i)] (7.23c)

Table 7.4: Self-Field Hysteresis Energy Density, esf [J/m3]

Bean Slab (Width: 2a)

CASE1sf︷ ︸︸ ︷
It(t) = 0∗(Virgin slab)→Im→0→−Im→0→Im→0→−Im→0 (7.25)︸ ︷︷ ︸

CASE2sf︸ ︷︷ ︸
CASE3sf

im = Im/Ic

Case 1sf

esf = 7
24

μ◦H
2
p i3m (7.26a)

Case 2sf

esf = 1
24

μ◦H
2
p i3m (7.26b)

Case 3sf

esf = 2
3
μ◦H

2
p i3m [0≤Hm≤Hp(1−i)] (7.26c)
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Table 7.5: Hysteresis Energy Density, ehy [J/m3]—No Transport Current

Wire (Diameter: df ) [1.27, 7.14] & Tape (Width: w; Thickness: δ) [1.27, 7.13]

He‖(t) or He⊥(t) = V irgin 0∗→Hm→0→−Hm→ 0→Hm→0→−Hm→0︸ ︷︷ ︸
HISTORY

︸ ︷︷ ︸
LOSS CYCLE

Wire

Field Parallel to Wire Axis (Fig. 7.1b): Hp≡Jc(df/2)

ehy = 4
3

μ◦H
3
m

Hp
− 2

3

μ◦H
4
m

H2
p

(0≤Hm≤Hp) (7.27a)

ehy = 4
3
μ◦HpHm − 2

3
μ◦H

2
p (Hm≥Hp) (7.27b)

ehy 	 4
3
μ◦HpHm (Hm�Hp) (7.27c)

Field Perpendicular to Wire Axis (Fig. 7.1c): Hp≡Jc(4df/3π)

ehy = 8
3

μ◦H
3
m

Hp
− 4

3

μ◦H
4
m

H2
p

(0≤Hm≤Hp) (7.28a)

ehy = 8
3
μ◦HpHm − 4

3
μ◦H

2
p (Hm≥Hp) (7.28b)

ehy 	 8
3
μ◦HpHm (Hm�Hp) (7.28c)

Tape

Field Parallel to Tape Surface (Fig. 7.1d):* Hp≡Jc(δ/2)

*same as Bean Slab Case 1 (Table 7.3A)

ehy = 2
3

μ◦H
3
m

Hp
(0≤Hm≤Hp) (7.29a)

ehy = 2μ◦HpHm

(
1 − 2Hp

3Hm

)
(Hm≥Hp) (7.29b)

ehy 	 2μ◦HpHm (Hm�Hp) (7.29c)

ehy 	 μ◦JcδHm (Hm�Hp) (7.29d)

Field Perpendicular to Tape Surface (Fig. 7.1e): Hp≡Jc(w/2)

ehy = μ◦HmHp

(w

δ

) [
2

θ
ln(cosh θ) − tanh θ

]
(θ≡Hm/Hp) (7.30a)

ehy 	 1
6
μ◦HmHp

(w

δ

)
θ3 	 1

6
μ◦H

2
m

(
Hm

Hp

)2(w

δ

)
(0≤Hm
Hp) (7.30b)

	 μ◦Hp

(w

δ

)
(Hm − 2Hp ln 2) 	 μ◦HmHp

(w

δ

)
(Hm�Hp) (7.30c)

TRIVIA 7.2 Which of the contemporary American engineers (born 1846–1856)
below was a pigeon fancier?

i) Bell; ii) Edison; iii) Tesla; iv) Westinghouse.
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Table 7.6: Self-Field Energy Density, esf [J/m3]—Wire & Tape [1.27, 7.14]

It(t) = V irgin 0∗→Im→0→−Im→ 0→Im→0→−Im→0 (im ≡ Im/Ic)︸ ︷︷ ︸
HISTORY

︸ ︷︷ ︸
LOSS CYCLE

Wire (Diameter: df ; Figs. 7.1b & 7.1c)

esf =
μ◦IcJc

π

[
im − 1

2
i2m + (1−im) ln(1−im)

]
(7.31a)

	 μ◦IcJc

π

(
i3m
6

+
i4m
12

)
	 μ◦JcI

3
m

6πI2
c

∝ I3
m

Jcd4
f

(0≤ im
1) (7.31b)

Tape (Width: w; Thickness: δ; Figs. 7.1d & 7.1e)

esf =
μ◦IcJc

π

[
(1−im) ln(1−im) + (1+im) ln(1+im) − i2m

]
(7.32a)

	 μ◦IcJc

π

(
i4m
6

+
i6m
15

)
	 μ◦IcJc

π

(
i4m
6

)
∝ I4

m

J2
c w3δ3

(0≤ im
1) (7.32b)

It(t) = V irgin 0∗→Im→ 0→Im→0︸ ︷︷ ︸
HISTORY

︸ ︷︷ ︸
LOSS CYCLE

Wire (Diameter: df ; Figs. 7.1b & 7.1c)

esf =
μ◦IcJc

π

[
4im − i2m + 4(2−im) ln

(
2−im

2

)]
(7.33a)

	 μ◦IcJc

π

(
i3m
6

+
i4m
24

)
	 μ◦JcI

3
m

6πI2
c

∝ I3
m

Jcd4
f

(0≤ im
1) (7.33b)

Table 7.7: Energy Density, eih [J/m3]—Bean Slab (Width: 2a) [7.5]

In-Phase Sinusoidal Transport Current & Field

It(t)=Im sin(2πft); He(t)=Hm sin(2πft)

eih = 2μ◦H
2
p

(
H2

p i3m
2H2

m

+ im

)
(0≤Hm≤Hp) (7.34a)

	 μ◦H
4
p

H2
m

i3m ∝ I3
mIc

H2
m

(0≤Hm
Hp) (7.34b)

eih = 2μ◦H
2
p

(
Hm

3Hp
+

Hpi2m
Hm

)
(0≤Hm≤Hp) (7.35a)

eih = 2μ◦H
2
p

[
Hp(3+i2m)

3Hm
− 2H2

p(1−i3m)

3H2
m

+
6H3

p i2m(1−im)2

3H2
m(Hm−Hpim)

+
6H3

p i2m(1−im)2

3H2
m(Hm−Hpim)

− 4H4
p i2m(1−im)3

3H2
m(Hm−Hpim)2

]
(Hm≥Hp) (7.35b)

	 2μ◦H
3
p

3Hm
(3+i2m) ∝ I3

c

Hm
(3+i2m) (Hm � Hp) (7.35c)
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Table 7.8: Coupling Energy Density Over One Period, ecp [J/m3] [7.16]

Wire of Outermost Diameter, Dmf , Enclosing Multifilaments

ecp = 2μ◦H
2
m

[
1+ 1

4

(
πDmf

�p

)2
]

Γ (7.36 )

Sinusoidal: Γ =
2π2τmτcp

τ2
m + 4π2τ2

cp

(7.37a)

Γ	 τm

2τcp
(τm
τcp) (7.37b); Γ	 2π2τcp

τm
(τm�τcp) (7.37c)

Exponential: Γ =
τcp

2(τm + τcp)
(7.38 )

Triangular: Γ =
2τcp

τm

[
1 − 2τcp

τm
tanh

(
τm

2τcp

)]
(7.39a)

Γ	 τm

4τcp
(τm
τcp) (7.39b); Γ	 2τcp

τm
(τm�τcp) (7.39c)

Trapezoidal:

Γ=
τcp

τm1

{
2 +

τcp

τm1

[
1 − e

− τm1
τcp

][
e
− (τm1+τm2 )

τcp −e
− τm2

τcp − 2

]}
(7.40a)

Γ	1−e
− τm2

τcp (τm1 
τcp) (7.40b); Γ	 2τcp

τm1

(τm1 �τcp) (7.40c)

Trapezoidal, Cyclic With a Period of 2(τm1 +τm2)

Γ=
2τcp

τm1

⎧⎪⎪⎨
⎪⎪⎩1 −

(
1 + e

− τm2
τcp

) (
1 − e

− τm1
τcp

)
τm1

τcp

[
1+e

− (τm1+τm2)
τcp

]
⎫⎪⎪⎬
⎪⎪⎭ (7.41a)

Γ	1− τm1

3τcp

(
τm1 
τcp

τm2 �τcp

)
(7.41b); Γ	 2τcp

τm1

(
τm1 �τcp

τm2 
τcp

)
(7.41c)

Table 7.9: Eddy-Current Energy Density, eed and <eed >∗ [J/m3]

Wire (Diameter: d), Under �He(t)= �Hm‖ sin(2πt/τm) or �He(t)= �Hm⊥ sin(2πt/τm)

<eed > =
π2d2(μ◦Hm‖)

2

4ρmτm
(7.42a); <eed > =

π2d2(μ◦He⊥)2

12ρmτm
(7.42b)

Tape (Width: w; Thickness: δ; Figs. 7.1d & 7.1e); λHm≡
√

(δHm‖)2+(wHm⊥)2

Sinusoidal: <eed > =
4π2(μ◦λHm)2

24ρmτm
(7.43a); Exponential: eed =

(μ◦λHm)2

24ρmτm
(7.43b)

Triangular (time-averaged) & Trapezoidal: eed =
(μ◦λHm)2

12ρmτm
(7.43c)

* Time-averaged.
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DISCUSSION 7.3: AC Losses for the Whole Magnet

The closed-form analytical expressions of AC loss energy densities, summarized in
Tables 7.3–7.9, are valid for only the simplest superconductor configurations and
conditions. First, the superconductor is an isolated single Bean slab, and its Jc

is field-independent. Second, the external magnetic field applied is uniform and
points in a special direction: parallel to the surfaces of a Bean slab that define its
thickness (2a). Third, if a transport current is present, it too is under the simplest
condition: DC current already present when the magnetic field is applied.

It is not possible with a closed-form analytical expression to accurately compute
AC losses for a whole magnet. If the total AC losses of a magnet must be known,
for instance, to estimate the system cryogenic load, it is best to resort to a compu-
tational technique that sums up space-dependent “local” AC losses. For a ballpark
estimate of AC losses, e.g., the Hybrid III SCM (PROBLEM 7.7), the expressions in
Tables 7.3–7.9 may be used, though the conductor configurations and field/current
conditions are far more complicated than those used in deriving these expressions.
With both time-varying field and transport current present, the expressions are
not really applicable. For short samples and whole coils, the surest approach is
measurement, often accompanied with numerical analysis [7.1, 7.2, 7.4, 7.61–7.85].

It should be noted, however, that the vast majority of superconducting magnets
in operation now, and likely in the immediate future, are adiabatic. An adiabatic
magnet, LTS or HTS, tolerates only limited AC losses that can be thermally
conducted away to its surrounding surfaces with a peak winding temperature rise
less than [ΔTop(Iop)]st, the temperature margin (6.2.6), which is generally greater
in an HTS magnet than in an LTS magnet. To estimate this peak temperature,
it usually is sufficient to compute the AC losses over the small winding volume
where they are likely to be greatest. For this type of computation, for which great
accuracy is not required, the expressions in Tables 7.3–7.9 may be applied.

DISCUSSION 7.4: Techniques to Measure AC Losses

As discussed above, accurate computation of AC losses for real superconductors,
short samples as well whole magnets, is nearly impossible: the only recourse is
measurement [7.61–7.103]. Basically, there are three methods for measuring AC
losses: 1) magnetic; 2) calorimetric; and 3) electrical. The magnetic method is
useful only for hysteresis loss of “short” samples (Eq. 7.4b) carrying no transport
current (next in PROBLEM 7.6). In the calorimetric method, a test sample (a
short length of conductor or even a whole coil) is immersed in a bath of liquid
cryogen—helium for LTS and generally nitrogen for HTS—and AC losses, often
under cyclic field and/or transport current conditions, are deduced from the vapor
boil-off rate of the cryogen that surrounds the test sample; in a variation of this
method, a slight temperature rise caused by AC losses may be used to determine
the losses. In the electrical method, applicable when a test sample is subjected to a
time-varying transport current, It(t), the time-integral,

∫
V (t)It(t) dt, is measured,

where V (t) is the voltage across the test sample. In practice great caution must
be exercised in placing voltage taps to measure V (t) [7.98].
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Figure 7.19 shows a schematic drawing of a cross section, based on the original
drawing [7.87], of a calorimetric setup for measuring total AC dissipation of a
superconducting Test Coil. In this technique Calibration Heater, placed inside
Calorimeter Housing with Test Coil, is controlled to keep the rate of the boil-off
vapor, measured by Vapor Flow Meter, constant as Test Coil, carrying either AC
or DC transport current, is exposed to a time-varying external field, generated by
Bitter Magnet. The variation in Calibration Heater input is related to the total
AC dissipation of Test Coil. To stabilize the cryostat pressure, liquid helium is
not transferred during measurement. The effluent helium vapor of Test Coil and

BITTER MAGNET 
CURRENT CONTROL

TEST COIL 
POWER SUPPLY

TEST COIL 
POWER SUPPLY

BITTER MAGNET 
CURRENT CONTROL

BITTER MAGNET 
CURRENT CONTROL

BITTER MAGNET 
CURRENT CONTROL

5-kA VAPOR-COOLED LEADS HEAT EXCHANGER
P

TEST COIL VAPOR
POWERSUPPLY FLOW METER

BITTERMAGNET CONSTANT-FLOW
CURRENTCONTROL FEEDBACK

LHe LEVEL

CHIMNEY
FOR VAPOR

BITTERMAGNET HEATERCURRENT
SUPPLY SUPPLY

CALORIMETER
HOUSING TEST COIL

CALIBRATION
HEATER LHe REPLENISHMENT

HOLES

Fig. 7.19 Schematic drawing of a cross section, based on the original drawing [7.87], of
a calorimeter setup for measuring total AC dissipation of a superconducting Test Coil
carrying either AC or DC current and subjected to a time-varying magnetic field.
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Calibration Heater, guided through Chimney, is measured, at room temperature,
by Vapor Flow Meter. A set of holes at the bottom of Calorimeter Housing replen-
ishes liquid helium to keep it filled with the liquid and at the cryostat pressure.

Illustration Total AC losses for this Test Coil were 100–500 mW [7.87, 7.88]. For
the latent heat of vaporization of liquid helium at 4.22 K, hL = 20.9 kJ/kg (J/g);
a dissipation of 100 mW at 4.22 K, for example, evaporates helium at a mass
rate of 4.8 mg/s or a volumetric liquid (density: 0.125 g/cm3) evaporation rate of
0.038 cm3/s. Because under atmospheric pressure helium expands, from 4.22-K
liquid to 273-K (0◦C) vapor, by a factor of 700 (Table A2.1, APPENDIX II ), the
volumetric flow rate measured by Vapor Flow Meter (Fig. 7.19) will be 28.6 cm3/s
or 1596 SCCM—Standard (1 atm, 0◦C) Cubic Centimeter per Minute.

DISCUSSION 7.5: AC Losses in CIC Conductors

A CIC conductor, unlike a conductor with its strands embedded in a conductive
matrix, is suitable for AC applications, because its strands may be magnetically
and electrically decoupled. (In this respect, so is the Rutherford cable, because its
strands, mounted on a high-strength strip, may likewise be decoupled.)

As in all AC-applicable strands, the superconducting multifilaments in each strand
of a CIC conductor are transposed, and each filament in turn is surrounded by a
thin layer of “resistive” metal (generally Nb or Cu-Ni) barrier to minimize cou-
pling currents that are induced under time-varying conditions. The greater the
barrier resistance, the smaller will be both the “effective Bean slab thickness” and
the inter-filament coupling time constant, τcp (Eq. 7.6), which result in smaller,
respectively, hysteresis energy density, ehy, and coupling energy density ecp.

The effective matrix resistivity, ρef (Eq. 7.7), determines the inter-filament cou-
pling time constant. Similarly the inter-strand resistivity determines the inter-
strand coupling time constant that in turn determines the inter-strand coupling
energy density. For CIC conductors both the inter-strand resistivity (or resistance)
and coupling time constant require measurement [7.104–7.107].

DISCUSSION 7.6: AC Losses in HTS

It is worth emphasizing that the mechanisms of AC losses in HTS are the same
as those of AC losses in LTS. Thus, to minimize AC losses, HTS size must be
minimized (hysteresis loss); superconducting filaments magnetically and electri-
cally decoupled (coupling loss); and conductive matrix added sparingly in the
superconductor (eddy-current loss), while still satisfying other requirements.

Tape is the least desirable conductor configuration to minimize hysteresis loss:
Bi2223, YBCO, and MgB2 (available in wire too) thus are not ideally suited for
some AC applications. Although Bi2223 and MgB2 tapes comprise many “mini”
tapes to reduce their effective size (2a of Bean slab), because these mini tapes
are not twisted, let alone transposed, AC losses remain a critical issue; for YBCO
ingenious, but perhaps difficult to economically achieve, conductor designs have
been proposed to reduce the effective size and decouple mini tapes [7.108–7.113].
For some AC applications, HTS wires, e.g., Bi2212 and MgB2, may fare better.
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PROBLEM 7.6: Hysteresis loss in Nb3Sn filament

In this problem we consider a Nb3Sn conductor presently manufactured for a fusion
project. Figure 7.20 shows μ◦M vs. μ◦H plots, measured at 4.2K, for Nb3Sn/Cu
composite wires of overall bare diameters 1.0, 0.8, 0.6, 0.4, and 0.3mm [7.114].

a) The 0.3-mmφ wire (labeled 0.3 in Fig. 7.20) has a critical current density at
3 T and 4.2K, Jc(3T, 4.2K), of 0.72×1010 A/m2. Show that within ±10%
uncertainty, its Jc at 0T, Jc(0T, 4.2K), is 2.8×1010 A/m2. Note that for
Nb3Sn it is customary to assume Jc =Jnoncu, the critical current density over
non-copper cross sectional area.

b) Assuming filaments in these wires are of circular cross section, compute the
effective filament diameter, deff , for the 0.3-mm wire. You may equate deff

to the width 2a of a Bean slab.

c) The wires of diameters 0.8-mm, 0.6-mm, 0.4-mm, and 0.3-mm were all drawn
from the 1.0-mm diameter wire and thus have the same number of filaments.
Explain qualitatively and, if you so choose, quantitatively two important
differences in magnetization curves among these wires shown in Fig. 7.20.

d) Compute the hysteresis energy density, ehy [J/m3] for the 0.3-mmφ wire over
one complete field cycle between −3T and +3 T. Assume Bp � 3T.

1.0

0.8

0.6

0.4
0.3

0.8

0.6

0.4

0.2
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−0.6

−0.8
−3 −2 −1 0 1 2 3

µ◦H [T]

μ
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[T
]

0.3
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0.8

1.0

Fig. 7.20 µ◦M vs. µ◦H plots, measured at 4.2K, for Nb3Sn/Cu composite
wires of diameters 1.0, 0.8, 0.6, 0.4, and 0.3mm [7.114].
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Solution to PROBLEM 7.6

a) The envelope of a flux-jump free M(μ◦H, T ) curve, as illustrated in Fig. 5.3,
is proportional to Jc(μ◦H, T ). From Fig. 7.20 for the 0.3-mmφ wire, we have:
|μ◦M(0 T, 4.2 K)| � 0.47 T and |μ◦M(3 T, 4.2 K)| � 0.12 T. Thus:

Jc(0 T, 4.2 K) = Jc(3 T, 4.2 K)×
∣∣∣∣M(0 T, 4.2 K)
M(3 T, 4.2 K)

∣∣∣∣
� Jc(3 T, 4.2 K)× (0.47 T)

(0.12 T)
� Jc(3 T, 4.2 K)×3.92

� 2.8×1010 A/m2

b) From the Bean model, for H≥Hp =Jca, M(H)=Hp/2, and using a=deff/2,
where deff is the filament diameter, we have:

M(H) = 1
2Hp = 1

2 (deff/2)Jc(H)

From Fig. 7.20 and question a) we have, respectively: μ◦M(0 T) � 0.47 T and
Jc(0 T) � 2.8×1010 A/m2. Thus:

deff =
4μ◦M(0 T)
μ◦Jc(0 T)

� 4(470×10−3 T)
(4π×10−7 H/m)(2.8×1010 A/m2)

= 53 μm

Note that deff may be computed at any value of H at which both M(H) and Jc(H)
are known.

c) As may be inferred from the positive magnitudes of magnetization at μ◦H =
−2 T, the magnitude, ∝ deffJc, is nearly proportional to the overall wire size.
It implies that deff decreases with wire diameter though perhaps not exactly in
proportion to it. The critical size, ac, for a Bean slab is given by Eq. 5.40:

ac =

√
3C̃s(Tc − Top)

μ◦J2
c◦

(5.40)

To avoid flux jumping, the product aJc must satisfy the following condition:

aJc◦ ≤

√
3C̃s(Tc − Top)

μ◦
(S6.1)

The presence of partial flux jumps in the range −1.5 T ≤ μ◦H ≤ 1.5 T in these
wires, except that of 0.3-mmφ, implies that the flux jump criterion, as expressed
by Eq. S6.1 is not satisfied by these wires, except the 0.3-mmφ wire.
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PROBLEM 7.7: AC losses in Hybrid III SCM*

This problem deals with AC losses in the Hybrid III SCM (superconducting mag-
net). A typical sequence of its operation is described below.

Step 1: The SCM is charged from 0 to 800 A in a period of 1200 s. This charging
rate corresponds to a field sweep rate at the innermost winding radius at
the magnet midplane of 4 mT/s. During this sequence, a significant dissi-
pation apparently takes place, resulting in a net rise in bath temperature
of ∼0.1 K, from 1.70 to 1.80 K.

Step 2: The SCM is charged from 800 to 1800 A in a period of 900 s. No mea-
surable increase in bath temperature is observed.

Step 3: In the final leg of the charging sequence, SCM goes from 1800 to 2100 A
in a period of 600 s, again with negligible increase in bath temperature.
The SCM is now generating 12.3 T at the magnet center.

Step 4: With SCM held at 2100 A, the insert is energized and discharged at a
constant rate to an induction, typically between 0 and 22.7 T. Again, dur-
ing this charging-discharging sequence, no measurable increase in bath
temperature is observed.

Panic: In the event of an insert malfunction, the insert is “tripped,” forcing
its field to decay from 22.7 to 0 T in about 0.3 s. Because of large AC
dissipations expected in the SCM under this emergency condition, the
SCM is automatically “dumped,” resulting in a decay of its current from
2100 to 0 A with a time constant of ∼10 s.

As noted above, AC losses are important only during Step 1. Because of a rapid
decrease in the insert’s fringing field during Panic, the SCM, particularly the
NbTi coil, is driven normal, forcing the SCM to dump. Table 7.10 gives pertinent
conductor parameters of the Hybrid III SCM.

Table 7.10: Pertinent Conductor Parameters

Parameter Nb3Sn Coil † NbTi Coil †
Overall width/thickness, a/b [mm] 9.50/4.50 9.20/2.60

Filament diameter, df [μm] 50 75

Twist pitch length, �p [mm] 100 100

Filament #, Nf 1000 2500

Total conductor length, �cd [m] 1700 8100

Jc @0∼5T, 1.8K [GA/m2] 5 3

Bp =μ◦Hp =μ◦Jcdf/2 @1.8K [T] 0.16 0.14

ρm @0∼8T, 1.8K [nΩm] 0.5 0.5

† For the purpose of this problem, each coil is approximated by one grade of conductor.

* Based on Problem 7.7 in the 1st Edition (Plenum, 1994).
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PROBLEM 7.7: AC losses in Hybrid III SCM (continuation)

a) Justify a temperature increase of ∼0.1 K (from 1.70 to 1.80 K at 1 atm) as the
SCM is charged from 0 to 800 A, at which point it is generating a center field
of 4.8 T. For computation of hysteresis losses in the Nb3Sn and NbTi coils,
respectively Coils 1 and 2, assume that the entire Nb3Sn conductor in Coil
1 is exposed to a field that increases from 0 to 3.8 T (Bm1) and the NbTi
conductor in Coil 2 to a field that increases from 0 to 2.4 T (Bm2). Note
that the magnet vessel contains 250 liters of superfluid liquid helium and, as
illustrated in DISCUSSION 4.5 (p. 236), the 1.8-K helium is refrigerated at a
cooling rate of 20 W.

b) Show that the narrow cooling channels provided in each double pancake are
sufficient to transport AC losses generated in the double pancake to annular
spaces at the i.d. and o.d. Note that there are 32 double pancakes in the
NbTi coil, each double pancake having cooling channels of 1-mm height and
occupying ∼40% of the pancake surface area (Fig. 6.17). The pancake i.d. and
o.d. are, respectively, 658 mm and 907 mm.

c) During Panic each coil is subjected to a rapid decrease in the insert’s fringing
field. For the NbTi conductor at the innermost turn at the magnet midpoint
(r = 329 mm, z = 0), Δ|Be| is estimated to be ∼1 T, taking place in a time
period of 0.3 s, or Δ|Ḃe| ∼ 3 T/s. Show that the average temperature of a
unit combined volume (conductor and liquid helium adjacent to it) located
at the innermost radius at the magnet midplane will exceed Tλ. In applying
equations given in Table 7.8, which is really for multifilamentary wire of
outermost diameter of Dmf , assume Dmf =b=2.60 mm (Table 7.10).

“Burst Disk” and Diffuser for Hybrid III Cryostat

As discussed in CHAPTER 3, the major fault condition in hybrid magnets is trig-
gered by an insert burnout; the Hybrid III SCM is designed to be discharged
quickly in the event of an insert burnout—the event described above as Panic.
(This fast discharge mode is discussed further in CHAPTER 8.)

One critical consequence of this fast dis-
charge is a rapid rise in the cryostat pres-
sure. The Hybrid III cryostat is equipped
with a “burst disk” to limit the pressure
increase in the cryostat to 1 atm; a 40-μm
thick aluminum foil disk, with an active di-
ameter of 70 mm, is placed in vacuum fit-
tings (Fig. 7.21). When an overpressure of
1 atm is reached in the cryostat, the foil rup-
tures, relieving the cryostat pressure. As
indicated in the figure, a diffuser is placed
at the burst disk exit to minimize the exit
pressure loss of the emerging vapor.

DIFFUSER

ALUMINUM
FOIL

Fig. 7.21 Burst disk (with diffuser) arrangement for Hybrid III cryostat.
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Solution to PROBLEM 7.7

a) The major source of dissipation during Step 1 is hysteresis loss. We compute
these losses for the Nb3Sn coil, Ehy1 and NbTi coil, Ehy2. Although there is
transport current present (up to 800 A), we use Eq. 7.28c (Hm�Hp) for each coil.

ehy � 8
3μ◦HpHm (7 .28c)

� 8BpBm

3μ◦
(S7.1)

where Bp =μ◦Hp and Bm =μ◦Hm. The total energy dissipated in the Nb3Sn coil,
Ehy1 and that in the NbTi coil, Ehy2, are given by:

Ehy1 = Vf1ehy (S7.1a)

Ehy2 = Vf2ehy (S7.1b)

where Vf1 and Vf2 are the total volumes of the filaments, respectively, of the Nb3Sn
coil and NbTi coil, given by:

Vf1 = Nf1�cd1

(
πd2

f1

4

)
(S7.2a)

Vf2 = Nf2�cd2

(
πd2

f2

4

)
(S7.2b)

where Nf , �cd, and df are, respectively, the total number of filaments in the
conductor, total conductor length, and filament diameter, with subscripts 1 and 2
for, respectively, the Nb3Sn and NbTi coils.

Inserting appropriate values given in Table 7.10 into Eq. S7.2a and S7.2b, with
Bm1 = 4.3 T and Bm2 = 1.8 T, we obtain:

Ehy1 = (1000)(1700 m)
π(50×10−6 m)2

4

×
(

8
3

)
× (0.16 T)(4.3 T)

(4π×10−7 H/m)
(S7.3a)

= (3.3×10−3 m3)(1.46×106 J/m3) � 4.9 kJ

Ehy2 = (2500)(8100 m)
π(75×10−6 m)2

4

×
(

8
3

)
× (0.14 T)(1.8 T)

(4π×10−7 H/m)
(S7.3b)

= (89.4×10−3 m3)(0.53×106 J/m3) � 48 kJ

The total hysteresis loss released into the liquid is thus ∼53 kJ.

Answer to TRIVIA 7.2 iii). The Croatian-American Nikola Tesla (1856–1943)
bred pigeons on whom, it is said, he lavished all the affection he was unable to
give humans. With George Westinghouse (1846–1914), he fought and prevailed
over Thomas Alva Edison (1847–1931) for the utilities’ adoption of AC power.
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Solution to PROBLEM 7.7 (continuation)

The mass of 250 liters of liquid helium at 1.70 K is 37 kg. The enthalpy of 1-atm
helium at 1.70 K is 1280 J/kg and that at 1.80 K is 1530 J/kg (APPENDIX II), or a
net change in enthalpy of 250 J/kg. With a total mass of 37 kg, an increase in bath
temperature from 1.70 to 1.80 K requires a net energy input of ∼10 kJ; during this
1200-s period, the refrigerator running at 20 W removes ∼25 kJ from the liquid:
a total energy of ∼35 kJ is required to raise the liquid from 1.7 K to 1.8 K. Our
computed dissipation energy of ∼53 kJ thus overestimates the dissipation energy
by a factor of about two, not too bad considering the above analysis is expected to
give a ball park figure; it certainly demonstrates hysteresis loss is the major source
of dissipation.

b) With a total hysteresis energy dissipation in the NbTi coil of ∼30 kJ (5/8
of ∼48 kJ, as corrected above), released in 1200 s, the overall hysteresis dissipa-
tion rate is ∼25 W. For each of 32 double-pancake coils in Coil 2, the dissipation
rate would be ∼0.8 W. Under the most conservative condition, the total channel
cross section for each double pancake would be ∼4 cm2 (40% of the circumfer-
ence corresponding to the innermost diameter of 658 mm times a channel height
of 0.5 mm—note that the 1-mm high channel is shared by two pancakes), or a
heat flux of ∼0.2 W/cm2. Since heat can flow radially both inward and outward,
an appropriate value for the channel length is one quarter the difference between
o.d. and i.d., or ∼6 cm.

Because dissipation is taking place over the entire channel length, Eq. 4.6c (p. 235)
is applicable. Thus:

X(Tb) =
q3.4
c

4.4
L (4.6c)

From Fig. 4.9, we have: X(Tb = 1.8 K) = 350. With L = 6 cm, solving Eq. 4.6c
for qc, gives: qc = 5.1 W/cm2, which is much greater than the minimum required
value of ∼0.2 W/cm2. That is, the channels are ample to remove the hysteresis
dissipation during a charge up from 0 to 800 A. This conclusion has been validated
by actual runs.

c) In a rapidly changing field, the most important losses are coupling (ecp) and
eddy (eed). We shall consider here only ecp, because it is sufficient to drive the
conductor-helium unit volume to Tλ, even without any contribution from eed.

We shall first compute τcp, the coupling time constant, for the NbTi conductor.

τcp =
μ◦�2p

8π2ρef
(7.6)

For NbTi composite, ρef given by Eq. 7.7b is generally used. In terms of γc/s, the
copper-to-superconductor ratio, ρef is given by:

ρef =
1 + λf

1 − λf
ρm (7.7b)

=
γc/s + 2

γc/s
ρm (S7.4)
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Solution to PROBLEM 7.7 (continuation)

With γc/s =2.2 (deducible from the conductor parameters given in Table 7.10) and
inserting appropriate values into Eq. 7.6, we obtain: τcp�0.17∼0.2 s, comparable
with τm = 0.3 s for the insert discharge.

Applying Eqs. 7.36 and 7.39a (triangular) of Table 7.8, with a factor of 1/2 (for
discharge only) and Hm =Bm/μ◦ and Dmf =b inserted in Eq. 7.36, we obtain:

ecp = 1
2×2

B2
m

μ◦

[
1+ 1

4

(
πb

�p

)2
]
× 2τcp

τm

[
1 − 2τcp

τm
tanh

(
τm

2τcp

)]
(S7.5a)

=
2B2

mτcp

μ◦τm

[
1+ 1

4

(
πb

�p

)2
] [

1 − 2τcp

τm
tanh

(
τm

2τcp

)]
(S7.5b)

Inserting appropriate values in Eq. S7.5b, we obtain:

ecp � 2(1 T)2(0.2 s)
(4π×10−7 H/m)(0.3 s)

×
{

1+ 1
4

[
π(2.6×10−3 m)

0.1 m

]2 }{
1 − 2(0.2 s)

(0.3 s)
tanh

[
(0.3 s)
2(0.2 s)

]}

� (1.05×106 J/m3)(1)(0.15) ∼ 0.16×106 J/m3

Consider a unit length (1 cm) of conductor. Because its cross section is (0.92 ×
cm)×(0.26 cm) = 0.24 cm2, the conductor has volume Vcd of 0.24 cm3. Over this
conductor length, helium occupies 0.4 cm length (40% filling) and 0.5 mm channel
depth (1-mm deep channel is shared by conductors of the top and bottom pan-
cakes) over the conductor width of 2.6 mm. Thus for a unit conductor length,
helium occupies a volume Vhe of 5.2×10−3 cm3. The total dissipation energy over
the unit conductor length, Ecp, will thus be given by:

Ecp = ecpVcd (S7.9)

∼ (0.16 J/cm3)×(0.24 cm3) ∼ 38 mJ

The total thermal energy, ΔEth needed to raise the unit conductor (and accom-
panying liquid helium) from 1.8 K to Tλ is given by:

Eth = [hcu(Tλ) − hcu(1.8 K)]Vcd + [hhe(Tλ) − hhe(1.8 K)]Vhe (S7.10)

Inserting Δhcu � 0.1 mJ/cm3 and Δhhe∼290 mJ/cm3 into Eq. S7.10, we have:

Eth = (0.1 mJ/cm3)(0.24 cm3) + (290 mJ/cm3)(5.2×10−3 cm3) (S7.11)

� 2 mJ

Because Ecp � Eth, the entire helium surrounding the unit conductor will be
heated to well above Tλ, making it unlikely for the conductor to recover.

“Oh figures! You can make figures do whatever you want.” —Ned Land
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DISCUSSION 7.7: Splice Dissipation in Hybrid III NbTi Coil*

The Hybrid III NbTi coil consists of 32 double pancakes, each wound with two
grades of 9.2-mm wide NbTi composite strip. In each single pancake, a “hand-
shake” splice (Fig. 7.7) between the high-field (HF) grade conductor and low-field
(LF) grade conductor occurs at r=378 mm along a 90◦ arc; in each double pancake
there are thus two such splices. In addition, there is another splice in each double
pancake, at r=455 mm over a 90◦ arc, to connect the double pancake to the next
double pancake. Altogether the Hybrid III NbTi coil has a total of 64 splices at
r = 378 mm and 32 splices at r = 455 mm. To make a conservative estimate, we
shall use Rct data having the higher values of Rct for 50Sn-50Pb (2nd set of data
in Table 7.1): Rct of 3.3×10−12 Ω m2 at 1 T and 4.1×10−12 Ω m2 at 3 T.

A. Splice Resistances

Applying Eq.7.9b, we compute the resistance at r = 378 mm, Rsp1:

Rsp =
Rct

Act
(7.9b)

Rsp1 =
Rct

a�sp1

In the above equation, a�sp1 =Act, a is the conductor width, and �sp is the splice
overlap length, given by πrsp1/2, where rsp1 is the winding radius at which the
splice takes place. Inserting Rct = 4.1×10−12 Ω m2, a = 9.2×10−3 m, π/2 = 1.57
(90◦ arc), and rsp1 =0.378 m, we have:

Rsp1 =
(4.1×10−12 Ω m2)

(9.2×10−3 m)(1.57×0.378 m)
= 0.75 nΩ

Similarly, the splice resistance at r = 455 mm, Rsp2, is given by:

Rsp2 =
(3.3×10−12 Ω m2)

(9.2×10−3 m)(1.57×0.455 m)
= 0.50 nΩ

Total splice resistance, Rsp, thus is given by:

Rsp = 64Rsp1 + 32Rsp2 = 48 nΩ + 16 nΩ = 64 nΩ

B. Total Splice Dissipation

Total splice dissipation at Iop = 2100 A, Psp, is given by:

Psp = RspI
2
op = (64×10−9 Ω)(2.1×103 A)2 = 0.28 W (S8.5)

This fraction-of-a-watt of splice dissipation at 2100 A is consistent with data ob-
tained from Hybrid III runs. When the system was allowed to reach the lowest
possible temperature with no transport current, the bath temperature reached
1.65 K. The same was true at 2100 A. That is, the splice dissipation rate was neg-
ligible compared with the quiescent refrigeration load at 1.65 K, a shade less than
20 W at 1.80 K, computed in DISCUSSION 4.4 in CHAPTER 4.

* Based on Problem 7.9 in the 1st Edition (Plenum, 1994).
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DISCUSSION 7.8: Persistent-Mode Operation & “Index”

Here we discuss the key issues related to operation of a persistent-mode magnet
such as those used for NMR or MRI. Generation by a superconducting magnet of
a persistent, i.e., permanent, field much greater than that possible with permanent
magnets unquestionably qualifies as one of the unique features of superconductiv-
ity. This is clearly reflected by a proliferation of commercially available NMR and
MRI superconducting magnets.

However, a real persistent-mode magnet contains a small but nonzero circuit resis-
tance, one of the subjects here, causing the field to decay. Generally, a field decay
is permitted even in these magnets if its decay rate is no greater than ∼0.01 ppm/h
(0.01 part per million per hour). This decay rate translates to an equivalent de-
cay time constant of 108 h, or ∼10,000 years. For a magnet with an inductance
of 360 H, a decay rate of 0.01 ppm/h implies a total nonzero circuit resistance of
10−9 Ω (1 nΩ).

A. Circuit & Operation

Circuit

Figure 7.22 presents the basic elements of a persistent-mode magnet circuit with
L representing the magnet. In a real persistent-mode NMR magnet, for example,
studied in PROBLEM 8.6 (p. 530), the circuit would contain many inductors, each
representing one of many coils in the magnet, and each coil would be shunted by a
resistor. r is the total circuit resistance, ideally r=0 but, as stated above, not quite
zero in real magnets. As shown in the figure, a persistent-current switch, PCS,
shunts the magnet terminals, the black dots in the figure; these joints must ideally
be superconducting; if not superconducting, the joint resistance at each terminal
becomes a part of r. The two power diodes, in opposite polarities, shunting the
PCS protect the switch in the event of a magnet quench [7.115]. When operated at

COLD ENVIRONMENTDISCONNECTABLE

CURRENT LEAD

DIODES

POWER
SUPPLY

L
HEATER PCS

Rpc r

Fig. 7.22 Basic circuit diagram for a persistent-mode superconducting magnet.

* Based on Problem 7.11 in the 1st Edition (Plenum, 1994).
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DISCUSSION 7.8: Persistent-Mode Operation & “Index” (continuation)

4.2 K, the “forward” threshold voltage of a power diode increases from ≤ 1 V at
room temperature to ∼10 V, making the forward diode in the circuit effectively
open for magnet energizing voltages below ∼10 V. For a persistent-mode HTS
magnet operating well above 4.2 K, this threshold voltage will be small. However,
at a higher operating temperature the switch may also be able to survive a magnet
quench without the diode protection.

Operation

With the PCS closed (and superconducting, i.e., Rpc = 0), short-circuiting the
magnet terminals, it is impossible to energize the magnet (PROBLEM 1.2). To
energize the magnet by a power supply via “disconnectable” current leads, the PCS
must become resistive (i.e., Rcp �=0), achieved with a heater. The elements enclosed
by the dashed lines in the figure are within the cold operating environment.

When the operating current is reached, the heater current may be turned off and
the switch becomes superconducting. The circuit is now fully (if r =0) or nearly
(if r�0) superconducting; the supply current may be reduced to zero—note that
the magnet, now shunted by the PCS, is isolated from the supply. To minimize
the conduction heat input to the cold environment from the idle current leads, the
current leads are usually disconnected at the magnet terminals. In some instances,
the leads are removed altogether from the cryostat.

B. Design of PCS

There are three issues for designing a PCS: 1) normal-state resistance; 2) stability
and protection; and 3) thermal insulation.

Normal State Resistance

Ideally, the switch’s normal-state resistance should be infinite (Rpc =∞); in reality
it should be large enough to make the current through the resistive switch, Ipc,
no greater than ∼10% of Iop, the magnet operating current. When the magnet
consists of many coils, each shunted by a resistor, as in the circuit shown in
Fig. 8.27 (p. 531), then Rpc must be greater than the sum of the shunt resistors,
because Ipc =Vch/Rpc, where Vch is the charging voltage applied across the magnet
terminals. A combination of Rpc and Ipc of course dissipates power in the switch,
RpcI

2
pc = V 2

ch/Rpc, which is in addition to the heater power. There are thus two
requirements for a PCS: 1) Vch/Rpc <∼0.1Iop (or Rpc should be equal to or greater
than the sum of the resistors shunting the coils in a multi-coil magnet); and 2)
V 2

ch/Rpc preferably 1 W or less, or at any case no greater than a few watts.

In practice, an LTS switch made of NbTi/Cu composite wire is unsuitable, because
copper is too conductive in the cold environment of the magnet; a special compos-
ite NbTi wire with Cu-Ni alloy matrix is generally used. At 4.2 K the electrical
resistivity of Cu-Ni is ∼1000 times greater than that of copper (APPENDIX IV ).
Similarly, an HTS made of Bi2223/Ag is unsuitable, because pure Ag is too con-
ductive to meet the requirements of Rpc given above. For PCS, Ag-Au alloy should
be substituted for pure Ag. According to data shown in Fig. 4.24 (p. 284), at 30 K
pure Ag is ∼40 times less resistive than Ag-2.9at%Au (Ag-5wt%Au).
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DISCUSSION 7.8: Persistent-Mode Operation & “Index” (continuation)

Stability and Protection

Because a PCS is usually located in a low-field region of the magnet, the supercon-
ductor in the switch, even without being “oversized,” has a temperature margin
much greater than those of the superconductors in the windings. For protection,
the “backward” diode (Fig. 7.22) shunts the resistive PCS. In a multi-coil magnet
with a shunt resistor across each coil, the switch may remain superconducting dur-
ing the entire period the magnet is quenching. In the event a switch is damaged,
it simply needs to be replaced, as a burnt out light bulb would be. The switch is
likely to be the least expensive component in a multi-coil magnet.

Thermal Insulation

Heating injected into the switch to maintain it resistive is a cryogenic load to the
cryostat. The more thermally-insulated the switch is from the cold environment,
the less the cryogenic load.

C. Index Loss

As given by Eq. 6.25b, for magnet-grade superconductors the electric field E and
current density Js may be approximated by:

Es = Ec

(
Js

Jc

)n

(6.25b)

Consider a persistent-mode superconducting magnet wound with a superconductor
of index n. Because field strength decreases away from the maximum field region,
located in the vicinity of the magnet midplane at the innermost winding radius,
the conductor’s Jc also increases, and Jop/Jc decreases away from the maximum
field region. Therefore, it is necessary to consider the index voltage only in the
maximum field region. Let �mx be the total conductor length in this region.

By integrating E field over a conductor length �mx, we obtain the total index-
induced voltage, Vn, at Iop given by:

Vn = E�mx = Ec

(
Iop

Ic

)n

�mx (7.44)

This resistive voltage causes a current decay in the magnet of inductance Lm:

dIop

dt
= − Vn

Lm
= − Ec

Lm

(
Iop

Ic

)n

�mx (7.45)

Because Iop and H◦ are proportional, we have:

dH

dt
≡ −

(
ΔH

τp

)
∝ − Ec

Lm

(
Iop

Ic

)n

�mx

(
ΔH

H◦τp

)
=

Ec

LmIop

(
Iop

Ic

)n

�mx (7.46)

“Clocks are slow on Sundays.” — Holly Golightly
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DISCUSSION 7.8: Persistent-Mode Operation & “Index” (continuation)

Solving for Iop/Ic from Eq. 7.46, we obtain:

Iop

Ic
≤

[
LmIop

Ec�mx

(
ΔH

H◦τp

)]1/n

(7.47a)

By inserting ΔH/(H◦τp) = 10−8/hr = 2.78×10−12/s and other parameter values
into Eq. 7.47a, we have:

Iop

Ic
=

[
(300 A)(100 H)

(10−7 V/cm)(105 cm)
(2.78×10−12/s)

]1/n

(7.47b)

From Eq. 7.47b, we have: Iop/Ic = 0.31 for n = 10; Iop/Ic = 0.56 for n = 20;
Iop/Ic = 0.68 for n = 30; and Iop/Ic = 0.79 for n = 50.

These values indicate that for a conductor of n = 10, Iop must be kept below 31%
of Ic—a rather inefficient use of the conductor; for n = 50, Iop may be increased
to 79% of Ic. The results of a recent experimental study [6.18] show that n,
determined from a V vs I plot at and above Ic, instead of remaining constant
actually increases for currents below Ic. In one test conductor, n was found to
increase from ∼30 at Ic to as much as 145 at I/Ic = 0.75. That is, as long as Iop

is chosen not too close to Ic, even conductors with n∼20 at Ic may be usable for
persistent-mode magnets.

New techniques are being developed to enable even a slightly resistive NMR magnet
to operate effectively in persistent mode. These include a “digital flux injector”
that periodically injects a metered and precisely controllable flux [7.116–7.121], a
flux pump [7.122–7.124], and a current supply arrangement [7.125] to a dissipative
part of an NMR magnet. A digital flux injector which pumps microamperes of
current into an NMR magnet is the reverse of a flux pump originally conceived to
pump thousands of amperes of current into a magnetic circuit.

D. Experimental Determination of Index
The technique widely used to determine the index n of a superconductor is through
the superconductor’s V vs I plot such as shown in Fig. 7.23. Thus:

n =
ln(V2/V1)
ln(I2/I1)

(7.48)

V

V2

V1

0 I
0 I1 I2

Fig. 7.23 Typical V vs. I trace from which to determine an index number.
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CHAPTER 8

PROTECTION

8.1 Introductory Remarks

Protection is one of the five key design and operation issues—the others are stabil-
ity; mechanical integrity; cryogenics; conductor. As qualitatively shown in Fig. 1.6,
the difficulty or cost of magnet protection increases with operating temperature,
while that of stability decreases. For HTS, protection can become a real chal-
lenge, while stability is benign, as discussed in CHAPTER 6. The question most
often asked concerning protection of HTS is this: “If HTS is so stable, why is it
necessary to worry about protecting it?” The answer comes down to the cost of
an HTS device vs. the cost of its protection and the probability of a system failure
mode that needs protection. To protect or not to protect an “inherently stable”
HTS magnet is a dilemma. This question is revisited in DISCUSSION 8.7.

Our focus is protection of the magnet winding; other parts of the magnet—
mechanical, electrical, and cryogenic—are not addressed, except in passing. The is-
sues included here are: 1) overheating; 2) overstraining (thermal and mechanical);
3) high internal voltage; and 4) protection techniques. PROBLEMS &DISCUSSIONS

also cover other relevant topics. Protection of course has been a key topic for super-
conducting magnets and has been addressed by many since the 1960s [1.27, 8.1–8.6],
updated periodically [8.7–8.11]; other references are cited later where appropriate.

8.1.1 Thermal Energy vs. Magnetic Energy Densities

Unless a winding is protected, it is not uncommon for a small section of a magnet
winding, a “hot spot,” to absorb most of the magnetic energy stored in the winding,
thereby becoming heated excessively and damaged permanently. However, the
thermal energy density to melt a unit winding volume of a superconducting magnet
is much greater than the stored magnetic energy density of the magnet.

To heat up copper, a good representative material of the winding, from 4 K (or
even from 80 K) to its melting temperature of 1356 K entirely by the adiabatic
conversion to heat, with enthalpy density, hcu(T ), of copper, of the magnetic
energy stored only within its own volume, the initial magnetic induction, B0,
would have to be ∼115 T:

B2
0

2μ◦
= hcu(1356 K) − hcu(4 K or 80 K) � 5.2×109 J/m3 (8.1)

B0 �
√

2(4π×10−7 H/m)(5.2×109 J/m3) � 115 T

That a magnet of even modest field, e.g., 3 T, has been permanently damaged
by overheating demonstrates that a catastrophic energy concentration can occur
in real magnets. If only the local magnetic energy density were converted locally
into heat, field energy density to enthalpy density computation similar to Eq. 8.1
gives temperatures below 200 K for fields up to ∼25 T; for fields above ∼25 T, see
Illustration in the next section.
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8.1.2 Hot Spot and Hot-Spot Temperature

A magnet quench is often initiated over a small winding volume, the so-called hot
spot. As remarked above, the entire stored energy of the magnet may be dissipated
over this hot spot, leading to permanent damage of the magnet.

Here, we study adiabatic absorption in a hot spot of the entire magnetic energy
stored in the solenoid, Em, and the resultant final temperature, Tf , the hot-spot
temperature. The goal of any magnet protection is to limit Tf to ∼200 K or below,
and definitely not above 300 K. The stored magnetic energy, Em, of a solenoid of
self inductance L at current I is given by:

Em = 1
2LI2 (3.79)

Equation 3.81 (p. 107) gives the inductance L of a solenoid (a1, α, β) with a total
number of turns N :

L = μ◦a1L(α, β)N2 (3.81)
Figure 3.14 shows L(α, β), which depends only on the winding parameters α and
β. The axial center field, B◦, is given by:

B◦ =
μ◦NI

2a1(α − 1)β
F (α, β) (8.2)

where F (α, β) is given by:

F (α, β) = β ln

(
α +

√
α2 + β2

1 +
√

1 + β2

)
(3.13b)

From Eq. 8.2 we may express NI in terms of a1, α, β, and B◦:

NI =
2a1(α − 1)βB◦

μ◦F (α, β)
(8.3)

Thus, for a solenoid of α and β, its Em may be related to its B◦ by:

Em =
4a3

1(α − 1)2β2L(α, β)
F 2(α, β)

(
B2

◦
2μ◦

)
(8.4)

The total winding volume, Vw, is given by:

Vw = 2πa3
1(α

2 − 1)β (8.5)

Note that Vw includes all winding materials, conductor as well as non-conductors.
The total volume of the hot spot (resistive zone), Vr, is given by:

Vr = frVw = fr2πa3
1(α

2 − 1)β (8.6)

where fr is the fraction of the hot-spot volume in the winding. If the magnet’s
total magnetic energy, Em, is converted to heat adiabatically in the hot spot only,
the average thermal energy density, emr, of the hot spot is given by:

emr ≡ Em

Vr
=

2(α − 1)βL(α, β)
frπ(α + 1)F 2(α, β)

(
B2

◦
2μ◦

)
(8.7)

Note that emr does not depend on magnet volume, but on fr, α, and β, and, of
course, on B◦. However, the actual hot-spot volume required to limit its tempera-
ture Tf increases with winding volume. What must be the minimum size of a hot
spot volume in a solenoid to meet a requirement of Tf ≤200 K is a key question of
protection issue: this is discussed in Illustration presented below.
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Table 8.1: Hot Spot Volume Fraction, fr, vs. Hot-Temperature, Tf

Solenoid (α=1.5, β=2.0) of B◦ 1.5T–30T

fr =1(100%) Ti =4K Ti =80K

B◦ emr Tf =200K Tf =300K Tf =200K Tf =300K

[T] [J/cm3] fr (%) fr (%)

1.5 1.02 0.27 0.14 0.31 0.15

3.0 4.06 1.1 0.57 1.2 0.62

6.0 16.2 4.3 2.3 5.0 2.5

12 65.0 17 9.1 20 9.9

20 180 48 25 55 27

25 282 74 40 87 43

30 406 107 57 125 62

Illustration Table 8.1 presents the hot-spot volume fractions, fr (%), of a sole-
noid (α = 1.5, β = 2.0), in the range of B◦, 1.5–30 T, required to limit the final
hot-spot temperature, Tf , to 200 K and 300 K for two initial winding temperatures,
Ti, 4 K and 80 K. Here, the entire winding is assumed copper (density: 8.96 g/cm3),
and Tf is computed from emr =hcu(Tf )−hcu(Ti), where emr is given by Eq. 8.7.
The table indicates that for this solenoid (α=1.5,β=2.0) generating, for example,
1.5 T, a hot spot can be a fraction (<1%) of the winding volume for two limits
of Tf , 200 K and 300 K. This small fr to meet the Tf ≤ 200 K requirement has a
practical benefit for “detect-and-activate-the-heater” active protection: for most
solenoids, a cumbersome “protection heater,” discussed in 8.8.4, planted within
the winding needs to convert (and expand) only a fraction of the winding to a
hot spot. However, as evident from Table 8.1, though fr ≤ 1 (100%) for solenoids
of B◦ up to ∼25 T, for ≥ 30 T, fr exceeds 1 (100%), i.e., a portion of the stored
energy must be dissipated outside the solenoid, i.e., into a dump resistor (8.8.3).

8.1.3 Temperature Data for Winding Materials

Table 8.2 lists “permissible” limits of hot-spot Tf for selected winding materials
in magnets, LTS and HTS. Each entry in Table 8.2 is briefly discussed below.

Below 200 K It is generally agreed that resistive zones, even those confined to
a small volume of the winding, may safely warm to as much as 200 K, because
differential thermal strains in a winding with one segment at 200 K and the rest
at an initial temperature of as low as 4.2 K will be less than ∼0.1%, which is safe
for most magnet-grade conductors.

320 K (47◦C) Lowest melting point among indium alloys.

335 K No Ic-degradation of a Cu-laminated YBCO sample (Ic =161 A @77.3 K),
heated by a 60-ms current pulse of 1.23 kA [8.12].

370 K A slight Ic-degradation (161 A→157 A) of the same Cu-laminated YBCO
sample as above, heated by a 60-ms current pulse of 1.36 kA [8.12].

380 K Formvar insulation and Stycast 2850, organic materials often employed in
windings, lose their usefulness beyond this temperature.
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Table 8.2: “Permissible” Limits of Tf for Selected Materials

T [K] Remarks

≤200 Considered acceptable for LTS and HTS winding

320 Lowest melting point among indium solders

335 Cu-laminated YBCO: no Ic-degradation [8.12]

370 Cu-laminated YBCO: slight Ic-degradation [8.12]

380 Limits of Formvar insulation and Stycast 2850

400 Paraffin melts

430 Indium melts

493 50Sn-50Pb solder melts

720 Bi2223-Ag: no Ic-degradation [8.12]

800 Bi2223-Ag: Ic-degradation [8.12]

400 K and 430 K At ∼400 K, paraffin melts; at 430 K, indium melts.

456 K (183◦C) A solder widely used in magnets, 63Sn-37Pb, melts.

720 K No Ic-degradation of a Bi2223-Ag test sample (Ic =119 A @77.3 K), heated
by a 320-ms current pulse of 450 A [8.12].

800 K A major degradation of Ic (Ic =119 A→50 A) in the same Bi2223-Ag test
sample, heated by a 330-ms current pulse of 450 A [8.12].

8.1.4 Safe, Risky, and Very Risky Ranges of Tf

We may divide the above temperature range into three Tf ranges for the winding:
1) safe; 2) risky; and 3) very risky. Each range is specified below.

Safe Tf below 200 K is a safe upper limit for the normal zone. Note that there
is no basic difference in this regard between LTS and HTS windings. However, in
some applications, the recovery time to normal operating temperature is important
and lower Tf ’s are desirable.

Risky The range 200–300 K may be regarded “cautious.” If Tf is kept in this
range, no winding materials are heated dangerously high and thus damaged, except
possibly by thermal strains, which are briefly discussed below.

Very Risky Tf above 300 K is very risky for the winding, LTS or HTS.

8.1.5 Temperature-Induced Strains

Overheating, in addition to damaging the winding thermally, may also do so me-
chanically, by inducing strains. Table 8.3 presents linear thermal expansion (actu-
ally, contraction) data referenced to 293 K, [L(T )−L(293 K)]/L(293 K), for selected
magnet winding materials. Consider a pancake coil, and assume that the inner
half of the coil build is heated to 140 K, while the outer half of the pancake coil
remains at 80 K. The data in Table 8.3 indicate that a tensile strain induced in
the innermost layer of the outer half would not exceed ∼0.1%, which should be
safe. If the inner half of the winding build were to be heated to 300 K, while the
outer half remains at 80 K, then induced strains could exceed 0.2%, a dangerous
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Table 8.3: Mean Linear Thermal Expansion Data
— [L(T )−L(293K)]/L(293K) in 10−3 —

Material [L(T )−L(293K)]/L(293K) in 10−3

Copper −3.00 (80K); −2.34 (140K)

Nickel −2.11 (80K); −1.71 (140K)

Silver −3.60 (80K); −2.7 (140K)

Sn50-Pb50 solder −4.98 (80K); −3.65 (140K)

Stainless steel 304 −2.81 (80K); −2.22 (140K)

Epoxy −10 (80K); −9 (140K)

Nb3Sn −1.41 (80K); −1.02 (140K)

NbTi −1.67 (80K); −1.24 (140K)

Bi2223, a-b plane −1.37 (80K); −1.11 (140K) [8.13]

Bi2223-Ag (tape)*

roll (axial)/transverse (width) each, −2.4 ± 0.3 (77K) [8.14, 8.15]

Bi2223-Ag (3-ply tape)†
roll (axial)/transverse (width) each, −2.8 ± 0.3 (77K) [8.14, 8.15]

YBCO −2.23 (80K); −1.82 (140K) [8.16]

* 4.1-mm wide tape.

† 4.8-mm wide tape, with stainless steel strips sandwiching Bi2223-Ag.

level for Nb3Sn and HTS. However, even if a uniform temperature is maintained
during heating, because a magnet winding consists of materials of different thermal
expansion coefficients (Table 8.3), uniform heating can still induce overstraining
in a superconductor. It is generally safest to keep Tf below 200 K.

8.2 Adiabatic Heating

One of the major forms of permanent damage in a superconducting magnet is
excessive heating (“overheating”) of its composite conductor. If it is severe, the
overheating may melt the composite or create thermal gradients in the winding
that overstrain the superconductor, permanently degrading its Jc performance.
Overheating has been studied, with experiment and analysis, since the 1960s.

Even if the magnet is isolated from its power supply and operating in persistent
mode, as demonstrated above, overheating in a superconducting magnet may occur
by dissipation within a small volume of the winding of the total magnetic energy
stored in the magnet. In a powered magnet, overheating may also occur by resistive
heating by the power supply, after the magnet is driven to the normal state; this
heating can be localized or global, encompassing the entire winding volume. We
may analyze adiabatic heating of a unit composite volume by modifying Eq. 6.1
with the conduction, disturbance, and cooling terms neglected:

Ccd(T )
dT

dt
� ρcd(T )J2

cd◦(t) (8.8a)

� ρm(T )J2
cd◦(t) (8.8b)

In Eq. 8.8b the conductor electrical resistivity, ρcd, is approximated by the matrix
resistivity, ρm, as in the circuit model of Fig. 6.5 (or n = ∞ in Eq. 6.25). Note
that Eq. 8.8 would be in the 7th row (Protection) of Table 6.1 in CHAPTER 6.
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8.2.1 Adiabatic Heating Under Constant-Current Mode

First, we study adiabatic heating under constant-current mode, as illustrated in
Fig. 8.1: a resistive zone, r(T ), within a superconducting magnet (inductance L)
connected to a constant-current supply that keeps the magnet operating current,
Iop, constant. With the above assumption that the resistive zone carries the entire
Iop, Eq. 8.8b, in the power density equation per unit conductor length, becomes:

AcdCcd(T )
dT

dt
=

ρm(T )
Am

I2
op(t) (8.9a)

Inserting Iop/Am = Jm◦ (Eq. 6.7c) into Eq. 8.9a, Csc(T ) ≈ Cm(T ) ≈ Cm(T ) and
Am/Acd =γm/s/(γm/s+1), where γm/s≡Am/(Asc+Am) (Eq. 6.21b), we obtain:

Cm(T )
dT

dt
=

(
Am

Acd

)
ρm(T )J2

m◦ =
(

γm/s

1 + γm/s

)
ρm(T )J2

m◦ (8.9b)

We may rearrange Eq. 8.9b and integrate between the initial values, T = Ti and
t=0, and final values, T =Tf and t=τah:∫ Tf

Ti

Cm(T )
ρm(T )

dT =
(

Am

Acd

)
J2

m◦τah (8.9c)

=
(

γm/s

1 + γm/s

)
J2

m◦τah (8.9d)

The temperature integral on the left-hand side of Eqs. 8.9c and 8.9d depends
monotonically on T ; we define a Z(Tf , Ti) function:

Z(Tf , Ti) ≡
∫ Tf

Ti

Cm(T )
ρm(T )

dT (8.10a)

For “alloy” matrix metals with ρm(T ) sufficiently constant to be approximated by
a temperature-averaged resistivity, ρ̃m, Eq. 8.10a may be simplified to:

Z(Tf , Ti) �
1

ρ̃m

∫ Tf

Ti

Cm(Tf ) dT =
Hm(Tf ) − Hm(Ti)

ρ̃m
(8.10b)

where Hm(T ) is the matrix metal volumetric enthalpy at T .

L

Iop

Iop r(T )

Fig. 8.1 Circuit representing a superconducting magnet of inductance L with a normal
zone of T -dependent resistance r(T ), connected to a supply of constant-current Iop.
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Figure 8.2 gives Z(T, 0) plots for silver (RRR =1000, the ratio of electrical resis-
tivities at 0◦C and 4.2K; 100); copper (200; 100; 50); aluminum (grade: 1100);
and brass (70Cu-30Zn). The dashed line (barely discernable) is for brass with
ρ̃m =5.5×10−8 Ω m (Eq. 8.10b). Note that for any combination of Ti and Tf :

Z(Tf , Ti) = Z(Tf , 0) − Z(Ti, 0) = Z(Tf ) − Z(Ti) (8.11)

For any combination of Tf and Ti, there is a heating duration τ i
ah(Tf , Ti)—the

superscript i denotes under constant-current (at Jm◦) heating—given by:

τ i
ah(Tf , Ti) =

(
1 + γm/s

γm/s

)
Z(Tf , Ti)

J2
m◦

(8.12a)

Similarly, for any combination of Tf and Ti, there is a matrix current density,
J i

m◦(Tf , Ti), under constant-current heating of duration τah, given by:

J i
m◦(Tf , Ti) =

√(
1 + γm/s

γm/s

)
Z(Tf , Ti)

τah
(8.12b)

Because above ∼300 K Cm(T ) approaches an asymptote, while ρm(T ) continues
to increase with T , the integrand Cm(T )/ρm(T ) diminishes with T , and therefore
a small additional increase in Z(Tf , Ti) results in a drastic increase in Tf that in
most instances damages the winding: keep Tf less than 200K.
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Fig. 8.2 Z(T, 0) plots. Ag1000 (RRR:1000); Ag100; Cu200; Cu100; Cu50; Al (Grade
1100); Brass (70Cu-30Zn)—also dashed line (Eq. 8.10b, with ρ̃m =5.5×10−8 Ω m).
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8.2.2 Adiabatic Heating Under Current-Discharge Mode

Here, we study adiabatic heating of a normal zone of resistance r(t)—or it can
be of r(T )—within a superconducting magnet (L) under current-discharge mode,
which is encountered quite often in the protection of superconducting magnets.
Practical examples are illustrated later in PROBLEMS &DISCUSSIONS.

The magnet is initially (t=0) energized at current Iop and shunted by a “dump”
(discharge) resistor (RD). Figure 8.3 shows the circuit diagram, in which Im(t) is
the time-dependent matrix metal current. VD ≡RdIm(0) = RdIop is the “dump”
(discharge) voltage across the dump resistor at t=0.

Under adiabatic heating with the same assumption used in expressing Eq. 8.9a by
Eq. 8.9b, but Jm◦ =Iop/Am (constant) replaced by Jm(t)≡Im(t)/Am, we have:

Cm(T )
dT

dt
=

(
Am

Acd

)
ρm(T )J2

m(t) (8.13)

The circuit equation for Im(t) is given by:

L
dIm(t)

dt
+ [RD + r(t)]Im(t) = 0 (8.14)

We now invoke a simplifying assumption valid in most cases: RD�r(t). Equation
8.14 then may be solved for Im(t), and thus Jm(t), with τdg =L/RD:

Jm(t) = Jm◦e
−t/τdg (8.15)

where Jm◦ ≡Jm(t=0). Combining Eqs. 8.13 and 8.15 and using the definition for
Z(Tf , Ti), we obtain:

Z(Tf , Ti) =
(

Am

Acd

) ∫ ∞

0

J2
m◦e

−2t/τdg dt =
(

Am

Acd

)
J2

m◦× 1
2τdg (8.16a)

=
(

Am

Acd

)
J2

m◦

(
L

2RD

)
(8.16b)

=
(

γm/s

1 + γm/s

)
J2

m◦

(
L

2RD

)
(8.16c)

L

VD RD

Im(t) r(t)

−

+

Fig. 8.3 Circuit representing a superconducting magnet of inductance L
with a normal zone of T (t)-dependent resistance, r(t), heated adiabatically
under current-discharge mode. A “dump” resistor of RD shunts the magnet
terminals. VD ≡RdIm(0) is the dump voltage across RD at t=0.



PROTECTION 475

The magnet inductance L and the dump resistance RD may be expressed in terms,
respectively, of the initial stored magnetic energy, Em, of the magnet and the initial
discharge voltage VD across RD. Thus:

L =
2Em

I2
op

(8.17a)

RD =
VD

Iop
(8.17b)

Combining Eqs. 8.16b, 8.17a, and 8.17b, we obtain:

Z(Tf , Ti) =
(

Am

Acd

)
J2

m◦Em

VDIop
(8.18a)

Equation 8.18a shows that Tf is higher for combinations of greater Jm◦ and/or
Em and smaller VD and/or Iop. We may consider the ratio Em/VDIop to be an
effective discharge period, where VDIop is the effective discharge power. Noting
that Jm◦ =Iop/Am, we may reduce Eq. 8.18a to:

Z(Tf , Ti) =
Jm◦Em

AcdVD
(8.18b)

Under this discharge current mode, there is a maximum matrix current density,
JD

m◦ , for any winding temperature limit Tf :

JD
m◦ =

AcdVDZ(Tf , Ti)
Em

(8.19)

Equation 8.19 gives a criterion for Jm◦ that is entirely different from the cryosta-
bility criterion of Eq. 6.22.

8.2.3 Adiabatic Heating in Magnet with Shorted Terminals

Let us assume a magnet (L) with its terminals shorted, in which at t=0 a small
normal zone is developed within its winding, as shown in Fig. 8.4; the current,
Im(t), flows in the matrix metal in the normal zone of resistance r(T ).

L

Im(t) r(T )

Fig. 8.4 Circuit representing a shorted superconducting magnet of inductance
L with a normal zone of T -dependent resistance r(T ), heated adiabatically.
The current in the normal zone is Im(t).
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The matrix metal current Im(t) is governed by:

L
dIm(t)

dt
+ r(T )Im(t) = 0 (8.20)

r(T ), expressed as T -dependent, obviously increases with time for two reasons: 1)
magnetic energy is being converted to thermal energy to raise the normal zone
temperature; and 2) the normal zone itself is spreading in the winding. For the
purpose of our analysis here, the simplest assumption is used: a constant normal-
zone resistance, r(T )=Rnz, given by:

Rnz =
ρm(Tf )�nz

4Am
(8.21)

where ρm(Tf ) is the matrix resistivity at the normal zone’s final temperature; �nz

is the total conductor length in the resistive state when the current has decayed
to zero. The factor of 4 in the denominator accounts for “averaging,” both in
time (factor of 2) and space (another factor of roughly 2), of the normal zone
temperature, from Ti to Tf . Note that Eq. 8.21 also assumes ρm(Tf )� ρm(Ti),
which may not be valid for some combinations of Tf and Ti, but the uncertainty
introduced by this simplification is considered small compared with that arising
from the basic assumption of Eq. 8.21. For Rnz constant, Jm(t)=Im(t)/Am, with
Jm(t=0)=Iop/Am =Jm◦ , is given by:

Jm(t) = Jm◦e
−t/(L/Rnz) (8.22)

Under adiabatic heating, we obtain:

Z(Tf , Ti) =
(

Am

Acd

)∫ ∞

0

J2
m◦e

−2t/(L/Rnz)dt (8.23a)

Z(Tf , Ti) = 1
2

(
Am

Acd

)
J2

m◦

(
L

Rnz

)
(8.23b)

= 1
2

(
Am

Acd

)
J2

m◦τdg (8.23c)

where τdg = L/Rnz is the effective discharge time constant. For a solenoid of a1,
α, and total number of turns N , the total length of the composite driven to the
normal state, �nz, may be given by:

�nz =frπa1(α + 1)N (8.24)

where fr is the fraction of the winding volume in the resistive state, as in Eq. 8.6.
Combining Eqs. 8.21 and 8.24, we obtain:

Rnz = fr
ρm(Tf )πa1(α+1)N

4Am
(8.25)
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We may express N in terms of L and other magnet parameters (Eq. 3.81):

N =

√
L

μ◦a1L(α, β)
(8.26)

Rnz may thus be given by:

Rnz = fr
π(α + 1)ρm(Tf )

4Am

√
a1L

μ◦L(α, β)
(8.27)

Thus, we may obtain the discharge time constant, τdg:

τdg =
L

Rnz
=

4Am

frπ(α + 1)ρm(Tf )

√
μ◦L(α, β)L

a1
(8.28a)

Noting that Jm◦ = Iop/Am and L = 2Em/I2
op, where Em is the initial magnetic

energy stored by the magnet, we may express Eq. 8.28a as:

τdg =
4

frπ(α + 1)ρm(Tf )Jm◦

√
2μ◦L(α, β)Em

a1
(8.28b)

Combining Eqs. 8.23c and 8.28b, we obtain:

ρm(Tf )Z(Tf , Ti) =
(

Am

Acd

)
2Jm◦

frπ(α + 1)

√
2μ◦L(α, β)Em

a1
(8.29)

Equation 8.29 may be solved for Tf . As noted in 8.1.2 above, Tf is critically
dependent on fr, which is generally unknown, but for the illustrative examples
given in 8.1.2, to keep Tf below 200 K when B◦ ≥ 5 T, fr should be at least
∼0.1. This condition can be difficult to meet for HTS with a small normal zone
propagation (NZP) speed, discussed in 8.4.

Although fr is unknown, for a given combination of Tf and Ti there is a maximum
matrix current density, Jsh

m◦ , that limits overheating for a shorted magnet:

Jsh
m◦ = 1

2

(
Acd

Am

)
frπ(α + 1)ρm(Tf )Z(Tf , Ti)

√
a1

2μ◦L(α, β)Em
(8.30a)

As expected Jsh
m◦ increases with combinations of greater fr and Tf and smaller

Em. Because Em =μ◦a1L(α, β)N2I2
op/2, Jsh

m◦ may also be given by:

Jsh
m◦(Tf , Ti) = 1

2

(
Acd

Am

)
frπ(α + 1)ρm(Tf )Z(Tf , Ti)

μ◦L(α, β)NIop
(8.30b)

Equation 8.30b states that a solenoid of large ampere-turns (NIop) must operate
at smaller Jsh

m◦ .
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8.2.4 Adiabatic Heating Under Constant-Voltage Mode

Finally, consider a superconducting magnet that is resistive over its entire winding
of total composite conductor length �cd, Rm(T ), connected to a constant-voltage
supply, as shown in Fig. 8.5. Here, the entire winding is at T (t). The power
density equation, similar to Eq. 8.9a, is given, with Rm(T )=ρm(T )�cd/Am, by:

Acd�cdCcd(T )
dT

dt
=

V 2
op

Rm(T )
=

V 2
opAm

ρm(T )�cd

Cm(T )
dT

dt
�

(
Am

Acd

)
V 2

op

ρm(T )�2cd

(8.31a)

We may express Eq. 8.31a as Eq. 8.9c:∫ Tf

Ti

Cm(T )ρm(T ) dT =
(

Am

Acd

)
V 2

op

�2cd

τah (8.31b)

where τah is the heating duration under constant-voltage mode. As with Z(Tf , Ti),
we may define a function Y (Tf , Ti):

Y (Tf , Ti) ≡
∫ Tf

Ti

Cm(T )ρm(T ) dT (8.32a)

which, for alloy matrix metals, may be simplified, as Eq. 8.10b, by:

Y (Tf , Ti) � ρ̃m[Hm(Tf ) − Hm(Ti)] (8.32b)

Similarly to Z(Tf , Ti), Y (Tf , Ti) is given by:

Y (Tf , Ti) = Y (Tf ) − Y (Ti) (8.32c)

Figure 8.6 presents Y (T, 0) plots for the same metals as those for Z(T, 0) in Fig. 8.2.
Note that metal purity, which greatly influences ρm for temperatures below ∼50 K
and thus has a large impact on Z(T, 0), has little impact on Y (T, 0) for T >∼100 K.

From Eq. 8.31b we may derive, similar to Eq. 8.9c:

Y (Tf , Ti) =
(

Am

Acd

)
V 2

opτah

�2cd

(8.33)

+ L

Vop

− Rm(T )

Fig. 8.5 Circuit for a superconducting magnet (L) with the entire winding
in the normal state, Rm(T ), under constant-voltage (Vop) heating mode.
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Noting that �cd for a solenoidal coil is given by Eq. 8.24 with fr = 1, and using
Eq. 8.26, we find:

�cd = π(α + 1)

√
a1L

μ◦L(α, β)
(8.34)

Inserting Eq. 8.34 for �cd into Eq. 8.33, we obtain:

Y (Tf , Ti) =
(

Am

Acd

)
μ◦L(α, β)V 2

opτah

π2(α + 1)2a1L
(8.35)

For any combination of Tf and Ti, there is a duration limit, τv
ah, under constant-

voltage heating, given by:

τv
ah =

(
Acd

Am

)
π2(α + 1)2a1L

μ◦L(α, β)

[
Y (Tf , Ti)

V 2
op

]
(8.36)

Because ρm(T ) increases with T , the Y (T, 0) plots continue to increase with T
beyond 300K. Since the total resistance of this superconducting magnet in the
normal state, Rm(T ), is proportional to ρm(T )�cd, the heating current through the
magnet, given by Vop/Rm(T ), decreases with T . This implies that τv

ah increases
more rapidly than Tf ; i.e., under constant-voltage heating mode, thermal runaway
is less likely than under constant-current mode. For heating a superconducting
magnet, therefore, the constant-voltage mode is safer than the constant-current
mode. This is further studied in PROBLEM 8.1.
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Fig. 8.6 Y (T, 0) plots. Left-hand vertical scale: Ag (100 to 1000); Cu (50 to 200); Al
(Grade: 1100). Right-hand vertical scale: brass (Cu70-Zn30)—also dashed line (Eq.
8.32b with ρ̃m =5.5×10−8 Ω m). Especially for temperatures above ∼100K, Y (T, 0)
is nearly independent of the purity of Ag and Cu.
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8.3 High Voltage

One attractive feature of most superconducting magnets is the “low” voltage re-
quired for energization, i.e., ∼10 V, compared with>100 V for normal-metal mag-
nets generating the same field strength. Magnet operation consists of three time
regimes: 1) charge-up; 2) quiescent, at a fixed field; and 3) discharge. Unfortu-
nately, this low-voltage sufficiency generally is guaranteed only during the first
two time regimes; Regime 3 may entail very high voltages, particularly if it is in
fault mode. Of course Regime 3 may abruptly begin during Regime 1 or Regime 2,
initiated by a magnet quench. Because a superconducting magnet is an inductor,
its terminal voltage contains an inductive component given by:

V = L
dI

dt
(8.37a)

Noting that L = 2Em/I2
◦ , where I◦ is the magnet current at the beginning of

Regime 3, and because in this regime the total drop in magnet current, ΔI, often
is equal to I◦, we may express Eq. 8.37a as:

V =
2Em

I2
◦

(
ΔI

Δt

)
≈ 2Em

I◦Δt
(8.37b)

Protection becomes a serious business chiefly for those magnets with Em above
∼100 kJ; magnets storing less energy than this are dispensable or at least unlikely
to cause severe hardship. If we specify the dangerous-voltage level to be 1 kV in
a “real-world” superconducting magnet, then from Eq. 8.37b, with Em = 100 kJ,
any combination of I◦Δt of less than 200 A s will generate more than 1 kV, with
ample energy in the magnet to do severe damage. For example, a 100-kJ magnet
operating at I◦=1 kA will generate 1 kV if the current is discharged in a time scale
of ∼200 ms. The problem becomes worse as the stored energy increases [8.17].

From Eq. 8.37b we can also see that the current leads must withstand high dis-
charge voltages. Anishchenko, Heller, and others [8.18] and Gerhold [8.19] have
developed current leads designed to withstand high voltages.

8.3.1 Arcing Environments

A superconducting winding may be in an environment where the designer has op-
tions to choose from, for example: 1) vacuum vs. nonvacuum; 2) liquid vs. vapor;
and/or 3) helium vs. nitrogen. For resistance to arcing, vacuum, except near the
Paschen pressure (see below), is preferred to nonvacuum; liquid to vapor; and
nitrogen to helium. However, a discharge can upset the designer’s choice of en-
vironment. Heating in the winding initiated by the fault can upset the design
condition: 1) it may accelerate outgasing in the system, which may make it dif-
ficult for the system to maintain high vacuum; or 2) it may locally convert the
environment from liquid to vapor.

Useful data on dielectric breakdown of cryogens have been collected since the early
1970s [8.20, 8.21]. Gerhold presents dielectric breakdown data for nitrogen and
helium [8.22]. There are many design issues that affect arcing in a superconducting
magnet, with no clear-cut data that can be applied for general discussion. Schultz
covers this large topic concisely, with figures and data [1.28, 8.11].
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Table 8.4: Data of Minimum Arcing Voltage, Vmn, and
Pd at Vmn for Gases at Room Temperature [8.23]

Gas Vmn [V] Pd @Vmn [torrmm]

Air 327 5.67

Ar 137 9

H2 273 11.5

He 156 40

N2 251 6.7

8.3.2 Paschen Voltage Test

Table 8.4 presents minimum arcing voltage Vmn and Pd at Vmn data for gases at
room temperature [8.23]. P is the gas pressure and d is the distance over which
Vmn is applied. Note that Vmn is greater for diatomic gases than noble gases.

A Paschen voltage test is routinely performed for superconducting magnets with
a discharge voltage above ∼1 kV. The test subjects the cryostat accesses (pene-
trations) such as current leads and measurement cables to a voltage, starting with
the cryostat evacuated to a pressure, e.g., of P ∼ 10−3 torr. If no leakage current
is observed as voltage is increased up to Vmn, the measurement is repeated at
successive levels of pressure, from P ∼ 10−2 torr to atmospheric pressure (of, not
helium, but air). The system must pass this simple test before more elaborate
high-voltage tests are conducted.

8.3.3 Peak Internal Voltage Within a Quenching Magnet

Using a simple model and invoking additional simplifying assumptions, we study
the peak internal voltage that can arise within a quenching superconducting mag-
net with its terminals shorted [1.27; 8.25]. For two common modes of supercon-
ducting magnet operation the shorted-terminals condition is quite valid over at
least a short period of time: 1) during Regime 1, when the magnet is connected
to a constant-voltage current source and the magnet current is increasing towards
its Regime 2 level; 2) when the magnet, in Regime 2, is shunted with a persistent-
mode switch. In either mode, when a fault develops the magnet shifts to Regime
3, either forced (active protection) or automatically (passive protection), and the
terminals can no longer be considered shorted. However, by this time, especially
when the magnet is actively protected, because of a delay in execution, damage
already may have occurred.

Internal Voltage Distribution

In a shunted magnet in which a normal zone is spreading, there is a distribution
of internal voltage that depends on the normal zone volume within the winding
volume. Figure 8.7 shows voltage distributions within a magnet, in which the
winding is wound from one grounded terminal to the other grounded terminal.
The inductance per unit conductor length is assumed constant. In Fig. 8.7a,
10% (fr = 0.1) of the winding, starting from one terminal, has gone resistive; in
Fig. 8.7b, 20%; in Fig. 8.7c, 50%; and in Fig. 8.7d, 100%.
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(a) (b)

(c) (d)

INDUCTIVE RESISTIVE INDUCTIVE RESISTIVE

fr =0.1 fr =0.2

INDUCTIVE RESISTIVE INDUCTIVE RESISTIVE

fr =0.5 fr =1

Fig. 8.7 Voltage distributions, at constant current, for different normal zone sizes
within a quenching superconducting magnet, both terminals grounded and unwound
from one end of the conductor to the other end. Within the resistive zone the conductor
resistivity is assumed constant. (a) 10% (fr = 0.1) of the winding is in the resistive
state; (b) 20% (fr =0.2); (c) 50% (fr =0.5); (d) 100% (fr =1). The solid lines represent
the resistive voltage; the short dashed lines the inductive voltage; and the long dashed
lines the total internal voltage, given by the sum of the resistive and inductive voltages.

In each set of voltage distributions shown in Fig. 8.7, the solid line represents the
resistive voltage; the short dashed line the inductive voltage; and the long dashed
line the total internal voltage, given by the sum of the resistive and inductive
voltages. In each figure, the magnet current remains constant at Iop. In reality,
the current is decreasing with time; the effect of this decrease is included later.

The maximum resistive voltage, [Vr]mx, occurs at one terminal of the magnet, and
because the terminal is grounded, it is matched exactly by an inductive voltage of
the same magnitude as that of [Vr]mx =RnzIop, where Rnz is the total normal-zone
resistance, given by Eq. 8.25.

From Fig. 8.7, we note that the maximum internal voltage, [Vin]mx is given by:

[Vin]mx = fr(1 − fr)RnzIop (8.38)

where fr, as noted first with Eq. 8.6, is the fraction of the winding volume driven
to the resistive state. Note that the magnet current remains at Iop. Equation
8.38 shows that [Vin]mx → 0 as fr → 0 or fr → 1. The equation also shows that
[Vin]mx peaks at fr =0.5.
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Combining Eqs. 8.25 and 8.38, we obtain:

[Vin]mx = fr(1 − fr)
π(α + 1)ρm(Tf )a1

4Am
NIop (8.39)

Voltage Criterion for Matrix Current Density

The maximum internal voltage occurs when either the normal zone spreads out to
occupy 50% (fr = 0.5) of the winding with the magnet current remaining at Iop,
or 50% of the winding is driven normal initially.

We may obtain an expression, JV
m◦ , the matrix current density that limits the

internal voltage induced within a shunted solenoid to a breakdown value of Vbk.
Combining Eq. 8.39 and Eq. 8.3, we have:

JV
m◦ =

2
fr(1 − fr)

[
F (α, β)

π(α2 − 1)β

][
μ◦VbkIop

a2
1ρm(Tf )B◦

]
(8.40a)

Similarly, we may obtain an expression that directly shows the dependence on Em:

JV
m◦ =

2
fr(1 − fr)

[√
L(α, β)

π(α + 1)

][
VbkIop

ρm(Tf )

√
2μ◦

a1Em

]
(8.40b)

Note that JV
m◦ increases with the product of Vbk and Iop. Most importantly here,

JV
m◦ improves with the normal metal’s electrical conductivity. Also, a higher Vbk

implies a higher JV
m◦ , but the winding pack density at Iop, λJop (6.3.3), could be

lower because of the need for more insulation.

TRIVIA 8.1 Of the contemporary physicists (born 1821–1831) below, who
was the first to show that an electrical impulse moves at the speed of light?

i) Helmholtz; ii) Kelvin; iii) Kirchhoff; iv) Maxwell.
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8.4 Normal-Zone Propagation (NZP)

For protection, most LTS magnets of “practical” size must rely on one type or
another of active techniques, some of which are discussed later. However, because
of the inevitable delay between the detection of a non-recovering normal zone and
the current dump by any active protection technique, it is desirable to make the
magnet’s normal-zone propagation (NZP) velocities “fast,” thereby to enlarge its
fr, which in turn limits emr (Eq. 8.7) and enhances both Jsh

m◦ (Eq. 8.30) and JV
m◦

(Eq. 8.40). A magnet with fast NZP velocities (in three directions) may become
“self-protecting;” more detailed requirements for self-protection are discussed later.
Because NZP velocity generally is much less in an HTS winding than that in its
LTS counterpart, the prospect of a “self-protecting” HTS magnet is virtually zero:
all HTS magnets must rely on active protection.

8.4.1 Longitudinal (Axial) NZP Velocity

The normal-zone propagation (NZP) velocity in the longitudinal direction (along
the conductor axis), U�, is one of the subjects that has been studied extensively
since the 1960s, under adiabatic, quasi-adiabatic, and cooled conditions, with test
samples, model windings, and magnets, both LTS and HTS [8.1, 8.2, 8.25–8.75]. It
is an important parameter for protection of high-performance (adiabatic) magnets.
In these adiabatic or quasi-adiabatic windings, NZP is not confined only along the
conductor axis but spreads out three-dimensionally: Ut ∝ U�, where Ut is the
“transverse” propagation velocity.

NZP Under Adiabatic Condition

Figure 8.8 shows a schematic drawing of a conductor, under adiabatic conditions,
carrying current I, with the normal-superconducting boundary, at x=0, moving
at a constant velocity, U�, along the +x-direction. The power density equation for
the normal-state superconductor is given by a one-dimensional (x) form of Eq. 6.1
with both disturbance and cooling terms zero:

Cn(T )
∂Tn

∂t
=

∂

∂x

[
kn(T )

∂Tn

∂x

]
+ ρn(T )J2 (8.41a)

where Cn(T ), kn(T ), and ρn(T ) are, respectively, the heat capacity, thermal con-
ductivity, and electrical resistivity of the superconductor in the normal state.

U� x

x=0

Fig. 8.8 One-dimensional normal-to-superconducting boundary (x=0) moving
at a constant velocity U� along the longitudinal (axial) direction. The shaded
side (x<0) is normal, and the unshaded side (x>0) is superconducting.
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Similarly, a power density equation in the x-direction for the adiabatic case in the
superconducting region is given by:

Cs(T )
∂Ts

∂t
=

∂

∂x

[
ks(T )

∂Ts

∂x

]
(8.41b)

where Cs(T ) and ks(T ) are the superconducting-state heat capacity and thermal
conductivity. When the normal-superconducting boundary moves at a constant ve-
locity U� in the +x-direction, we may transform the x-coordinate to z-coordinate:
z=x−U�t. The term ∂Tn/∂t may be expressed by:

∂Tn

∂t
=

∂T

∂z

∂z

∂t
= −U�

dT

dz
(8.42)

We may thus express Eq. 8.41 as:

− Cn(T )U�
dTn

dz
=

d

dz

[
kn(T )

dTn

dz

]
+ ρn(T )J2 (8.43a)

− Cs(T )U�
dTs

dz
=

d

dz

[
ks(T )

dTs

dz

]
(8.43b)

Rearranging Eqs. 8.43a and 8.43b, we have the following power density equations
for the superconductor in the normal (z<0) and superconducting (z>0) regions:

(z < 0)
d

dz

[
kn(T )

dTn

dz

]
+ Cn(T )U�

dTn

dz
+ ρn(T )J2 = 0 (8.44a)

(z > 0)
d

dz

[
ks(T )

dTs

dz

]
+ Cs(T )U�

dTs

dz
= 0 (8.44b)

With kn(T ), Cn(T ), ks(T ), and Cs(T ) constant, each given respectively, by kn,
Cn, ks, and Cs, and assuming d2Tn/dz2�0, we can rewrite Eq. 8.44:

(z < 0) CnU�
dTn

dz
+ ρnJ2 = 0 (8.45a)

(z > 0) ks
d2Ts

dz2
+ CsU�

dTs

dz
= 0 (8.45b)

Ts(z) may be solved directly from Eq. 8.45b:

Ts(z) = Ae−cz + Top (8.46a)

where Top is the operating temperature far away from z = 0, i.e., z � 0, and
c = CsU�/ks. We also know that Ts = Tt at z = 0, where Tt is the transition
temperature for the superconductor carrying I. Thus:

Ts(z) = (Tt − Top) exp
(
−CsU�

ks
z

)
+ Top (8.46b)
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Another boundary condition is that the k(dT/dz) of each region should be equal
at z = 0—heat flow must be continuous across the boundary:

kn
dTn

dz

∣∣∣∣
0

= ks
dTs

dz

∣∣∣∣
0

(8.47a)

Combining Eqs. 8.45a, 8.46b, and 8.47a, we have:

−knρnJ2

CnU�
= −CsU�(Tt − Top) (8.47b)

Solving Eq. 8.47b for U�, we obtain:

U� = J

√
ρnkn

CnCs(Tt − Top)
(8.48)

Important points to be noted from Eq. 8.48 are that U� is directly proportional
to current density J and inversely proportional to the “geometric” average of the
heat capacities in the two regions,

√
CnCs. U� given by Eq. 8.48 is valid for a

bare superconductor under adiabatic conditions. Although it is rarely necessary
to use an exact expression of U� for which material properties are temperature
dependent, it is given below for the sake of completeness [8.47]:

U� = J

√√√√√√
ρn(Tt)kn(Tt)[

Cn(Tt) −
1

kn(Tt)
dkn

dT

∣∣∣∣
Tt

∫ Tt

Top

Cs(T )dT

]∫ Tt

Top

Cs(T ) dT

(8.49)

Equation 8.49 has been found to agree well with U� values measured for short
samples of coated YBCO tape in the temperature range 45–77 K [8.66].

For constant material properties, we may note that Eq. 8.49 reduces to Eq. 8.48.
Also for the case Cn = Cs = C◦, Eq. 8.48 may be written as:

U� =
J

C◦

√
ρnkn

(Tt − Top)
(8.50a)

For (Tt−Top)/Top � 1, a condition generally applicable to LTS but not HTS, we
may modify Eq. 8.50a to include the effects of T -dependent C◦, ρn, and kn:

U� =
J

C◦(T̃ )

√
ρn(T̃ )kn(T̃ )
(Tt − Top)

(8.50b)

where T̃ =(Tt+Top)/2. Equations 8.48 through 8.50 are valid for superconductors
having no matrix metal; in reality magnet-grade-conductors are composites, and
we may approximate the material properties by those of the matrix metal.
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Composite Superconductor

For a composite conductor with matrix metal of cross section Am, again for (Tt−
Top)/Top � 1 (thus valid only for LTS), with T -dependent properties, we may
generalize, with T̃ =(Tt+Top)/2, Eq. 8.50b to:

U� =
Jm

Ccd(T̃ )

√
ρm(T̃ )km(T̃ )

Tt − Top
(8.51a)

where Ccd(T̃ ) is the conductor’s volumetric heat capacity averaged over the range
from Top to Tt, and Jm is the current density over the matrix metal’s cross section.
Because ρm (the matrix metal’s electrical resistivity) is much smaller than ρn, and
km (the matrix metal’s thermal conductivity) is much greater than kn, km(T̃ ) and
ρm(T̃ ) in Eq. 8.51a are quite appropriate. In Eq. 8.51a a transition temperature,
Tt ≡ (Tcs +Tc)/2, as suggested by Joshi [8.45], or simply Tt = Tcs, may be used.
This subtle difference is difficult to verify with experimental data. Based on the
same approximation used in Eq. 8.9b, we may replace Ccd(T̃ ) in Eq. 8.51a with
Ccd(T̃ )�Cm(T̃ ):

U� �
Jm

Cm(T̃ )

√
ρm(T̃ )km(T̃ )

Tt − Top
(8.51b)

The general validity of Eqs. 8.48–8.51 has been amply demonstrated by many
experiments, with LTS and more recently with HTS.

Experimental Determination of Longitudinal NZP Velocity

The basic setup to experimentally determine U� is simple. Generally, “local”
voltage signals are measured for a short length (10–20 cm) of a straight test sample,
as shown in Fig. 8.9; in some instances local temperatures are also monitored. If
the test sample is in the bore of a magnet, the sample may be circular or helical
rather than straight. With the test sample carrying current I, a localized normal
zone is created, e.g., by a heater, and its progression is monitored by voltage signals
V1, V2, and V3, and also VΣ = V1+V2+V3; Clearly, U� may be computed from the
distance separating neighboring voltage (and/or temperature) signals and their
arrival times. Figure 8.9b shows an oscillogram displaying voltage traces, V1, V2,
V3, and VΣ recorded in a 10-cm long Nb3Sn tape [8.55].

+ − + − + −

VΣ

V1 V2 V3

I I

HEATER
V1 V2 V3

VΣ

(a) (b)

Fig. 8.9 (a) Schematic drawing of a setup to experimentally measure longitudinal NZP
velocity. (b) Oscillogram showing voltages traces recorded during an NZP event [8.55].
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Experiments with techniques similar to those used for LTS tests, one example of
which is described above, have been performed since the early 2000s. Here, without
any details of experimental setups, we present in Fig. 8.10 four sets of traces,
voltage (Figs. 8.10a–8.10c) and temperature (Fig. 8.10d), recorded to determine
NZP velocities in YBCO tapes: a), b) and c) are V (t) traces for test samples of
lengths, respectively, 20 cm [8.65], 15 cm [8.70], and 18 cm [8.74]. In the 20-cm long
YBCO tape [8.65], creation of a local normal zone in the test sample, initially at
50K, relied on the nonuniform distribution of critical current over the 20-cm long
tape. An over-current pulse of 72A (shown in Figs. 8.10a and Fig. 8.10d) triggered
a quench in zone 5 (respectively, V5 and T5), inducing an NZP at a constant current
of 30A (Fig. 8.10a); the time scales of V (t) traces in a) and of a companion set, the
T (t) traces in d), agree well. The V (t) traces shown in b), were recorded with the
15-cm long tape at 60K [8.70], and in c), with the 18-cm long tape at 70K [8.74].
The measured NZP velocities ranged 2–10mm/s, as summarized in Table 8.5.
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Fig. 8.10 Longitudinal NZP signals from YBCO test samples: a), b), and c) are V (t)
traces recorded for test samples of lengths, respectively, 20 cm [8.67], 15 cm [8.70], and
18 cm [8.74]. T (t) traces shown in d) are a companion set to the V (t) traces shown in
a) [8.67]. Except the signal traces, the labeling style in each figure has been modified.
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Table 8.5: Selected Measured U� for LTS and HTS, Bare and Composite

Superconductor Environment Top [K] Bex [T] J [A/mm2] U� [mm/s]

Nb-Zr [8.26] Liquid helium 4.2 0 100* 933

(single strand; 1000* 9330
no matrix metal) 6 100* 5345

8.8 0 100* 1215

NbTi [8.36] Liquid helium 4.2 0 420† “Recovery”

(multifilamentary 840† 6800
composite) 4 420† 4660

840† 18600

Nb3Sn [8.39] Adiabatic 4.2 0 630† 1830

(multifilamentary 6 315† 1490
composite) 630† 3720

Nb3Sn [8.55] Quasi-adiabatic 12 0 700† 510

(tape) 5.5 5 470† 525

Bi2223-Ag [8.55] Quasi-adiabatic 40 0 230† 2

YBCO [8.64] Adiabatic 46 0 10–15† 2–8

(coated) [8.69] Adiabatic 77 0 3–15† 3–10

[8.73] Adiabatic 77 0 65† 2.5

115† 9

40 0 115† 38

MgB2 [8.70] Quasi-adiabatic 4.2 4 26† No NZP

(single strand; 78† 930
iron matrix) 212† 6000

* I/(conductor cross section).

† I/(matrix metal cross section).

Table 8.5 lists measured values of U� for LTS and HTS. Although cooled by liquid
helium, U�∝J for the Nb-Zr single strand [8.26] because in the absence of matrix
metal (pre-Stekly era superconductor) the normal-state Joule heating completely
overwhelms the cooling. Generally, these data show that NZP velocities for HTS
(Bi2223-Ag; coated YBCO) are about two to four orders of magnitude less than
those of LTS. “Recovery” for the NbTi [8.36] is discussed in 8.4.2 below. As for
MgB2 with iron matrix [8.70], the velocities are comparable with those of LTS,
chiefly because of the absence of conductive matrix metal. Here at an overall
conductor current density (Jcd) of 26 A/mm2 or below, no NZP takes place: the
“normal-state” superconductor is not generating “full” Joule heating, chiefly be-
cause of its low index (n ≈ 15). Similar no-NZP behaviors were observed with
both Bi2223-Ag tape [8.55] and YBCO tapes [8.64, 8.69, 8.73].

8.4.2 NZP in “Cooled” Conditions

Although for protection NZP is not as important with “cooled” magnets as it is
with adiabatic magnets, NZP in the presence of cooling has also been extensively
studied. As observed in the NbTi composite shown in Table 8.5, there is in fact a
“recovery” current, below which a normal zone shrinks rather than grows.
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8.4.3 Transverse (Turn-To-Turn) Velocity

We now turn our attention to transverse (turn-to-turn) NZP velocity, Ut, focusing
on superconductors in the form of tape. Although once quite popular, Nb3Sn tape
is no longer available. Now the most widely used composite tape superconductors
are HTS: Bi2223-Ag and YBCO, both wound into pancake coils. The windings of
these HTS magnets, though cooled by liquid cryogen or cryocooled, are essentially
adiabatic and the adiabatic analysis of U� may be used to derive Ut [8.57]:

Ut = U�

√√√√1
2

(
δcd

δi

)[
ki(T̃ )
km(T̃ )

]
(8.52)

ki(T̃ ) is the temperature-averaged thermal conductivity of the insulating layer of
thickness δi between adjacent composite tapes, each of thickness δcd. In Eq. 8.52,
generally δcd >δi perhaps by a factor of from ∼3 to as much as ∼10, but km�ki

by a factor of ∼1000 or more, even at 77 K; therefore, Ut is at least one to two
orders of magnitude less than U�. Measurements with model windings of Bi2223-
Ag and YBCO indeed have shown Ut is at least one order of magnitude less than
U�. Because U� itself is only one to tens of mm/s for HTS with conductive matrix,
Ut will be small indeed. As discussed below, contact thermal resistance can reduce
even further the effective Ut in 2-D and 3-D windings.

Contact Thermal Resistance

Because Ut ∝
√

ki, it is tempting to try to increase Ut by using a thermally con-
ductive material for turn-to-turn insulation. One such material is diamond; the
bulk thermal conductivity of diamond in the liquid nitrogen temperature range
is 10–100 times greater than that of copper’s [8.54]. However, Eq. 8.52 ignores
the contact thermal resistance between the conductor and the insulator. Actually,
there are two contact thermal resistances, Rth1

ct
and Rth2

ct
, from a conductor to

an adjacent conductor, separated by one insulating spacer. Thus, ki in Eq. 8.52
should be replaced by k′

i, given by:

1
k′

i

=
1
ki

+ Rth1
ct

+ Rth2
ct

(8.53)

Replacing ki in Eq. 8.52 by k′
i, given by Eq. 8.53, we obtain:

Ut = U�

√
1
2

(
δcd

δi

)
ki

km[1 + ki(Rth1
ct

+ Rth2
ct

)]
(8.54)

Equation 8.54 indicates that when contact thermal resistance is dominant, i.e.,
ki(Rth1

ct
+Rth2

ct
)� 1, ki cancels out in Eq. 8.54, making the insulator’s thermal

conductivity irrelevant in determining Ut. Thus, for ki(Rth1
ct

+Rth2
ct

)�1:

Ut = U�

√
1
2

(
δcd

δi

)
1

km(Rth1
ct

+ Rth2
ct

)
(8.55)

Measurements of Ut with 250-μm spacers between Bi2223-Ag tapes have essentially
confirmed the validity of Eq. 8.55; similar results have been observed with Nomex
and Mylar spacers between YBCO tapes [8.74, 8.75].
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Experimental Results

Despite the condition Ut�U� for LTS and HTS, in most LTS windings the dom-
inant direction of NZP is still transverse to the conductor axis, because in most
windings the conductor length, �cd, is much greater than the winding dimensions,
e.g., a2−a1 for a solenoid: the condition (a2−a1)/Ut��cd/2U� is generally met in
both LTS and HTS windings. However, as further discussed in 8.6, this condition
does not necessarily guarantee protection of a magnet, LTS or HTS.

Figure 8.11 shows four sets of transverse NZP signals for YBCO test assemblies
at 77K: a) measured V (t) traces for two winding models, insulated with 38-μm
thick Nomex spacers—“dry” spacers (solid traces) and epoxied (dashed) [8.75]; b)
V (t) traces for the same epoxied winding model, experiment [solid; the same as
dashed in a)] and simulation (dashed), with Rth1

ct
= Rth2

ct
= 0; c) V (t) traces and

d) T (t) traces predicted for a model pancake coil of 100mm i.d., 120mm o.d., and
10 layers, epoxy-impregnated—the transport current was shut off at t=20 s [8.76].

The data give Ut in the range 0.1–1mm/s, at least one order of magnitude less
than U�. In the dry winding packs [8.75], measured Ut ranges from ∼0.1mm/s at
a contact pressure of 10MPa to ∼0.2 mm/s at a contact pressure of 25 MPa, while
with the epoxied winding packs, the transverse velocity is 1 mm/s.

Fig. 8.11 Transverse NZP signals from YBCO test assemblies at 77 K, each event trig-
gered by a heater pulse: a) V (t) traces for winding models insulated with 38-μm thick
Nomex spacers—“dry” spacers (solid traces) and epoxied spacers (dashed); b) experi-
mental, epoxied (solid) and simulation (dashed), for the same winding model [8.75]; c)
V (t) traces and d) T (t) traces for an epoxy-impregnated model pancake coil [8.76].
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8.4.4 Thermal-Hydraulic Quenchback (THQB)

Applicable to CIC conductors cooled by forced-flow helium, the phenomenon of
thermal-hydraulic quenchback (THQB) occurs when a local normal zone prop-
agates at a velocity greater than that of the helium flow. Initially studied by
Luongo and others [8.76–8.78; 1.23] and as a phenomenon related to other phe-
nomena arising from a quench in a CIC conductor (e.g., internal pressure rise,
helium expulsion from the ends of the conductor), it generally occurs when a CIC
conductor is operated at high matrix current density, Jm, and close to the con-
ductor’s critical current. Because, as discussed in DISCUSSION 6.6, for the most
important and large-scale application of CIC conductor, fusion magnets, the CIC
conductors are designed to operate in the “well-cooled” regime, i.e., below Ilim

(Eq. 6.30), THQB should not be a serious protection issue.

8.4.5 AC-Losses-Assisted NZP

So far we have considered Joule dissipation as the only source of NZP in an adi-
abatic winding. When a non-recovering normal zone is created and a fault mode
sets in, the magnet current decays with time, creating a time-varying magnetic
field, dB/dt, within the winding—in an NMR magnet studied in PROBLEM 8.6,
the magnitude of this current decay rate is ∼100 A/s. AC losses are thus gener-
ated; i.e., gd(t) =0 in Eq. 6.1. In the absence of “local” cooling, this dB/dt-induced
gd(t) leads to ΔTop >0 in the winding. The greater the gd(t), the greater will be
this ΔTop, though, as discussed in 6.2.6, even an adiabatic winding can tolerate
a limited ΔTop, specifically up to [ΔTop]mx, the temperature margin. Because of
this gd(t) heating, some NMR magnets are energized at a slow rate, taking up, in
some cases, a week to reach the operating current, to ensure that the adiabatic
stability condition of ΔTop < [ΔTop]mx is met.

This dB/dt-induced heating, therefore, makes the “apparent” values of U� and Ut

greater than those in which Joule dissipation is the only driving force for NZP.
The dB/dt-induced heating can be designed to accelerate NZP in the event of
a fault, when it is desirable to quickly enlarge the normal zone and also bring
down the current quickly [8.79–8.81]. For the sake of protection, some NMR (and
MRI) magnets use multifilamentary conductors with a twist pitch length purposely
chosen “long” to promote coupling losses.

At much greater magnitudes of current decay rate, ∼0.01–1 MA/s, though clearly
not possible with highly inductive MRI and NMR magnets but possible with re-
sistive devices such as fault current limiters, Vysotsky and others find faster NZP
velocities approaching 1 km/s [8.82]; under these high rates of current change,
quenching becomes global rather than propagated from a local zone.

TRIVIA 8.2 List the items below in descending order of speed.

i) Average, of a commuter car stuck in an evening rush hour gridlock;

ii) Fastball, of Daisuke Matsuzaka of the Boston Red Sox on September 28, 2007;

iii) NZP (longitudinal), in HTS tape at 77K;

iv) Tsunami.
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8.5 Computer Simulation

Because of the coupled nature of quench processes in adiabatic magnets, par-
ticularly those with more than one coil, quench analysis is best performed with
the aid of a computer. From Wilson’s early attempt in 1968 [8.83], quench sim-
ulation work (some accompanied with experimental results) continues [1.5–1.23;
8.84–8.100], some of which is obviously for HTS windings.

Here we briefly describe the quench simulation codes for adiabatic, solenoidal wind-
ings that have evolved at FBNML, starting in 1985 with Williams’ work [8.101].
The simplifying postulate of the FBNML codes is that the complex thermal dif-
fusion process that controls normal-zone propagation within a winding may be
reduced to a single parameter Ut, the transverse propagation velocity, that de-
pends on magnetic field, temperature, and matrix current density. The complex
effects of the winding’s thermal properties are lumped into Ut, and the codes are
simplified immensely without much sacrifice in accuracy [8.45, 8.101]. As discussed
in 8.4.3, Ut is related to the longitudinal propagation velocity, U�; Ut thus depends
both on time and location within the winding.

Figure 8.12 pictorially shows quench propagation within an adiabatic solenoidal
winding, which in this case is a close-packed-hexagonal arrangement of round wire,
impregnated with epoxy resin. Note that quenching in the figure is initiated at
the innermost radius of the winding midplane. The turn-to-turn transit time by
transverse propagation velocity (Ut) generally is shorter than the circumferential
transit time by longitudinal velocity U� because of the following condition, valid
in most windings:

dcd

Ut
� 2πa1

U�
(8.56)

where a1 is the innermost winding radius and dcd is the conductor diameter.

2a1

Ut Ut

Ut Ut

Ut Ut

Ut Ut

Fig. 8.12 Quenching in an adiabatic, solenoidal winding.
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8.6 Self-Protecting Magnets

A superconducting magnet is said to be self-protecting if it can be protected,
without reliance on any external intervention, against overheating by having its
normal zone spread out quickly over enough of its winding volume. According to
8.1.2, for most “adiabatic” magnets at least ∼10% of the winding should absorb
the total magnetic energy, to keep the maximum temperature below ∼200 K. How
fast this process takes place may be gauged by the NZP velocity. Self-protecting
magnets generally must have “high” NZP velocities, and as shown qualitatively
below, must be “small.” However, as discussed later, a magnet, though self-
protecting against overheating, may not be so against overstraining.

8.6.1 Size Limit

As seen from Table 8.1 in 8.1.2, if a magnet’s initial stored magnetic energy is
dissipated totally as heat in the winding, in order to keep Tf below ∼200K it is
necessary that a fraction of the winding, fr, of at least ∼0.1 must turn to the
normal state within the current decay time, τdg, and absorb the energy.

If a small normal zone is created at the innermost radius, i.e., a1, of the magnet,
then we may need to satisfy the following “ideal” requirement on the magnet’s
winding radial build, a1(α−1), to ensure that fr is sufficiently large to make the
magnet self-protecting:

a1(α − 1)
Ut

< τdg (8.57)

Equation 8.57 states that the propagation time over the entire radial build, given
by a1(α−1)/Ut, must be less than τdg. Actually, as stated above, a rather modest
percentage of the winding volume may be sufficient to keep Tf below ∼200 K. Here
in this “order of magnitude” discussion, we use the ideal condition of Eq. 8.57.

Size Limit Under Constant-Current Heating

In adiabatic, constant-current heating mode (8.2.1), we have τdg = τ i
ah(Tf , Ti),

where τ i
ah(Tf , Ti), given by Eq. 8.12a, is the maximum duration under adiabatic,

constant-current (Jm◦) heating. Combining Eqs. 8.57 and 8.12a, we obtain:

a1(α − 1)
Ut

=
Z(Tf , Ti)

J2
m◦

(8.58)

Combining Eqs. 8.51b, 8.52, and 8.58 with Jm = Jm◦ , we obtain a size limit,
[a1(α − 1)]iah, for the winding build of a self-protecting magnet under adiabatic,
constant-current heating condition:

[a1(α − 1)]iah =
Z(Tf , Ti)

Jm◦Cm(T̃ )

√
ρm(T̃ )ki(T̃ )δcd

2δi(Tt − Top)
(8.59)

Equation 8.59 states that the permissible magnet size, as expected, decreases with
Jm◦ and Cm(T̃ ) and increases with Z(Tf , Ti). It also shows that the size limit
expands with ρm(T̃ ) and ki(T̃ ), and shrinks with (Tt −Top). The Cm(T̃ ) and
(Tt−Top) dependences imply that for the same Jm◦ and Tf , a self-protecting HTS
magnet, if such a magnet of practical utility can indeed exist, would have to be
more compact than its LTS counterpart.
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Size Limit in Magnet with Shorted Terminals

From the protection point of view, it is desirable to make a magnet with shorted
terminals self-protecting. Indeed, most NMR and MRI magnets are designed to
self-protect themselves, not necessarily by NZP to spread the normal zone, but by
induced AC losses and also, as discussed later, by diodes and resistors connected
across the magnet terminals.

Here, we consider the size limit for a magnet with shorted terminals to self-protect
by NZP alone: the adiabatic heating of a magnet with shorted terminals was
discussed in 8.2.3. For this case, τdg = Rnz/L, where Rnz is given Eq. 8.27 (or
Eq. 8.25). Combining Eqs. 8.57 and Eq. 8.27, with Ut given by Eqs. 8.52 and 8.51b,
and solving for the size limit, [a1(α−1)]sh

ah , for the winding build of a self-protecting
magnet with shorted terminals under adiabatic heating, we obtain:

[a1(α − 1)]sh
ah = Ut

(
L

Rnz

)
(8.60a)

=
Jm◦

Cm(T̃ )

√
ρm(T̃ )ki(T̃ )δcd

2δi(Tt − Top)

(
L

Rnz

)
(8.60b)

=
Jm◦

Cm(T̃ )

√
ρm(T̃ )ki(T̃ )δcd

2δi(Tt − Top)
×

4Am

frπ(α + 1)ρm(Tf )

√
μ◦L(α, β)L

a1
(8.60c)

or in terms of Em:

[a1(α − 1)]sh
ah =

1
Cm(T̃ )

√
ρm(T̃ )ki(T̃ )δcd

2δi(Tt − Top)
×

4
frπ(α + 1)ρm(Tf )

√
2μ◦L(α, β)Em

a1
(8.60d)

Again, as with the constant-current heating case treated above, because both
Cm(T̃ ) and Tt−Top appear in the denominator of Eqs. 8.60c and 8.60d, for the
same operating parameters a self-protecting HTS magnet must be considerably
smaller than its LTS counterpart operating at liquid helium temperature.

Answer to TRIVIA 8.1 iii). The German physicist Gustav R. Kirchhoff (1824–
1887) taught the young Kamerlingh Onnes (1853–1926) in Heidelberg (c. 1870);
most noted as the developer, with R.W. von Bunsen (1811–1899), of the first spec-
troscope; identified a half dozen elements, including gold, in the sun. Once asked
by his banker, unimpressed by his claim of a spectroscope’s ability to find gold in
the sun, “Of what use is gold in the sun if I cannot bring it down to earth?”
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8.7 Passive Protection of “Isolated” Magnets*

A passive protection technique is generally used for persistent-mode superconduct-
ing magnets, e.g., MRI and NMR. Unlike the active protection technique discussed
next in 8.8, it generally does not rely on devices located outside the cryostat.

Figure 8.13 presents a circuit for a persistent-mode magnet, which is represented by
two inductors in series. It models, in the simplest way, a real magnet that often has
many “nested” coils. The magnet is shunted by a persistent-current switch (PCS),
whose state is either “normal,” with the heater current on, or superconducting
(heater off). (The circuit does not include the diodes that protect the PCS, as in
a more complete circuit shown in Fig. 7.22. The basic features and operation of
a persistent-mode circuit, including the use of diodes for protection, are described
in DISCUSSION 7.8.) In this model, each coil is shunted with a resistor (R1 or R2),
a key element for protection of an isolated magnet.

For this simple system the self inductance of each coil is identical: L1 = L2 = L;
and the mutual inductance M =k

√
L1L2 =kL, where k is the coupling coefficient;

also R1 = R2 = R. Initially, each coil is carrying a constant transport current I0.
At time t=0, a small normal zone is formed in Coil 1; it is represented by a resistor
r (not included in Fig. 8.13), which for this analysis is constant.

The total magnetic energy of the system is: Em =(L+M)I2
0 . The ratio Er/Em,

where Er is the total energy dissipated in resistor r, is given, with ζ = r/R, by:

Er

Em
=

0.5ζ(1−k) + (1+k)
ζ + (1+k)

(8.61)

COLD ENVIRONMENT

R1 L1

HEATER

PCS M

R2 L2

I1

I2

Fig. 8.13 Circuit for an “isolated,” persistent-mode 2-coil magnet.

“. . . gold outweighs a thousand arguments.” —Medea

* Based on Problem 8.9 in the 1st Edition (Plenum, 1994).
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For r�R(1+k)—a condition that can be met in most high-performance coils—the
analysis also gives expressions for I1(t) and I2(t):

I1(t)
I0

=
R(1+k)2

2r
exp

(
−Rt

2L

)
+

[
1 − R(1+k)2

2r

]
exp

[
− rt

(1−k2)L

]
(8.62a)

I2(t)
I0

= (1+k) exp
(
−Rt

2L

)
− k exp

[
− rt

(1−k2)L

]
(8.62b)

From Eq. 8.62 we may make the following observation.

• Equation 8.61 implies that as r → 0, Er/Em → 1. This is because to transfer
energy into the shunt resistors—the only other elements capable of absorbing
dissipative energy—it is necessary to create a voltage across each shunt resistor.
If the normal zone r is very small, the voltage appearing across shunt resistor
R1 will be very small. As r→0, infinitesimal voltage appears across either shunt
resistor, and the entire magnetic energy is dissipated by the normal zone, giving
rise to Er/Em → 1; fortunately this does not happen in “adiabatic” windings,
because once a normal zone is created in the “adiabatic” windings, r rapidly
increases, providing a sufficient voltage across each shunt resistor.

• Equation 8.61 also states Er/Em → 0.5(1−k) as r→∞, which for k = 1 means
Er/Em = 0. Under this condition, a large voltage appears across each shunt
resistor and most of the total energy is dissipated in the shunt resistors. If the
two coils are well coupled (k → 1), the energy stored in Coil 1 is transferred to
Coil 2 and then dissipated through the shunt resistors.

Note that because the total voltage across the two shunt resistors must remain
0 throughout, equal (but opposite-polarity) current always flows through each
shunt resistor; the two dissipations are identical. That is, each shunt resistor
dissipates an identical amount of energy if R1 = R2.

• Equation 8.62b indicates that when r/R�(1−k2)/2, I2(t), the current in Coil 2,
that is still superconducting, initially increases. The appearance of r in Coil 1
forces current to flow through shunt resistor R1. Because the voltage across the
magnet terminals must remain zero—the PCS is superconducting—an equal
but opposite current must flow in shunt resistor R2(=R1). The current flowing
in each shunt resistor ends up in Coil 2, increasing I2(t) and decreasing I1(t) by
the same amount, preserving flux in the magnet.

• The increase in I2(t) can continue until it reaches the critical current of the
conductor at the innermost winding radius of the coil midplane, inducing a
quench in Coil 2, thus contributing to a rapid expansion of the normal zone. This
process is further explored in the next problem, in which a real coil situation is
studied in more detail.

• A large increase in I2(t), beneficial in triggering a quench, may spell trouble
because, as mentioned above, the flux remains essentially constant, and thus
there will be a large increase in stresses in the winding. This means that in
designing coils that are to be protected by shunt resistors, they must be designed
to withstand the maximum stress that might appear during quenching. An
important parameter here is I2(t)×B2(t) during quenching.



498 CHAPTER 8

Two-Coil Magnet

A 2-coil magnet, with its circuit in Fig. 8.14 [8.45], is studied here as an illustrative
case. The two coils, each wound (close-packed hexagonal) with an insulated NbTi
composite wire and shunted with a 0.5-Ω resistor, are connected in series. The
power supply may be modeled as a constant current source for voltages up to 10 V.

In the analysis, it is assumed that the normal-zone propagation is dominated by
transverse heat conduction. The normal-zone growth is three dimensional—axial
and radial over the entire circumference. Although U� �Ut, because 2πa11U� �
d1Ut, where a11 and d1 are, respectively, the inner winding radius and conductor
diameter of Coil 1, transverse propagation predominates in both sections.

Table 8.6 gives the coil’s appropriate parameters. The total inductance is 1.52 H.
Because Coil 2 is wound directly over Coil 1, the two coils are in good thermal
contact at the interface: the entire coil may be considered as one homogeneous
thermal unit. (Note that, as indicated in Table 8.6, the two coils are wound with
conductors of different diameters, and thus the NZP velocities are different.)

A heater, placed at the midplane of the innermost radius of Coil 1, is used to
initiate a quench. We may thus assume that the normal zone starts as a ring at
the midplane of the innermost radius of Coil 1 and spreads as depicted in Fig. 8.12.

Figure 8.15 shows current and voltage vs. time traces for a heater-driven quench
in which the magnet is initially at 100 A; the power supply voltage limit is 10 V.
Both current and voltage plots consist of four traces: the solid traces (experiment)
and dashed traces (simulation). For both current and voltage traces, the curves
labeled 1 are for Section 1 and the curves labeled 2 are for Section 2. In answering
the following questions, you may ignore the analytical curves.

• The following observations may be made from the traces shown in Fig. 8.15:

1. I1 decreases initially because Section 1 is where the quench is initiated.

2. I2 increases initially to keep the flux constant.

3. The behaviors of I1 and I2 are also reflected in V1 and V2. V1 increases
because ΔI1, not flowing through Section 1, is now flowing through R1.

Table 8.6: Coil Parameters

Parameter Coil 1 Coil 2

Winding i.d. [mm] 76 112

Winding o.d. [mm] 112 134

Winding length [mm] 71 71

Self inductance [H] 0.20 0.72

Mutual inductance [H] 0.30

Wire diameter [mm] 0.90 0.70

Wire length, �d [m] 530 1010

Cu/NbTi ratio 2 3

I1

0.5 Ω L1

I2

0.5 Ω L2

Fig. 8.14 2-Coil Magnet circuit.
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Fig. 8.15 Current and voltage vs. time traces of Coil 1 (labeled 1): experiment
(solid lines) and simulation (dashed); and Coil 2 (labeled 2) for a quench with
the magnet initially at 100 A [8.45].

4. To keep the terminal voltage zero (at least initially), V2 swings negative.
These initial responses are consistent with results discussed in PROBLEM

8.9. Eventually V1 + V2 climbs up to 10V, the power supply limit.

5. At t ∼ 0.2 s, V2 starts climbing up, a definite indication that a normal zone
has been induced in or has reached Coil 2.

6. I2 thus begins to drop, and I1 increases, trying to keep the flux constant.

7. At t ∼ 0.4 s, V1 + V2 reaches 10V, and I1 must start decreasing.

8. V1 + V2 = 10V for t > 0.4 s.

• The total energy dissipated in the magnet, Ed, may be given by:

Ed = Em + Es − ER1 − ER2 (8.63)

where Em is the total energy stored in the magnet initially, Es is the energy
supplied by the power supply between t = 0 and t = 2 s, and ER1 and ER2

are, respectively, energies dissipated in resistor R1 and R2. Em is 7600 J [=
(0.5)(1.52H)(100A)2]. Es is given by Vs(t)Is(t) integrated for 0 ≤t≤ 2 s. Vs(t)
and Is(t) are, respectively, the power supply voltage and current. The power
supply may be modeled as a constant current supply (100A) for 0 ≤ t≤ 0.4 s
and a constant voltage supply (10V) for t ≥ 0.4 s. We have, for 0 ≤ t ≤ 0.4 s,
Vs(t) = V1(t)+V2(t) and, for t ≥ 0.4 s, Is(t) = I1(t)+V1(t)/R1. (A proof of a
relationship similar to this involving more coils is a question in PROBLEM 8.11.)
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Using traces shown in Fig. 8.15, we can compute Es, ER1, and ER2:

Es = (100A)
∫ 0.4 s

0

[V1(t) + V2(t)] dt + (10V)
∫ 2 s

0.4 s

[
I1(t) +

V1(t)
R1

]
dt

� 200 J + 650 J � 850 J

ER1 =
1

R1

∫ 2 s

0

V1(t)2 dt � 50 J ER2 =
1

R2

∫ 2 s

0

V2(t)2 dt � 300 J

The total energy dissipated in the magnet is thus about 5500 J.

• If I0 = 50A the normal zone should reach Coil 2 at ∼0.4 s or later because
Ut ∝ U� ∝ It. Also B is halved or Tc is raised, making the arrival time even
later than 0.4 s. The terminal voltage should reach 10 V later than 0.4 s, perhaps
as late as ∼0.8 s, because shunt voltages will be lower by a factor of 2 and it
takes longer for the terminal voltage to reach 10V.

• The total winding volume (conductor and epoxy filler) is 694 cm3. Assuming
the entire winding heat capacity, Cwd, is of copper, we have:

Vcd[hcu(Tf ) − hcu(Top] � (694 cm3)[hcu(Tf )] = 5500 J

where Vcd is winding volume and hcu is copper’s volumetric enthalpy. For
Tf > Top = 4.2K, hcu(Tf ) � hcu(Top). From Fig. A3.3, we find Tf � 50K,
which roughly agrees with a simulation value of 47 K (see Fig. 8.16).

• When aluminum is substituted for copper, Fig. A3.3 gives Tf = 75K. A simu-
lation gives a temperature of 57K.

Figure 8.16 shows spatially averaged temperature plots for Section 1 and Section
2 of this magnet. The solid curves correspond to Nb-Ti/copper wires, while the
dotted curves correspond to Nb-Ti/aluminum wires [8.46].
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Fig. 8.16 Spatially averaged temperature vs. time plots for Coils 1 and 2. Solid
curves: NbTi/copper wires; dotted curves: NbTi/aluminum wires [8.45].
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8.8 Active Protection

8.8.1 Overheating

Most superconducting magnets, except some used in electric power applications,
are low-voltage devices, capable of storing large amounts of energy in their mag-
netic fields. Protection thus generally means to keep its total energy from being
converted into heat in small winding volumes, which in turn generally means keep-
ing the maximum temperature reached in the energy absorbing regions to a level
considered safe, i.e., below 200 K.

As discussed above, a self-protecting magnet can achieve this protection goal by
having NZP velocities large to enable the winding to expand its energy absorb-
ing volume to a significant portion of its winding volume within the time scale
of the energy conversion. However, as discussed above, there is a size limit for a
self-protecting magnet even for high-performance LTS magnets with fast NZP ve-
locities. Because of very low NZP velocities, HTS magnets are not self-protecting.

An important goal of magnet protection is to limit the maximum Tf in the winding,
as discussed in 8.1, to below 200 K. A self-protecting magnet achieves this goal
by itself, without any active intervening steps provided in the system specifically
for this purpose. In contrast to active protection, we may call the protection of a
self-protecting magnet passive.

The basic approach for active protection is to either 1) transfer most of the stored
magnetic energy, Em, to a mass outside the winding or 2) distribute the energy
over a large portion, fr ≥∼0.1, of the winding volume. Either approach achieves
the goal of Tf <200 K, which may be seen from Eq. 8.7, given here once again:

emr ≡ Em

Vr
=

2(α − 1)βL(α, β)
frπ(α + 1)F 2(α, β)

(
B2

◦
2μ◦

)
(8.7)

Thus, in approach 1), the effective Em converted into heating in the winding is
decreased even when fr remains small; in approach 2), the effective Em remains
the same as the original stored energy, but fr is increased. Each thus lowers emr.

8.8.2 Overstraining in a Multi-Coil Magnet

Although so far not discussed at all, there is another important goal in protection
which is applicable only to a multi-coil magnet in which the coils are inductively
coupled. Here, a quench-induced decay in one coil can induce a large current
in another coil, causing the strain limit to be exceeded in the coil, damaging
it. (Note that this current-induced overstraining is different from temperature-
induced overstraining.)

We have seen this in our 2-coil magnet studied above. As given by Eq. 8.62b,
I2(t)/I0 (current in Coil 2, which remains superconducting when Coil 1 goes nor-
mal) initially rises above I0, and as discussed above, this may lead to overstraining
the conductor in Coil 2—this increase in I2(t) is also seen from the current traces
shown in Fig. 8.15 recorded for a 2-coil system. An active protection technique
that minimizes this current increase is discussed later in this section.
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8.8.3 Active Protection Technique: Detect-and-Dump

This so-called “detect-and-dump” technique is widely used in large magnet sys-
tems. Originally proposed by Maddock and James in 1968 [8.3], its basic premise
is to protect the magnet by transferring most of the stored energy into a “dump”
resistor connected across the magnet terminals. Thus, even for “large” Em, fr

may remain small. Figure 8.17 presents the basic circuit for this detect-and-dump
technique. The magnet is represented by inductance L; the dump resistor, con-
nected across the magnet terminals and usually located outside the cryostat, is
represented by RD. Switch S is opened when a nonrecovering normal zone, repre-
sented by r(t), appears within the magnet. The stored magnet energy, Em, at the
magnet’s operating current Iop is given by LI2

op/2. Note that once the switch S
opens, the circuit becomes identical to the one shown in Fig. 8.3 for 8.2.2, which
discusses relevant points of this technique.

Thus, with most of the potentially dangerous energy dissipated elsewhere, the
normal zone created within the winding is heated only over the brief period of
time during which the magnet current decays to zero. Thus, it is possible to
limit Tf to a safe level: the faster the current decay rate, the lower the hot-spot
temperature. To achieve this fast rate of current discharge, however, the magnet
terminals have to withstand high voltages. Thus, the magnet designer tries to
limit simultaneously Tf and the terminal discharge voltage, VD: two competing
requirements, as is often the case. The relationship between Tf , in the form of
Z(Tf , Ti), and VD (and other key parameters) has already been discussed in 8.2.2
and expressed by Eq. 8.18b:

Z(Tf , Ti) =
Jm◦Em

AcdVD
(8.18b)

where Jm◦ is the matrix metal current density at Iop.

COLD ENVIRONMENT
S

Iop r(t)

RD VD
L

−

+

Fig. 8.17 Magnet circuit for detect-and-dump active protection.
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What all this leads to is an overheating criterion for matrix metal current density
at operating current, JD

m◦ , already derived and given by Eq. 8.19:

JD
m◦ =

AcdZ(Tf , Ti)VD

Em
(8.19)

This active protection technique requires two sequentially executed actions: 1) de-
tection of the non-recovering normal zone, which may be very small; and 2) opening
of the switch S that forces the magnet to discharge through the dump resistor.
The drawback of the technique is that both actions may be unreliable. Detection
of this normal zone is not easy, being obscured by large inductive voltages, because
the action is usually needed while the magnet is being charged, rather than after it
has been charged to Iop and is in the quiescent state. A quench-voltage detection
method useful for this protection technique is discussed later in this section.

Options to Improve JD
mo Equation 8.19 indicates that, for given values of γm/s,

Tf , and Em, there are two options to improve JD
m◦ : increase Acd and/or VD. An

increased Acd leads to an increased Iop. From Fig. 8.2, we note that among the
matrix metals selected in Fig. 8.2, Ag1000 gives the largest Z(Tf , Ti). To improve
JD

m◦ , copper and silver matrix metals are preferable to aluminum and brass.

Increased Acd (and Increased Iop): The following consequences need to be
assessed for this option.

1. Large conductor, which, for a given kA-m (kiloampere-meter), is generally
more expensive than small conductor.

2. Large current leads, which result in a greater heat input into the cryostat.

3. Large B × I forces, e.g., current leads, bus-bar systems.

4. For a given power rating, V I, high-I supplies are generally more expensive
than low-I supplies.

Increased VD: This will obviously increase susceptibility to sparking incidents
for LHe-immersed magnets, particularly when VD exceeds ∼700 V.

Discharge Voltage: VD

For a given Z(Tf , Ti), as may be inferred, for example, from Eq. 8.18, there are
five design parameters: Jm◦ ; Em; γm/s; VD; and Iop. VD is thus given by:

VD =
Jm◦Em

AcdZ(Tf , Ti)
(8.65)

Equation 8.65 states that VD increases linearly with Em and Jm◦ and decreases
inversely with Acd (and hence Iop) and Z(Tf , Ti).

Answer to TRIVIA 8.2 Tsunami (200, in m/s); fastball (42.2); car (2); NZP (0.01).
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Switching Delay

Equations 8.18 and 8.19 are both based on the assumption that the current dis-
charge begins at the instant a non-recovering normal zone is created. In realty,
there is a delay, τdl, between the creation of this normal zone and the start of the
current discharge: τdl is the sum of the delay in the normal zone detection and the
circuit delay for the switch to actually open. During this period the current will
remain at its initial value, Iop. Thus, to compute Tf , through Z(Tf , Ti), we shall
combine Eq. 8.12a, with τdl substituted for τ i

ah(Tf , Ti)), and Eq. 8.16a:

Z(Tf , Ti) =
(

Am

Acd

)
(J2

m◦τdl + 1
2J2

m◦τdg) (8.66a)

=
(

Am

Acd

)
(τdl + 1

2τdg)J2
m◦ (8.66b)

8.8.4 Active Protection Technique: Detect-and-Activate-the-Heater

This “detect-and-activate-the-heater” technique is widely used in large magnets
[8.102–8.110]. Upon the detection of a resistive zone in a magnet, most, or at least a
large portion, of the rest of the winding still in the superconducting state is driven
normal with a “protection heater,” implanted within the winding, that forcibly
increases fr. As shown in Table 8.1, for most magnets the goal of Tf <200 K may be
achieved with fr <0.1, which would make it less cumbersome to plant a protection
heater in the winding than if fr were close to 1. Also note that this protection
heater may be planted in a convenient location in the winding, irrespective of the
quench spot or its initial size [8.75, 8.111]. This concept of implanting a protection
heater in a convenient location is further studied in DISCUSSION 8.6.

Passive Activate-the Heater

Figure 8.18 shows a circuit diagram of a 2-coil persistent-mode (“isolated”) magnet

COLD ENVIRONMENT

COIL 1
Iop Rs Iop

r(t)

MAIN
PCS

Ih

COIL 2
COIL 2 HEATERVh

PCS-H HEATER
I2 Ih

A
PCS-H Ih

Fig. 8.18 Magnet circuit with passive activate-the-heater protection.
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with passive activate-the-heater protection. The circuit is a simplified version of
a persistent-mode NMR magnet [8.101]—in an actual nested-coil magnet each coil
is shunted by a resistor; here for the sake of simplicity, the circuit shows only one
shunt resistor, Rs. In this 2-coil version, Coil 2 (insert to Coil 1) is wrapped with a
heater wire (Coil 2 Heater). Under normal operating conditions, r(t)=0 in Coil 1:
I2 = Iop; Ih = 0; and Vh = 0, where Ih is the current for Coil 2 Heater. When
Coil 1 quenches, r(t) = 0, and voltage Vh is developed across PCS-H Heater, and
PCS-H “opens,” i.e., becomes resistive. At point A most of the magnet current,
Iop, is then diverted to flow through Coil 2 Heater, i.e., Ih >0 (with I2+Ih =Iop),
initiating a normal zone over the outermost layer of Coil 2.

Suitable for persistent-mode magnets, this is a passive version of the detect-and-
activate-the-heater protection, in which voltage-based quench detection is not pos-
sible and not required. There are many variations to the detect-and-activate-the-
heater technique.

8.8.5 Quench-Voltage Detection Technique—Basic Bridge Circuit

One key sequence in the execution of active protection is detection of a nonrecov-
ering quench. The active protection generally forces the magnet discharge, which
disrupts the entire operation: false-alarm discharges must be avoided. Detection
of a genuine quench voltage can be challenging in “noisy” real-world environ-
ments [8.112, 8.113].

Figure 8.19 shows the basic bridge circuit containing two coils, Coil 1 and Coil 2,
connected in series. The two coils can really be one coil divided into two parts. L1

is Coil 1’s self inductance and L2 is Coil 2’s self inductance. (In this model, with
the two coils are connected in series, the mutual inductance between the two coils
can be included in the self inductances.) r represents the resistance of a small
normal zone created in Coil 1 upon its quench. R1 and R2 are the bridge circuit
resistors, and Vout(t) represents the bridge output.

Coil 1 (L1) I(t) R1

r(t)
+ −Vout(t)

Coil 2 (L2) R2

+

Vcl

−

Fig. 8.19 Bridge circuit voltage detection technique.
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In the following analysis, we assume that all circuit elements, including r, are
constant; also we assume that R1 and R2 are sufficiently large so that they do not
“load” the bridge circuit.

For the case when R1 and R2 are “large,” the total voltage across the two coils,
Vcl(t), is given by:

Vcl(t) = L1
dI(t)
dt

+ rI(t) + L2
dI(t)
dt

(8.67a)

For the same condition, the current through the resistors R1 and R2, iR(t), is
given by:

iR(t) =
Vcl(t)

R1 + R2
(8.67b)

From the circuit shown in Fig. 8.19, we have:

Vout(t) = L1
dI(t)
dt

+ rI(t) − R1iR(t) (8.67c)

Combining Eqs. 8.67a–8.67c, we obtain:

Vout(t) = L1
dI(t)
dt

+ rI(t)

− R1

R1 + R2

[
L1

dI(t)
dt

+ rI(t) + L2
dI(t)
dt

]

=
(

R2

R1 + R2

)
L1

dI(t)
dt

−
(

R1

R1 + R2

)
L2

dI(t)
dt

+
(

R2

R1 + R2

)
rI(t) (8.68)

To make Vout(t) proportional only to rI(t), the first two terms in the right-hand
side of Eq. 8.68 must sum to zero:(

R2

R1 + R2

)
L1

dI(t)
dt

−
(

R1

R1 + R2

)
L2

dI(t)
dt

= 0 (8.69)

Equation 8.69 is simplified to give the required condition: R2L1 = R1L2. With
the first two terms in the right-hand side of Eq. 8.68 eliminated, Eq. 8.68 becomes:

Vout(t) =
(

R2

R1 + R2

)
rI(t) (8.70)

As we shall see in DISCUSSION 8.1, the condition in real hybrid magnets is far
from ideal: it is generally very difficult to achieve, in real magnets, the condition
R2L1 = R1L2 independent of I(t) and dI/dt.

In the following PROBLEMS &DISCUSSIONS selected topics discussed above are
further studied, including some finer points.

“ACCIDENT, n. An inevitable occurrence due to the
action of immutable natural laws.” —Ambrose Bierce
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PROBLEM 8.1: Warming up a large superconducting magnet

In the course of testing a superconducting magnet, it is often necessary to warm
up the magnet from, say, 4.2 K, to room temperature. If this cryogen-immersed
magnet is “small,” we may simply leave it in the cryostat unattended with the
liquid cryogen depleted from the cryostat, and in a few hours to a day, the magnet
will warm up to room temperature.

In this problem we consider two methods of warming up “large” magnets, first a
magnet after it has been operated in a bath of liquid helium at 4.2 K, and next
an HTS magnet operated in a bath of liquid nitrogen at 77 K. For a large LHe-
immersed magnet, a method often used is to heat up the magnet by connecting
its terminals to a power supply. Here we consider two power-supply options: 1)
constant current (8.2.1); and 2) constant voltage (8.2.4).

The warming sequence may be described by either of the following differential
equations, in which T is the magnet temperature.

VcdCcd(T )
dT

dt
=

ρm(T )�cd

Am
I2
◦ (Constant Current) (8.71a)

=
Am

ρm(T )�cd
V 2
◦ (Constant Voltage) (8.71b)

where Vcd is the total conductor volume in the magnet, here assumed that thermal
energy is stored only by the conductor; Ccd(T ) is the conductor heat capacity,
here set equal to that of copper, i.e., Ccd(T )=Ccu(T ); ρm(T ) is copper electrical
resistivity, i.e., ρm(T ) = ρcu(T ); �cd is the total conductor length in the magnet;
Am is the copper cross sectional area; I◦ is the current from a constant-current
supply; and V◦ is the voltage from a constant-voltage supply.

Assume that there are no other sources of heat input to the magnet during either
heating mode. (Sometimes, the cryostat vacuum is broken to accelerate the warm-
up process, but this practice is not generally recommended: it causes frosting over
the surfaces of the cryostat, not a neat sight. In a CIC-magnet, helium gas may
be circulated through the winding to facilitate the warm-up process.)

For this particular magnet: Vcd = 0.4 m3; �cd = 104 m; and Am = 1.5×10−5 m2.
(Note that in most magnets, wound with graded conductors, Am is not constant
throughout the winding as assumed here.)

a) Compute an approximate (within ±20% uncertainty) magnet warm-up time
from 10 K to 300 K when heated with a constant-current supply of I◦=25 A.

b) Compute an approximate (within ±20% uncertainty) magnet warm-up time
from 10 K to 300 K when heated with a constant-voltage supply of V◦=25 V.

c) Discuss a practical case in which neither a constant-current nor constant-
voltage heating is possible over the entire temperature range because of lim-
itations of real power supplies.

d) Repeat a), except with an initial temperature of 80 K.

e) Repeat b), except with an initial temperature of 80 K.
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Solution to PROBLEM 8.1

a) We may use Eq. 8.71a to solve for ΔtIw|300K
10K , the warm-up time from 10 K to

300 K under constant-current heating:

ΔtIw|300K
10K =

VcdAm

�cdI2
◦

∫ 300 K

10 K

Ccu(T )
ρcu(T )

dT

=
VcdAm

�cdI2
◦

Z(Tf =300 K, Ti =10 K) (S1.1)

For copper RRR = 100, Z(Tf , Ti) is given in Fig. 8.2: Z(Tf = 300 K, Ti = 10 K) =
15.1×1016 A2 s/m4. Solving for ΔtIw|300K

10K , we obtain:

ΔtIw|300K
10K =

(0.4 m3)(1.5×10−5 m2)(15.1×1016 A2 s/m4)
(1×104 m)(25 A)2

� 1.45×105 s � 40 h � 1 2
3 days (S1.2)

With a constant-current supply feeding 25 A into the magnet, the magnet warms
up from 10 K to 300 K in slightly less than two days.

b) We may use Eq. 8.71b to solve for ΔtVw |300K
10K , the warm-up time from 10 K to

300 K under constant-voltage heating:

ΔtVw |300K
10K =

Vcd �cd

AmV 2
◦

∫ 300 K

10 K

Ccu(T )ρcu(T ) dT

=
Vcd �cd

AmV 2
◦

Y (Tf =300 K, Ti =10 K) (S1.3)

For copper RRR =100, Y (Tf , Ti) is given in Fig. 8.6: Y (Tf =300 K, Ti =10K)=
7.25 V2s/m2. Solving for ΔtVw |300K

10K , we obtain:

ΔtVw |300K
10K =

(0.4 m3)(1×104 m)(7.25 V2s/m2)
(1.5×10−5 m2)(25 V)2

= 3.1×106 s � 860 h � 36 days (S1.4)

With a constant-voltage supply of 25 V across the magnet, the magnet warms up
from 10 K to 300 K in roughly 36 days.

It may be computed that the magnet resistance is about 0.32 Ω at 10 K and 17.2 Ω
at 300 K. It means that with a 25-A supply, the voltage and corresponding power
are, respectively, 8 V and 200 W at 10 K; 430 V and ∼11 kW at 300 K. Similarly,
with a 25-V supply, they are 78 A and ∼2 kW at 10K; ∼1.5 A and ∼35 W at 300 K.

Most constant-current supplies do not deliver unlimited voltage; constant-voltage
supplies do not deliver unlimited current. Therefore, a 25-A mode may require
a warm-up period considerably longer than the ∼2 days computed above, and a
25-V mode considerably longer than 36 days.
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Solution to PROBLEM 8.1 (continuation)

c) Most power supplies generally permit operation in either a constant-current or
a constant-voltage mode. However, there is a limit of voltage for constant-current
mode operation and a limit of current for constant-voltage mode operation. Let us
assume that the power supply considered in this problem has limits of 100 A and
100 V; i.e., it is a 10-kW supply that matches a load of 1 Ω. Because the magnet
resistance, as discussed above, varies from 0.32 Ω at 10 K to 17.2 Ω at 300 K, it is
not possible for this supply to deliver its maximum possible power of 10 kW during
the entire warm-up process.

The quickest real warm-up time is achieved by setting the initial current at 100 A
(V = 1.6 V), letting the supply warm up the magnet at 100-A mode until its
resistance reaches 1 Ω; then switching to a 100-V mode until the magnet reaches
300 K. Let us compute this warm-up time.

10–50 K The temperature at which the magnet has a resistance of 1 Ω, 1/17.2
that at 300 K (from Fig. A4.1), is 50 K. Thus, ΔtIw|50K

10K, the 10 K→50 K warm-up
time under a 100-A mode, with Z(50 K, 10 K)=4.5×1016 A2 s/m4, is given by:

ΔtIw|50K
10K =

(0.4 m3)(1.5×10−5 m2)(4.5×1016 A2 s/m4)
(1×104 m)(100 A)2

� 2.7×103 s = 45 min. (S1.5)

50–300 K From 50 K to 300 K, a 100-V heating mode is used with. With
Y (300 K, 50 K) = 7.25 J Ω/m2, ΔtVw |300K

50K , the 50 K→300 K warm-up time under
a 100-V heating mode, is given by:

ΔtVw |300K
50K =

(0.4 m3)(1×104 m)(7.25 J Ω/m2)
(1.5×10−5 m2)(100 V)2

= 1.93×105 s = 54 h (S1.6)

A total warm-up time of ∼55 h is required for this combined heating mode. Because
as the magnet warms up, a constant-voltage mode delivers less and less power, it
is safer (though generally slower) than a constant-current mode.

d) If we consider a magnet mass to be thermally equivalent to its matrix metal
mass, there is no distinction between a magnet of LTS and a magnet of HTS,
except of course Ti. With Ti =80 K and Z(300 K, 80 K)=7.7×1016 A2 s/m4 used
in Eq. S1.1, we obtain:

ΔtIw|300K
80K � 0.7×105 s ∼ 20 h (S1.7)

e) With Ti =80 K and Y (300 K, 80 K)=7 A2s/m4 used in Eq. S1.4, we obtain:

ΔtIw|300K
80K � 3×106 s � 830 h � 35 days (S1.8)

Note that because there is not much thermal energy stored between 10 K and 80 K,
the warm-up times for the constant-voltage mode are nearly identical for Ti =10 K
and Ti =80 K.
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PROBLEM 8.2: Protection of 6-kA vapor-cooled HTS lead

This problem addresses protection of a 6-kA vapor-cooled HTS current lead studied
in PROBLEM 4.6B, which states that “. . . for this lead a normal metal of 1.735-
cm2 cross section is sufficient against flow stoppage incidents that may occur. . .”

Consider the following fault scenario. A pair of these vapor-cooled leads is con-
nected to a superconducting magnet (inductance L) operated in a bath of liquid
helium at 4.2 K. Upon the detection of a fault—here a flow stoppage in one of
the leads—the magnet is discharged through a dump resistor (resistance RD) con-
nected across the magnet terminals at the warm end of each vapor-cooled lead; i.e.,
the system—magnet and leads—is protected by the detect-and-dump technique.
Here, there are two important time sequences: 1) between the detection of the
fault and the opening of a switch that initiates the magnet current discharge, from
Iop =6 kA, and 2) the current discharge itself. The first sequence is characterized
by a delay time of τdl and the second by a discharge time constant τdg =L/RD.

a) Show that Am =1.735 cm2 will limit Tf for this 6-kA lead to 180 K in case of a
flow stoppage for τdl =5 s and τdg =15 s. Note that in PROBLEM 4.6B special
symbols for lead cross sections, [An]fs and [An]cs, are used for Am, the matrix
metal cross section in the composite superconductor. Assume that after the
flow stoppage, the entire current is carried by the matrix metal alone and
Joule heating is adiabatic. Also assume that Ti =80 K and γm/s =2.

b) Compute the maximum delay time, τdl|mx, so that Tf =300 K. (Unlike within
the winding, here it is assumed that Tf can exceed 200 K safely.)

Solution to PROBLEM 8.2

a) Similar to the Detect-and-Dump protection technique with Switching Delay,
discussed in 8.8.3, the Joule heating of matrix metal here consists of two modes:
1) constant-current during τdl; and 2) current-discharge with a time constant τdg.
Thus, applying Eq. 8.66b, we obtain:

Z(Tf , Ti) =
(

Am

Acd

)
(τdl + 1

2τdg)J2
m◦ (8.66b)

With Am/Acd =γm/s/(γm/s+1), we have:

Z(Tf , Ti) =
(

γm/s

1 + γm/s

)
(τdl + 1

2τdg)J2
m◦ (S2.1)

With τdl = 5 s, τdg = 15 s, Jm◦ = (6000 A)/(1.735×10−4 m2) = 3.46×107 A/m2, and
γm/s =2 inserted into Eq. S2.1, Z(Tf , Ti) becomes:

Z(Tf , Ti) = (12.5 s)
(

2
3

)
(3.46×107 A/m2)2 � 1×1016 A2 s/m4

From Fig. 8.2, we find Z(Tf , Ti =80 K)=1×1016 A2 s/m4 for brass corresponds to
Tf =250 K, which is well within the safe limit of this 6-kA HTS current lead.

b) With Z(300 K, 80 K) � 1.1×1016 A2 s/m4 (Fig. 8.2) for brass into Eq. S2.1
and solving it for τdl, we find: τdl + τdg/2�14 s; τdl�6.5 s.
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PROBLEM 8.3: Protection of a cryostable NbTi magnet*

Consider a cryostable magnet wound with NbTi composite strip, a = 10 mm,
b = 3 mm, and γm/s = 4 (copper matrix metal of RRR = 50). For fp = 0.5 and
qfm = 0.36 W/cm2, Eq. 6.22 gives: [Jm◦ ]Sk = 6.25×107 A/m2, the matrix metal
current density at Iop satisfying the Stekly cryostability criterion. The magnet is
protected with a detect-and-dump method.

a) First show Iop = 1500 A and then compute VD for Em = 10 MJ and Tf =
100 K. To make it easier to recool a magnet to 4.2 K after a dump, Tf is
sometimes set, as here, well below the overstraining limit temperature of
200 K. Note that here JD

m◦ =[Jm◦ ]Sk.

b) Repeat a) for VD for Em = 100 MJ and Tf = 100 K.

Solution to PROBLEM 8.3

a) With Iop = [Jm◦ ]SkAm, where Am = (a×b)γm/s/(1+γm/s), the matrix metal
cross section in the composite, we compute:

Iop = (6.25×107 A/m2)
(10×10−3 m)(3×10−3 m)4

(1 + 4)
= 1500 A

From Eq. 8.19, we solve for VD:

VD =
Jm◦Em

AcdZ(Tf , Ti)
(8.72)

Inserting JD
m◦ =[Jm◦ ]Sk =Jm◦ , Em =10×106 J, Acd =(10×10−3 m)×(3×10−3 m)=

3×10−5 m2, and Z(100 K, 4.2 K)=6.7×1016 A2 s/m4 into Eq. 8.72, we obtain:

VD =
(6.25×107 A/m2)2(10×106 J)

(3×10−5 m2)(6.7×1016 A2 s/m4)
(S3.1)

� 310 V

A discharge voltage of 310 V is safe and should not pose any undue difficulties.

b) With Em = 100 MJ substituted into Eq. 8.72, we obtain: VD = 3100 V, a
very dangerous level within a cryostat environment. One method widely used to
reduce the voltage between a magnet and its cryostat is to center-tap the magnet
dump resistor to ground, the level to which most cryostats are also anchored.
This will limit the relative voltage to ±1550 V. This of course does not reduce the
voltage across the magnet terminals. For some large magnets, such as for Tokamak
fusion, discharge voltages as high as 5 kV–20 kV are considered unavoidable. As
remarked in 8.8.3A, one way to reduce VD is to increase Acd and thus Iop. This is
the reason that large fusion magnets operate in the range 50 kA–100 kA. Note that
if Iop =15 kA (10 times the original Acd) is chosen for this magnet (Em =100 MJ
and Tf =100 K), VD =310 V.

* Based partly on Problem 8.1 in the 1st Edition (Plenum, 1994).
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PROBLEM 8.4: Hot-spot temperatures in Hybrid III SCM*

This problem deals with protection of the Hybrid III SCM (superconducting mag-
net). Table 8.7 lists appropriate conductor parameters. The magnet relies on the
detect-and-dump protection method discussed in 8.8.3A.

The dump resistor RD for Hybrid III is 0.3 Ω. The inductance, L, of the SCM is
8.0 H. At 2230 A (the highest operating current used), the SCM stores a magnetic
energy of 19.9 MJ. (The system’s nominal operating current is 2100 A.)

a) Compute the final temperature, Tf , of the hot spot, where a quench occurred,
for each grade of Nb3Sn and NbTi composite when the SCM is dumped
from 2230 A, assuming that each conductor remains superconducting during
the dump except at the hot spot in each of the four conductors, and that
adiabatic conditions prevail at each hot spot. Assume further that each
hot spot contributes negligible electrical resistance to the circuit. Use the
Z-function for copper (RRR =50) in Fig. 8.2.

What actually happens when the SCM dump is initiated at t=0 is that the entire
SCM is driven normal essentially at t = 0, primarily because of AC heating gen-
erated by the rapid field change within the winding. The winding is subsequently
heated further by Joule dissipation. It is therefore more realistic to include r(t) in
the analysis of current decay. For the sake of simplicity, let us express r(t) by:

r(t) = r0 + ηt (8.73)

where r0 and η are both constants.

b) Show that the SCM current I(t) during the dump (t ≥ 0) may be given by:

I(t) = Iop exp
[
− (RD + r0)

L
t − η

2L
t2

]
(8.74)

Note that I(t = 0) = Iop.

c) Using the above model, compute the total energy dissipated in the SCM, Esm,
for the following set of values: Iop =2230 A; L=8 H; RD =0.3 Ω; r0 =0.3 Ω;
η = 0.04 Ω/s. Unlike, as discussed in 8.4.2 under cryostable conditions,
a normal zone here expands rather than shrinks, thus, η > 0, because a
dump induces dB/dt heating that creates vapor in the winding, upsetting
the cooling conditions that otherwise prevail in cryostable windings.

Table 8.7: Hybrid III SCM Conductor Parameters

Superconductor Nb3Sn NbTi

Conductor Grade HF LF HF LF

Overall width, a [mm] 9.49 9.10 9.20 9.20

Overall thickness, b [mm] 4.52 4.47 2.60 2.00

γm/s [=Am/(Asc+Am)] 4.1 5.3 3.0 10

* Based on Problem 8.2 in the 1st Edition (Plenum, 1994).
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Solution to PROBLEM 8.4

a) In general, when the discharge time constant, τdg, is determined completely
by the magnet inductance L and dump resistor RD, we have, from Eq. 8.16c:

Z(Tf , Ti) =
(

γm/s

1 + γm/s

)
J2

m◦

(
L

2RD

)
(8.16c)

Jm◦ is given by:

Jm◦ =
Iop

Am
=

(
γm/s + 1

γm/s

)
Iop

ab
(S4.1)

Nb3Sn HF: We have:

Jm◦ =
(

5.1
4.1

)
(2230 A)

(9.49×10−3 m)(4.52×10−3 m)

= 6.47×107 A/m2 (S4.2)

Combining Eqs. 8.16c and S4.2, we have:

Z(Tf , 4 K) =
(

4.1
5.1

)
(6.47×107 A/m2)2

(
8 H

2×0.3 Ω

)

Z(Tf , 4 K) = 4.5×1016 A2 s/m4

From Fig. 8.2 (copper RRR = 50), we find Tf ∼65 K for the hot spot.

Table 8.8 presents a summary for the four conductors. From Table 8.8 we note that
because of excessive hot-spot temperatures both grades of the NbTi conductors
may be damaged severely.

b) The circuit differential equation for t ≥ 0 is given by:

L
dI(t)
dt

+ (RD + R0 + ηt)I(t) = 0 (S4.3)

Equation S4.3 may be solved as:

dI(t)
I(t)

= − (RD + R0 + ηt)
L

dt (S4.4)

ln
[
I(t)
Iop

]
= − (RD + R0)

L
t − η

2L
t2 (S4.5)

Table 8.8: Z(Tf , 4K) and Tf Values for Hybrid III Conductors

Conductor Am Jm◦ Z(Tf , 4K) Tf

[10−6 m2] [MA/m2] [1016 A2 s/m4] [K]

Nb3Sn HF 34.5 64.7 4.5 ∼65

Nb3Sn LF 34.2 65.2 4.7 ∼70

NbTi HF 17.9 124.3 15.4 � 300

NbTi LF 16.7 121.4 17.8 � 300
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Solution to PROBLEM 8.4 (continuation)

Solving Eq. S4.5 for I(t), we obtain:

I(t) = Iop exp
[
− (RD + R0)

L
t − η

2L
t2

]
(8.74)

c) There are two methods to solve this problem.

Method 1: The easiest and quickest way to compute Esm is to estimate an
average value of r(t) during the current decay, r̃, and use a simple “voltage divider”
method to determine the energy dissipated in the SCM: Esm = Emr̃/(r̃ + RD),
where in this case Em = 19.9 MJ.

Without r(t), the circuit time constant, τD, is given by L/RD, which is ∼27 s.
From Eq. 8.73 we have: r(0)=0.3 Ω; r(5 s)=0.5 Ω; r(10 s)=0.7 Ω; r(15 s)=0.9 Ω;
r(20 s)=1.1 Ω.

The average of r(t) over this time period is 0.7 Ω, or a new dump time constant of
∼8 s [= L/(RD + 0.7 Ω)]. This means the time average should be taken between 0
and ∼10 s, or a new average value of r̃ of 0.5 Ω. That is, ∼63% [= 0.5/(0.3 + 0.5)]
of 19.9 MJ is dissipated in the SCM: Escm�12.4 MJ.

Method 2: A more rigorous way to determine Esm is to integrate r(t)I2(t).
That is:

Esm =
∫ ∞

0

r(t)I2
0 exp

[
−2(RD + r0)

L
t − η

L
t2

]
dt (S4.6)

Equation S4.6 involves erf functions. Alternatively, it can be integrated graphi-
cally; results are presented in Table 8.9. Integrating r(t)I2(t) over the period from
t = 0 to t = 20 s, we obtain: Esm � 12.2 MJ, which is ∼60% of the energy initial
stored energy; 12.2 MJ is essentially identical to the 12.4 MJ computed above.

Z(Tf ) for HF NbTi now becomes ∼8×1016 A2 s/m4, giving Tf∼125 K; Z(Tf ) for
LF NbTi becomes ∼9×1016 A2 s/m4, giving Tf∼150 K, both below the safe limit
of ∼200 K.

Table 8.9: Energy Dissipated in Hybrid III SCM

t [s] r(t) [Ω] I(t) [A] r(t)I2(t) [MW]
∫ t

0
r(t)I2(t) dt [MJ]

0 0.3 2230 1.49 0

5 0.5 1440 1.04 6.5

10 0.7 820 0.47 10.2

15 0.9 413 0.15 11.7

20 1.1 183 0.04 12.2
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DISCUSSION 8.1: Quench-Voltage Detection—A Variation*

Figure 8.20 represents a schematic model for Hybrid II, another hybrid magnet
once operated at FBNML [3.17]. The superconducting magnet is a NbTi coil
comprised of 22 double pancakes (DP). In addition to the NbTi coil, the water-
cooled insert and copper radiation plates are included in the figure to emphasize
that in a “real” system, magnetic coupling is not confined just to double pancakes;
all components are coupled. The magnetic coupling between these components
complicates the “balancing” of the bridge circuit discussed in 8.8.5.

Two quench-voltage-detection techniques are used for the Hybrid II, whose SCM is
divided into four sections: section B′ (DP 1 through 7); section A′ (DP 8 through
11); section A (DP 12 through 15); and B (DP 16 through 22).

A. Technique I

In this technique, the magnet is divided into A′+A and B′+B. Although inductive
voltage canceling achieved by this technique is slightly better than that achieved
by a more conventional technique that divides the magnet into B′+A′ and A+B,
it is still not entirely satisfactory. The technique cannot completely eliminate all
inductive voltages that are developed whenever either the water-cooled insert or
the NbTi coil is energized.

B. Technique II

The second technique, developed by Ishigohka [8.114], employs voltage taps on
all 22 double pancakes, and combines them into two major components: one that
contains odd-numbered double pancakes, V2n−1(t), and the other that contains

DP22

DP16
DP15

DP12
DP11

DP 8
DP 7

DP 1

⎧⎪⎨
⎪⎩{
{
⎧⎪⎨
⎪⎩

B

A

A′

B′

RADIATION SHIELDS (TOP)

SCM

BITTER INSERT

RADIATION SHIELDS (BOTTOM)

Fig. 8.20 Schematic arrangement of Hybrid II with a Bitter insert, a 22-DP
SCM (superconducting magnet), and radiation shields [3.17].

* Based on Problem 8.4 in the 1st Edition (Plenum, 1994).
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DISCUSSION 8.1: Quench-Voltage Detection—A Variation (continuation)

even-numbered double pancakes, V2n(t). By adjusting the gain of each of 22 sep-
arate amplifiers, we can adjust the voltage from each double pancake to minimize
Vout(t) in the absence of a resistive voltage. Thus:

Vout(t) =
11∑

n=1

[α2n−1V2n−1(t) − α2nV2n(t)] (8.75)

where α2n−1 is the amplifier gain for the (2n−1)th double pancake, and α2n is the
amplifier gain for the 2nth double pancake.

How successfully we can eliminate inductive voltages in Technique I (A+A′ vs. B+
B′) depends on the closeness of inductive voltages of the two parts irrespective of
current level or current sweep rate. In Hybrid II, because the cryostat housing the
NbTi coil was not symmetric about the coil’s midplane, voltage balancing could
not be maintained irrespective of current level or current sweep rate.

Also, more seriously, a bridge circuit setting optimized for charging the NbTi coil
alone is not optimized when the insert is charged, and the optimized setting shifts
with self-field sweep rate as well as with insert sweep rate.

Technique II (odd-numbered vs. even-numbered pancakes) greatly reduces the
asymmetry of the entire system, which includes the coil itself, insert, radiation
shields, and other parts of the cryostat. This makes the total unbalanced induc-
tive voltages orders of magnitude smaller than those of the midplane/ends case.

Figure 8.21 shows three “balanced” voltages, VAA′ , VBB′ , and the odd-even dif-
ference voltage, Vδ for an insert trip from 25 kA [8.114]. Note that the peak value
of VBB′ − VAA′ is about ∼100 times greater than the peak value of Vδ.

Vδ is thus a much more sensitive method for monitoring only the operating con-
dition of the superconducting coil. The cost of improved sensitivity is the large
number of differential amplifiers required, each of which, of course, must not fail.

1 s

5V

100mV

VAA′

VBB′

Vδ

Fig. 8.21 Measured unbalanced voltages from an insert trip in Hybrid II [8.114].
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PROBLEM 8.5: Design of a dump resistor

Here, we study design criteria for the dump resistor RD used in active protec-
tion [8.115, 8.116]. Two parameters are important: 1) the value of RD itself; and
2) the stored magnetic energy, Em. Em is important because in virtually every
dump, the resistor must absorb most of Em; clearly a prudent design assumption
is that 100% of Em is adiabatically absorbed by the resistor. As illustrated in
Fig. 8.22, let us here assume that our resistor is a bar, � long, with a rectangular
cross section of width w and thickness δ.

Because a dump resistor is often subjected to a dump voltage far above 100 V and
absorbs an energy much greater than 1 MJ, in the process heated to 200 K or even
higher above room temperature, its location in the magnet site must be carefully
selected with safety as the most important criterion. Often the dump resistor is
placed in a fenced, isolated area to keep it away from people and other equipment.

a) Show that the resistor length, �, is given by:

� =

√
EmRD

ρCpΔT
(8.76a)

In the above equation ρ is the electrical resistivity of the resistor material,
which is often steel. Because the resistor adiabatically absorbs Em, its tem-
perature will obviously increase, and so will ρ; here, however, we may assume
that ρ is constant. Cp is the resistor material’s heat capacity, which is also
assumed constant, an acceptable assumption here, particularly for T above
300 K. ΔT is the total increase in temperature of the resistor after adiabatic
absorption of Em.

b) Show that the resistor cross sectional area, wδ, is given by:

wδ =

√
ρEm

RDCpΔT
(8.76b)

Dependences of � and wδ on these parameters are all reasonable.

c) Compute � and wδ for the parameters of Hybrid III: Em�20 MJ; RD =0.3 Ω;
and for steel, ρ�10−6 Ω m and Cp�4×106 J/m2 K; and ΔT �200 K.

w

�

δ

Fig. 8.22 Schematic drawing of a dump resistor in the form of a
bar � in length and wδ in cross section.
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Solution to PROBLEM 8.5

a) The dump resistor’s RD is given by:

RD =
ρ�

wδ
(S5.1a)

or

wδ =
ρ�

RD
(S5.1b)

Adiabatic absorption of Em raises the resistor’s temperature by ΔT :

Em = �wδCpΔT (S5.2a)

or

wδ =
Em

�CpΔT
(S5.2b)

Equating Eqs. S5.1b and S5.2b, and solving for �, we obtain:

� =

√
EmRD

ρCpΔT
(8.76a)

b) Inserting � given by Eq. 8.76a into Eq. S5.1b, we have:

wδ =

√
ρEm

RDCpΔT
(8.76b)

c) We compute � and wδ for Hybrid III: Em�20 MJ; RD =0.3 Ω; ρ�10−6 Ω m;
Cp�4×106 J/m2 K; and ΔT �200 K.

� �
√

(2×107 J)(0.3 Ω)
(10−6 Ω m)(4×106 J/m2 K)(200 K)

= 86.6 m

wδ �
√

(10−6 Ω m)(2×107 J)
(0.3 Ω)(4×106 J/m2 K)(200 K)

� 2.9×10−4 m2 � 290 mm2

The dump resistor constructed for Hybrid III consisted of nearly 90 steel bars,
each ∼1-m long, ∼5-cm wide, and 6-mm thick, electrically in series. Note that if
ΔT had been limited to only 100 K, both � and cross section wδ would have had
to have been increased by ∼40%, i.e., ��120 m and wδ�410 mm2.
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DISCUSSION 8.2: “Slow” Discharge Modes for a Magnet

The power supplies most widely available in the laboratory setting are those that
operate only in the +V/+ I quadrant. If such a supply is used to operate a
superconducting magnet (of inductance L), it can take hours to discharge the
magnet, unless of course it is discharged through the dump resistor.

Here, we discuss two simple techniques to achieve a “slow” discharge mode and
set, though roughly, a discharge rate. The circuit diagram of each technique is
shown in Fig. 8.23; in each circuit r� represents the total line resistance of the
circuit, which is typically no greater than ∼1 mΩ.

When a slow discharge of magnet current, Im(t), is required in either technique,
switch S is opened to activate either a low-resistance resistor rd (Fig. 8.23a) or a set
of series-connected diodes (Fig. 8.23b). Note that without one of these elements
activated during the discharge mode, because Vp�0 for a +V/+I-quadrant supply,
Vm(t) = −r�Im(t), and Im(t) decays with a time constant of τm = L/r�. For a
magnet of L = 100 H and r� = 1 mΩ of the circuit, for example, τm � 105 s; it will
take at least a few days to discharge such a magnet.

A. Low-Resistance Resistor

When rd is activated in the circuit, Vm(t) = −(rd +r�)Im(t): Im(t) decreases ex-
ponentially with τm = L/(r�+rd). Obviously, however, the rate of current decay,
dIm(t)/dt, is not constant; it decreases with Im(t):

dIm(t)
dt

= −Im(t)
τm

(8.77a)

For a magnet operating current of, for example, 250 A, rd as high as 10 mΩ may
be used. Thus a magnet inductance of 100 H will result in τm�104 s; the magnet
will discharge in about half a day.

Design criteria for rd is studied below in DISCUSSION 8.3.

r� r�

+ + + +

− − − −
Vp�0 Vm(t) L Vp�0 Vm(t) L

Im(t) Im(t)
S S

rd Vdd− +

↓ ↓

(a) (b)

Fig. 8.23 Circuits for “slow” discharge modes: (a) low-resistance discharge
resistor, rd, activated by switch S; (b) a set of series-connected diodes acti-
vated. In each circuit r� represents the total line resistance and Vp�0.
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DISCUSSION 8.2: “Slow” Discharge Modes for a Magnet (continuation)

B. Series of Diodes

Although an ideal diode operates with zero forward voltage, real diodes do not.
Typically a diode generates a voltage in the range 0.1–0.5 V when carrying current.
Unlike a resistor, this voltage is nearly independent of current above ∼1 A. Thus,
a nearly constant rate of current decay may be maintained as the magnet current
decays. With a total voltage across a set of series-connected diodes of Vdd, for
r�Im(t)�Vdd, the current decay rate is given by:

dIm(t)
dt

= −Vdd

L
(8.77b)

For the same magnet of L = 100 H used as an example above, with Vdd = 2.5 V
(from 5 to 10 diodes), the magnet current decays from 250 A to zero in 10,000 s, or
∼3 hours. Note that each diode here, air- or water-cooled, must be able to handle
a power level from ∼25 W to ∼125 W.

DISCUSSION 8.3: Design of a Low-Resistance Resistor

The design procedure for a low-resistance resistor, rd, is similar to the design of
a dump resistor, studied in PROBLEM 8.5. One important difference is that this
resistor must handle power rather than energy, because here Im(t) decays in a time
scale of hours or at least minutes, definitely not seconds. For the same resistor
geometry as with RD, for w�δ, there are two design equations for rd:

rd =
ρ�

wδ
(8.78a)

rdIm(0)2 � 2w�gcv (8.78b)

where Im(0) is the magnet current when the resistor is activated and gcv, assumed
constant here, is the natural convective heat transfer flux [W/m2] on the resistor
surface, generally (as applied here) of still air or, if the resistor is immersed in a
bucket of water, of still water—the bucket must be large enough for the water to
absorb the total dissipation energy without too much temperature rise.

Equation 8.78b expresses that the total Joule heating generated in the resistor,
rdIm(0)2, is balanced by the total convective heat emanating from the resistor’s
surface, given approximately by 2w�gcv for w � δ. Note also that Im(t), which
actually is decaying slowly, is assumed constant and equal to Im(0) in Eq. 8.78b.
Solving for � from both equations, we obtain:

� � rdIm(0)

√
δ

2ρgcv
(8.79a)

w � Im(0)
√

ρ

2δgcv
(8.79b)

Again, the dependences of � and w on these parameters are plausible.
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DISCUSSION 8.3: Design of a Low-Resistance Resistor (continuation)

Illustration Let us compute � and w of: 1) an air-cooled resistor; and 2) a water-
cooled resistor, for the following set of parameters: rd = 10 mΩ; Im(0) = 250 A;
ρ=10−6 Ω m; and δ=250×10−6 m. Although gcv depends on the temperature and
orientation of the surface and cooling medium, take gcv �20 W/m2 for still air and
gcv �20 kW/m2 for still water.

Air-Cooled Applying Eqs. 8.79a and 8.79b, we obtain:

� � (0.01 Ω)(250 A)

√
(250×10−6 m)

2(10−6 Ω m)(20 W/m2)

� 6.3 m

w � (250 A)

√
(10−6 Ω m)

2(250×10−6 m)(20 W/m2)

= 2.5 m
Note that this 10-mΩ resistor must handle, initially, a total power of 625 W. A
10-mΩ air-cooled resistor satisfying the above two conditions may be constructed,
for example, with 50 steel strips, each strip 250-μm thick, 6.3-m long and 5-cm
wide, connected electrically in parallel.

Water-Cooled

� � (0.01 Ω)(250 A)

√
(250×10−6 m)

2(10−6 Ω m)(20×103 W/m2)

� 20 cm

w � (250 A)

√
(10−6 Ω m)

2(250×10−6 m)(20×103 W/m2)

� 8 cm
As may be seen from Eqs. 8.79a and 8.79b, both � and w approach zero with
increasing gcv; however, the ratio �/w is independent of gcv (and rd). Thus, if a
combination of Im(0), gcv, and rd results, for example, in � = 5 cm and w = 2 cm,
dimensions perhaps too uncomfortably small, a “practical” water-cooled version
of such a resistor may have two 250-μm thick steel strips, each 25-cm long and
5-cm wide, again, connected in parallel.

TRIVIA 8.3 List the items below in descending order of energy.

i) Caloric, burnt by man during an 8-h sleep;

ii) Electric, required to roast an 8-kg stuffed turkey in an oven;

iv) Geomechanical, released by a Richter 8 earthquake;

iii) Magnetic, stored in the Large Helical Device (LHD).
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DISCUSSION 8.4: Overheating & Internal Voltage Criteria

Here we apply the overheating criterion (Eq. 8.30a) and internal voltage criterion
(Eq. 8.40b) to derive the range of matrix current densities permissible for an adi-
abatic magnet such as a typical NMR magnet. Use copper (RRR = 50) as the
matrix material.

Illustration Consider a solenoid coil of a1 =0.15 m; α=1.3; β =3; Em =3 MJ;
and Iop =300 A. From Fig. 3.14, we find L(α=1.3, β=3)�0.54.

Let us first apply the overheating criterion (Eq. 8.30a) for fr =0.5 and Tf =200 K.
Also take γm/s = 1 for this copper composite superconductor. We may also use
ρm(Tf = 200 K) = 1.11×10−8 Ω m and, from Fig. 8.2, Z(Tf = 200 K, Ti = 4.2 K) =
10.5×1016 A2 s/m4. Inserting these parameter values into Eq. 8.30a, we obtain the
maximum limit of the matrix current density, Jsh

mop
, to limit Tf to 200 K:

Jsh
mop

=
(

1 + γm/s

γm/s

)
frπ(α + 1)ρm(Tf )Z(Tf , Ti)

2

√
a1

2μ◦L(α, β)Em
(8.30a)

=
(

1+1
1

)
(0.5)π(1.3+1)(1.11×10−8 Ω m)(10.5×1016 A2 s/m4)

2
×

√
0.15 m

2(4π×10−7 H/m)(0.54)(3×106 J)

� 2(21.1×108 J/m3)(0.19 A m/J) � 805 MA/m2 = 805 A/mm2

Jsh
mop

� 805 A/mm2 is greater than most matrix current densities used even in
“high-performance” magnets. What this implies is that because Jsh

mop
∝ fr, at

Jsh
mop

=300 A/mm2, for example, fr∼0.2 suffices to limit Tf to 200 K.

Let us now apply the internal voltage criterion (Eq. 8.40b) to solve JV
mop

, the
matrix current density meeting the voltage criterion, for the same magnet. Here
let us take Vbk =10 kV.

JV
mop

=
2

fr(1 − fr)

[√
L(α, β)

π(α + 1)

][
VbkIop

ρm(Tf )

√
2μ◦

a1Em

]
(8.40b)

=
2

0.5(1−0.5)

[ √
0.54

π(1.3+1)

] [
(104 V)(300 A)

(1.11×10−8 Ω m)

√
2(4π×10−7 H/m)
(0.15 m)(3×106 J)

]

= 8(0.102)(2.70×1014 A2/m)(2.36×10−6 A−1 m−1)

= 5.2×108 A/m2 = 520 A/mm2

From these values of Jsh
mop

=805 A/mm2 and JV
mop

=520 A/mm2, we may conclude
that at least for this illustrative example, the internal voltage criterion is the one
that limits the matrix current density for this magnet.
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DISCUSSION 8.5: Protection of Bi2223 Tape Current Lead

Nowadays it is common to use HTS current leads between the terminals of a
“dry”(cryogen-free) superconducting magnet at Tcl and the warm ends of the leads
at Twm, which is generally the 1st -stage of the cryocooler. Among several materials
suitable for HTS, we consider here an HTS lead of Bi2223/Ag-Au tape, the same
tape used in the vapor-cooled HTS current leads studied in PROBLEMS 4.4, 4.5,
and 4.6A–C. As discussed there, Ag-Au instead of pure Ag must be used for
current leads to reduce thermal conduction into the cold environment.

Consider a Bi2223/Ag-Au tape � long and a total Ag-Au cross sectional area of
am operating between the cold end (z =0) at temperature Tcl and the warm end
(z=�) at temperature Twm under adiabatic condition.

A. Peak-Temperature Spot Under Uniform Heating

We demonstrate first that if such a tape carrying transport current It becomes re-
sistive over its entire length, melting or severe overheating is most likely at the axial
(z) midpoint, z� �/2. In the following thermal analysis, the matrix thermal con-
ductivity, km, and electrical resistivity, ρm, are assumed temperature-independent.
(Data of Ag-Au thermal conductivity and resistivity, shown in Figs. 4.23 and 4.24
on page 284, indicate this assumption is roughly valid.)

The power equation per unit conductor length under adiabatic condition may be
given by:

amkm
d2T

dz2
+

ρmI2
t

am
= 0 (8.80)

With T (0)=Tcl and T (�)=Twm, T (ζ), where ζ≡z/�, is given by:

T (ζ) = Tcl + (Twm − Tcl)ζ +
ρm�2I2

t

2a2
mkm

(ζ − ζ2) (8.81)

The peak temperature, Tpk, occurs at axial location ζ(Tpk) given by:

ζ(Tpk) =
1
2

+
a2

mkm

ρmI2
t �2

(Twm − Tcl) (8.82a)

For ζ(Tpk)�0.5, Tpk is given by:

Tpk � 1
2 (Tcl + Twm) +

ρmI2
t �2

8a2
mkm

(8.82b)

We can show that for “typical” parameter values the second term of the right-hand
side of Eq. 8.82a is negligible compared with 0.5: indeed Tpk in the tape occurs at
the midpoint of the lead. Thus for km =2 W/cm K and ρm =1×10−6 Ω cm—these
values corresponds roughly to those for Ag-5.3wt% (3at%)Au at 70 K (Figs. 4.23
and 4.24); am = 8×10−3 cm2 (cross sectional area of 4-mm wide Bi2223/Ag-Au
tape); �=15 cm; It =50 A; Tcl =10 K; and Tpk =70 K:

a2
mkm

ρmI2
t �2

(Twm − Tcl) =
(8×10−3 cm2)2(2 W/cm K)

(1×10−6 Ω cm)(50 A)2(15 cm)2
(70 K − 10 K)

� 0.01

Thus the peak temperature point indeed occurs near the tape’s axial midpoint.
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From Eq. 8.82b we obtain:

Tpk � 1
2 (Tcl + Twm) +

ρmI2
t �2

8a2
mkm

= 1
2 (10K + 70K) +

(1×10−6 Ω cm)(50 A)2(15 cm)2

8(8×10−3 cm2)2(2 W/cm K)
� 590 K

B. Meltdown Time

An energy density of � 2900 J/cm3 is required to raise the temperature of silver
from 70 K to 1223 K, its melting temperature. (For estimating the meltdown
time for this tape, we assume the enthalpy of the silver-gold alloy to be that of
silver.) With an average resistivity of this matrix between 70 K and 1200 K of ∼5×
10−6 Ω cm and a constant matrix current density of ∼6000 A/cm2 (= It/am with
It = 50 A and am = 0.008 cm2), the matrix is heated at an average Joule heating
of ∼200 W/cm3. Thus under an adiabatic condition in an evacuated environment
of a cryocooled magnet where these leads are placed, it will take less than ∼15 s
[=(2900 J/cm3)/(200 W/cm3)] to melt the tape; the tapes need to be continuously
monitored and, as discussed below, protected.

C. Additional Remarks

As stated often in this book HTS is very stable, and an event such as that described
above should not occur. However, although a short length of Bi2223/Ag-Au tape
can readily, and quite inexpensively, be replaced, the consequence of a suddenly
opened circuit can be highly dangerous and damaging to the system if the magnet
to which the current leads are connected happens to have a large inductance—note
that V ∝ L(dI/dt): the leads should never be open-circuited, unless the magnet
terminals are shunted with a resistor robust enough to absorb the magnet energy
and remain intact.

As already discussed in DISCUSSION 4.15 and further studied in PROBLEMS 4.6B
and 4.6C, these tapes need to be “protected” with an additional strip of normal
metal having a “low” thermal conductivity (to keep conduction heat input low)
and “low” electrical resistivity.

Answer to TRIVIA 8.3 Quake (1018, in J); LHD (109); turkey (108); sleep (106).
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DISCUSSION 8.6: Active Protection of an MgB2 Magnet

Here, we illustrate a “Detect-and-Activate-the-Heater” protection technique as ap-
plied to a 0.5-T/210-mm room-temperature bore magnet, wound with MgB2 wire
(0.84-mm bare diameter) and operated in persistent mode at 10 K. The magnet
consists of a main coil (Coil M) and two correction coils (Coils C1 and C2). Key
magnet parameters are summarized in Table 8.10. Figure 8.24, a schematic draw-
ing of a 3-coil magnet, defines each solenoid’s axial “left end” location, LE(z). For
this magnet, Coil M, centered about z = 0, LEM(z)= −b, where b is half of its
winding length (2b). For Coil C1, with its left end in the −z region, LEC1(z) is
negative, while for Coil C2, with its left end in the +z region, LEC2(z) is positive.

Figure 8.25 shows a circuit with Coils M, C1, and C2 joined with superconducting
splices and shunted with a persistent-current switch (PCS). The circuit contains
a total of 4 superconducting splices. Note that in this arrangement, it is more
convenient to have each coil contain an odd-number of layers.

Table 8.10: Parameters of a 3-Coil 0.5-T MgB2 Magnet

— MgB2 Wire Diameter (Bare): 0.84mm —

Parameter M C1 C2

Operating temperature Top [K] 10

Winding i.d./o.d. (2a1/2a2) [mm] 260.0/ 268.6 280.0/ 285.3

Winding length (2b) [mm] 599.6 84.56

LE(z)* [mm] −299.8 −299.8 215.24

Turns/layer; # Layers 624; 5 88; 3

Total turns 3120 264

Wire length [m] 2591 235

Operating current Iop [A] 80.0

Overall current density Je @Iop[A/mm2] 96.8087 96.2504

Center field Bz(0, 0) @Iop [T] 0.479 0.021

Center field Bz(0, 0)@Iop [T] 0.500

Peak field |Bpk| @Iop [T] 0.6 0.5

Self inductance [H] 0.925 0.024

Self inductance [H] 1.219

Total stored magnetic energy @Iop [kJ] 3.9

* Left End axial location. (see Fig. 8.24).

C1 C2

M

LEC1(z) LEC2(z)
z

LEM(z) (0, 0)

Fig. 8.24 Schematic drawing of a magnet comprised of three solenoids (C1, M,
C2), defining each solenoid’s “left end” axial location, LE(z). Note that for M,
centered about z=0, LEM(z)= −b, where b is half of its winding length (2b).



526 CHAPTER 8—PROBLEMS & DISCUSSIONS
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End of 3rd Layer Start of 1st Layer End of 3rd Layer
(Coil C2)

Coil C1 Coil C2

Joint#2 Joint#3

Start of 1st Layer (Coil C1)
Joint#1 PCS

End of 5th Layer (CoilM)

Joint#4

CoilM Start of 1st Layer (CoilM)

Fig. 8.25 Schematic drawing of a 3-coil arrangement, shunted by PCS for persistent-
mode operation. The dots represent 4 superconducting MgB2/MgB2 splices.

A. Persistent-Mode Magnets—Passive Protection

A passive protection technique is generally used for persistent-mode supercon-
ducting magnets, e.g., MRI and NMR. Unlike the active protection technique, it
generally does not rely on devices located outside the cryostat. Of the persistent
mode NMR and MRI magnets operated to date, all LTS, virtually all of them
rely on passive protection, primarily because in LTS windings high NZP velocities
spread out the normal zone even if it was initiated at a hot spot, i.e., a very small
volume. In a persistent-mode LTS magnet, the magnet is subdivided into many
coils, shunted by resistors that facilitate energy transfer among coils as well as
energy dissipation. However, the passive protection technique is not applicable to
persistent-mode HTS magnets against a quench initiated at a hot spot.

B. Detect-and-Activate-the-Heater for a Persistent-Mode HTS Magnet

The “detect-and-dump” technique (8.8.3), used widely in large LTS magnets,
protects the magnet by transferring most of the stored energy into a “dump”
resistor connected across the magnet terminals. Because there is no switch that
can be either superconducting when closed or truly open-circuited when open,
the technique has yet to be applied to persistent-mode magnets. However, the
“detect-and-activate-the-heater” technique, applied to LTS magnets [8.102–8.110],
is applicable for persistent-mode magnets, the circuit of one example of which,
applied to to an NMR magnet, is shown in Fig. 8.18.

In the detect-and-activate-the-heater technique (8.8.4), the portion forcibly driven
normal, with a “protection heater,” must be large enough to absorb the entire
magnet energy and still remain at a temperature below 300 K. As illustrated below
for this 3-coil magnet, it is necessary to drive only ∼3% of the entire winding to
satisfy the <300-K requirement. Also as noted earlier, this protection heater may
be planted in a “convenient” location in the winding, irrespective of the size or
location of a hot spot. The important point here is to force a portion of the winding
volume, regardless of its location within the winding, to absorb the entire magnetic
energy and still remain well below 300 K to minimize stresses caused by differential
thermal expansions of the materials within the winding.
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C. Minimum Winding Portion Required to be Driven Normal

As indicated in Table 8.10, a total of 3.9 kJ is stored by this 3-coil magnet at its
operating current of 80 A. If we allow the forcibly-driven-resistive zone to reach
a final temperature of 100 K, its enthalpy density (assuming the entire winding
is thermally represented by copper) at 100 K is 94.3 J/cm3. The total winding
volume required to absorb 3.9 kJ is 41 cm3 or a wire (0.84-mm diameter) length
of 75 m. Because the entire magnet contains ∼3000 m (Table 8.10), only ∼3%
of the entire winding is sufficient to absorb 3.9 kJ and still keep the maximum
temperature to only 100 K, well below 300 K.

D. “Protection Heater”

We discuss key design issues for the “Protection Heater” for this 3-coil magnet:
1) location; 2) power requirement; 3) heater wire & placement; and 4) heater
resistance & power supply.

Location As stated above, the location of a protection heater is not restricted:
the designer can place it where it is easiest to install under real magnet assembly
conditions. Most likely locations for this magnet are over the entire or a portion
of either the 5th layer of Coil M or the 3rd layers of Coils C1 and C2. For this
discussion, let us place the protection heater over Coils C1 and C2. A heater wire
will be wound over the 3rd layers of Coils C1 and C2. Each 3rd layer has 88 turns
(Table 8.10), containing 78-m long MgB2 wire. The two 3rd layers thus have a
total volume of 86 cm3. An energy input of 3.9-kJ to the two 3rd layers translates
to an energy density of 45 J/cm3 (or 5 J/g): each 3rd layer will be heated to 75 K.

Power Requirement For this magnet operating at 10 K, the protection heater
must heat each 3rd layer to the current-sharing temperature, Tcs, which actually
varies along the axial direction. For this illustration, we choose Tcs =30 K for the
entire layer; a total heat input of 150 J is required—a copper enthalpy density at
30 K of 1.74 J/cm3 with a volume of 86 cm3. After the detection of a quench (see
below), this energy will be imparted into the protection heater in ∼0.2 s, then, by
thermal diffusion, into the MgB2 layer, driving it resistive in another ∼0.1 s: the
heated layer will be driven normal no later than ∼0.3 s after the detection of a
quench. The protection heater requires a power of 375 W (=75 J/0.2 s).

Note that this power requirement may be reduced if the protection heater is placed
in a high-field region of the magnet. Then Tcs can be 25 K (345 W, for the same
hot-spot volume to be created) or even 20 K (130 W). The highest-field region is
beneath the 1st layer of Coil M, before its 1st layer is wound and then the entire
magnet assembly is heat treated.

Heater Wire & Placement To ensure intimate thermal contact between the
protection heater and the MgB2 wire in the 3rd layers of Coils C1 and C2, Cu90-
Ni10 wire AWG#20 (0.81-mm diameter bare; ∼0.9 mm diameter insulated) may
be used, wrapped between turns of the layer, enabling the protection heater wire to
form the 4th layer of a close-packed hexagonal arrangement. To improve thermal
contact, the protection wire should be wet wound.
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Heater Resistance & Power Supply Each protection heater has a 10-K re-
sistance of 25 Ω (10-K resistivity: 16.7 μΩ cm). A 10-A/100-V power supply can
deliver a total of 800 W into two 25-Ω heaters, each 400 W. Each protection heater
has an inductance (mostly due to mutual coupling to Coils M and C1 or C2) of
∼0.03 H: a required inductive voltage of ∼1 V to ramp up the heater current to
4 A in 0.1 s is negligible compared with a resistive voltage of 100 V. With a current
density of ∼8 A/mm2, the heater will not be overheated even if activated for >10 s.

E. Quench Detection: Heating Process & Required Detection Time

In the detect-and-activate-the-heater protection, the first critical step is the detec-
tion of the quench. We assume that a hot spot is adiabatically heated. We further
assume that the matrix current remains constant at Iop (see below) or its density,
Jm(t) = Jm◦ = Iop/Am. From Eq. 8.9c we may compute τah, the time for the hot
spot to be adiabatically heated from Ti to Tf :∫ Tf

Ti

Cm(T )
ρm(T )

dT =
(

Am

Acd

)
J2

m◦τah (8.9c)

With ρm= 0.017μΩ cm (copper, Ti =10 K), Am/Acd =0.19, and Jm◦ =762 A/mm2

(at Iop= 80 A), we compute τah�1.5 s for Tf =300 K, the absolute limit. A quench
must be detected in ∼0.5 s or less.

F. Hot Spot Size

The hot spot size may be estimated from the size of MPZ, Rmz, given by Eq. 6.33:

Rmz =

√
3kwd(Tc − Top)

ρmJ2
m

(6.33)

In Eq. 6.33, Rmz is the radius of a spherical MPZ, in which its thermal conductivity,
kwd, is equal in the three orthogonal directions; Tc =Tcs, where Tcs is the current-
sharing temperature, and Jm = Jm◦ . For our application here, we assume kwd =
km =10 W/cm K (copper, 10 K) and the thermal conduction is only along the wire
axis—the MPZ is needle-shaped. With Tcs ≈ 30 K for this MgB2 wire at 80 A,
ρm= 0.017μΩ cm, and Jm◦ = 762 A/mm2, we obtain: Rmz � 2.5 cm, i.e., the hot
spot is 5-cm long along the wire. That is, any hot spot shorter than ∼5 cm will
shrink, by conduction cooling along the wire axis, and return to superconducting.
In the following analysis, let us assume that the hot spot remains 5-cm long as it is
heated adiabatically during the next 1 s or so. (In reality, because NZP velocities of
MgB2 are comparable with those of LTS, as seen in Table 8.5, the actual length of
an MgB2 resistive zone can potentially be much greater than Rmz: the protection
heater can thus be considerably shorter than that computed above.)

G. Growth of Hot-Spot Resistance and Resistive Voltage with Time

Until the protection heater is activated, at t = 0.5 s, we may assume the magnet
current to remain at 80 A. Equation 8.9c may be used to compute T (t), with τah
replaced by t. Table 8.11 gives time-dependent parameters of the hot-spot for the
first 1.3 s, when its temperature reaches 265 K.
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Table 8.11: Approximate Parameter Values at Hot Spot During Quench

t [s] T [K] ρm [μΩcm] Rm [μΩ] Vr [mV] dIop/dt [mA/s]

0 30 0.017 81 6.5 −5.3

0.5 60 0.11 523 42 −34

1.0 150 0.72 3423 274 −225

1.3 265 1.55 7385 591 −485

H. Quench Detection Techniques

Voltage signals that may be used to activate the protection heater include: 1)
voltages across Coils M, C1, and C2; 2) voltage across the persistent current switch
(PCS), which is slightly inductive; and 3) voltage from a Rogowski coil, placed
within the magnet chamber, that measures the magnet current (PROBLEM 2.9).

The voltages across Coil M, VM (t), Coil C1, VC1(t), and Coil C2,VC2(t), are:

VM (t) = Vr(t) + (LM + MMC1 + MMC2)
dIop(t)

dt
(8.83a)

VC1(t) = (LC1 + MC1M + MC1C2)
dIop

dt
= VC2(t) = − 1

2VM (t) (8.83b)

where MMC1 and MMC2 are the mutual inductances between Coil M and, respec-
tively, Coils C1 and C2, each 0.061 H; and LM =0.925 H (Table 8.10). Similarly,
LC1 =0.024 H (Table 8.10), MC1M =0.061 H, and MC1C2 =0.004 H. Note that as
long as the PCS remains superconducting:

VM (t) + VC1(t) + VC2(t) = 0 (8.83c)

At t=1.0 s, for example, we have Vr(t)=274 mV (Table 8.11). Inserting appropri-
ate values into Eqs. 8.83a and 8.83b, we obtain: VM =38.6 mV and VC1 =−20.0 mV
(VC1�− 1

2VM ), each large enough to be used to trigger the protection heater.

Note that if more voltage taps are placed on Coil M, each across its smaller winding
section, then one of these voltages may likely be dominated by Vr(t), because for
the same Vr(t), e.g., 274 mV at t = 1 s, the negative inductive voltages over a
smaller winding section would be smaller. Such a voltage at t=1 s would be closer
to 274 mV rather than 38.4 mV, as computed above across the entire Coil M.

One application of persistent-mode operation widely applied is MRI magnets, to
date exclusively LTS-based but possibly HTS-based in the future. If the coil
voltages are to trigger the protection heater, these voltages might include very
large erroneous signals when the pulse gradient coil in such an MRI magnet is
excited during MRI measurements. Although, averaged over one end to the other
end of the gradient coil, its axial field is zero, still, “unbalanced” voltage signals
may be large enough to be mistaken for a genuine quench voltage.

In this respect, it may be possible to make the voltages across the slightly inductive
PCS and the Rogowski coil less susceptible to the gradient coil excitation. This
can be accomplished by having each placed within the magnet enclosure where
magnetic coupling with the gradient coil is minimal.
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PROBLEM 8.6: Passive protection of an NMR magnet*

Using experimental results recorded for the NbTi coils of a 750-MHz (17.6 T)
superconducting magnet developed at FBML as examples [8.101], we study details
of voltage and current signals developed within a multi-coil insert of a persistent-
mode NMR magnet. The full magnet system has 12 nested solenoidal coils, of
which the 7 innermost coils are wound with Nb3Sn conductors and the 5 outermost
coils are wound with NbTi conductors. Each coil is impregnated with epoxy
resin and incorporates the “floating-winding” technique [7.31, 7.32]. Figure 8.26
indicates the locations of the 12 coils.

As may be inferred from Fig. 8.26, Coils 10, 11, and 12 are so-called “correction”
coils, whose primary function is to improve the field homogeneity at the magnet
center; they form a variant of the notched solenoid studied in PROBLEM 3.7.
Coil 9, wound on one coil form, has two sections, each shunted, and Coils 11 and
12 share one shunt resistor, as shown in Fig. 8.27.

8 9

7
6

5
3 4

12 12

10

11

Fig. 8.26 Drawing showing the locations of 12 coils in a 750-MHz (17.6T)
magnet [8.101]. The horizontal scale in this sketch is 4.5 times the axial scale.

* Based on Problem 8.11 in the 1st Edition (Plenum, 1994).
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PROBLEM 8.6: Passive protection of an NMR magnet (continuation)

8 9a 9b 10 11 12

S8 S9a S9b S10 S11/12

Fig. 8.27 Circuit for the NbTi coils.

Figure 8.27 includes neither a persistent switch nor diodes shunting the entire
system because discussion here chiefly concerns premature quenching that occurs
during system charge up when both the switch and the diodes are “open.” Because
of the presence of the power supply, the entire system is “shorted,” as is the case
when the system is in persistent mode.

The values of the inductance matrix and shunt resistors are given, respectively, in
Tables 8.12 and 8.13. As is evident from Table 8.12, although ideally identical,
Coils 11 and 12 actually have slightly different values of inductance.

Our rule of thumb in determining values of shunt resistors in such a multi-coil
system is to first choose a total value of shunt resistance from voltage consider-
ations. In this particular example, a value of ∼1.5 Ω was selected because at an
operating current of 310 A, it would translate to a voltage level of ∼500 V—a safe
level. Each shunt resistor is then selected to be roughly proportional to each coil’s
total stored energy.

Table 8.12: Inductance Matrix [H] for the NbTi Coils

Coil 8 9a 9b 10 11 12

8 4.413 2.268 2.243 0.715 2.747 2.755

9a 2.268 1.344 1.343 0.427 1.645 1.649

9b 2.243 1.343 1.404 0.450 1.737 1.742

10 0.715 0.427 0.450 0.606 0.378 0.379

11 2.747 1.645 1.737 0.378 5.382 0.368

12 2.755 1.649 1.742 0.379 0.368 5.410

Table 8.13: Shunt Resistors [mΩ] for the NbTi Coils

S8 S9a S9b S10 S11/12

288 156 165 58 868
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Figure 8.28 shows a set of voltage traces recorded when the magnet quenched
prematurely at 227A. As evident from the traces, the quench started in Coil 9a;
signals from AE sensors (not shown here) indicated the premature quench was
caused by a mechanical event occurring in the magnet system. Because a resistive
voltage first appeared in Coil 9a, it is most likely that the mechanical event took
place in Coil 9a. Note that between t = 1.6 s and t = 2.25 s, V11/12, the sum of
recorded voltages from Coils 11 and 12, is saturated.

Figure 8.29 shows a set of computed current traces through the coils based on the
voltage traces shown in Fig. 8.28; Table 8.14 shows a set of dI/dt values at selected
times for the current traces shown in Fig. 8.29.
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Fig. 8.28 Voltage traces recorded across Coils 8, 9a, 9b, 10, and 11/12
following a quench at 227 A [8.80].
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Fig. 8.29 Current traces through Coils 8, 9a, 9b, 10, and 11/12 corresponding
to the voltage traces of Fig. 8.28. The dotted curve is the supply current, I0.

Table 8.14: Values of dI/dt at Selected Times

dI/dt [A/s]

t = 0.5 s t = 1.0 s t = 1.5 s t = 4.0 s

Coil 8 84.5 147.2 −252.8 −56.1

Coil 9a −154.1 −234.7 −62.1 −48.9

Coil 9b −107.1 −198.1 −57.8 −42.8

Coil 10 41.3 −44.8 81.5 −47.4

Coils 11/12 33.6 19.3 113.1 −48.9
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a) Show that the current in each coil may be determined from the coil’s V trace
according to the following equations:

I8 = I0 −
V8

S8
(8.84a)

I9a = I0 −
V9a

S9a
(8.84b)

I9b = I0 −
V9b

S9b
(8.84c)

I10 = I0 −
V10

S10
(8.84d)

I11/12 = I0 −
V11/12

S11/12
(8.84e)

where I0 is the power supply current.

b) Almost immediately after Coil 9a is driven normal, which is evident from its
rising voltage trace (Fig. 8.28), Coil 9b follows, inducing excess currents in
the rest of the coils (Fig. 8.29). Coil 10 is the next to go normal, followed
by Coil 8, whose current starts decreasing at t = 1.2 s. Compute the sum of
inductive voltages appearing across Coil 8 at t=0.5 s and show that Coil 8 is
still completely superconducting at that time.

c) Show that, although its voltage is still decreasing, Coil 8 already has a normal
zone at t = 1.0 s, and estimate its resistance. Also discuss how we might
determine the precise moment at which the normal zone appears in Coil 8.

d) Compute an approximate value of the net Joule heating [W] generated by the
entire magnet (Coils 8–12) at t = 4.0 s. Pay attention to the word approxi-
mate.

e) At t∼1 s, when Coil 8 already has been driven normal, its peak field is ∼6 T
and the conductor’s critical current (at 4.2 K) is ∼900 A, well above the
observed quench current of ∼270 A (an average of Coil 8 currents at t =
0.5 s and t = 1.0 s, from Fig. 8.29). Offer plausible sources of the seemingly
improbable quench initiated in Coil 8 at this low current.

f) Explain why Coils 11 and 12 are not shunted separately.

g) Make a general comment about the risk of not shunting the two coils (11 and
12) separately.

“For a successful technology, reality must take precedence over public
relations, for nature cannot be fooled.” —Richard P. Feynman
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Solution to PROBLEM 8.6

a) From Fig. 8.27, it is clear that I8 = I0 − Ir8, where Ir8 is the current flowing
in shunt resistor 8: Ir8 =V8/S8. Thus:

I8 = I0 − Ir8

= I0 −
V8

S8
(8.84a)

Similarly, we have:

I9a = I8 + Ir8 − Ir9a = I0 −
V8

S8
+

V8

S8
− V9a

S9a

= I0 −
V9a

S9a
(8.84b)

I9b = I9a +
V9a

S9a
− V9b

S9b
= I0 −

V9a

S9a
+

V9a

S9a
− V9b

S9b

= I0 −
V9b

S9b
(8.84c)

I10 = I9b +
V9b

S9b
− V10

S10
= I0 −

V9b

S9b
+

V9b

S9b
− V10

S10

= I0 −
V10

S10
(8.84d)

I11/12 = I10 +
V10

S10
− V11/12

S11/12
= I0 −

V10

S10
+

V10

S10
− V11/12

S11/12

= I0 −
V11/12

S11/12
(8.84e)

b) Voltage across Coil 8, V8, is given by:

V8 = Vr|8 + L8
dI8

dt
+ M8,9a

dI9a

dt
+ M8,9b

dI9b

dt

+ M8,10
dI10

dt
+ M8,11

dI11

dt
+ M8,12

dI12

dt
(S6.1)

where Vr|8 is the resistive voltage across Coil 8 due to the presence of a normal
zone. Inserting appropriate values at t = 0.5 s, taken from Tables 8.12 and 8.14,
into the right-hand side of Eq. S6.1, we obtain:

V8 � Vr|8 + (4.413 H)(84.5 A/s) + (2.268 H)(−154.1 A/s)

+ (2.243 H)(−107.1 A/s) + (0.715 H)(41.3 A/s)

+ (2.747 H)(33.6 A/s) + (2.755 H)(33.6 A/s) (S6.2a)

V8 = Vr|8 + 372.9 − 349.5 − 240.2 + 29.4 + 92.4 + 92.6

= Vr|8 − 2.5 V (S6.2b)
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Solution to PROBLEM 8.6 (continuation)

From Fig. 8.28, we find V8 �−2.3 V at t=0.5 s, which is nearly equal to the net
inductive voltage given by Eq. S6.2b, making Vr|8�0 V at t=0.5 s. Coil 8 thus is
still superconducting at t=0.5 s.

c) Again, inserting appropriate values into Eq. S6.1, we obtain V8 at t=1.0 s:

V8 = Vr|8 + (4.413 H)(147.2 A/s) + (2.268 H)(−234.7 A/s)

+ (2.243 H)(−198.1 A/s) + (0.715 H)(−44.8 A/s)

+ (2.747 H)(19.3 A/s) + (2.755 H)(19.3 A/s) (S6.3a)
V8 = Vr|8 + (649.6 − 532.3 − 444.3 − 32.0 + 53.0 + 53.2) [V]

= Vr|8 − 252.9 [V] (S6.3b)

According to the voltage trace of Fig. 8.28, V8 = −23 V at t = 1.0 s, thus from
Eq. S6.3b, we have Vr|8 � 230 V. From Fig. 8.29, we find I8 � 306 A, and thus
R8 = 230 V/306 A =0.75 Ω.

We can determine the precise moment when a normal zone appears in Coil 8 by
finding the time at which Vr|8 just begins to become nonzero.

d) The Joule heating generated by the entire magnet, Pmg, is given by:

Pmg =
12∑

n=8

Vr|n×In (S6.4)

It is thus necessary to compute Vr for each coil as in b) or c). However, at
t = 4.0 s, we note that each coil has nearly the same values of: 1) voltage, Ṽ ∼ 0 V
(Fig. 8.28); 2) current, Ĩ ∼ 90 A (Fig. 8.29); and 3) time rate of change of current,
dĨ/dt∼−50 A/s (Table 8.14). Thus, for this particular time Eq. S6.4 may be
approximated by:

Pmg �
(

Ṽ −
12∑

m,n=8

Lm,n
dĨ

dt

)
×Ĩ (S6.5)

Note that the term within the parentheses in Eq. S6.5 is equal to the approximate
resistive voltage across the entire magnet. From Table 8.12, we obtain the sum of
the inductances to be 60.25 H. With dĨ/dt � −50 A/s and Ĩ � 90 A, we have:

Pmg � [0 − (60.25 H)(−50 A/s)](90 A) � 270, 000 W (S6.6)

Because Ṽ ∼0, the inductive and resistive voltages are nearly balanced, and at this
time the total resistive voltage has an amplitude of ∼3000 V (∼270,000 W/90 A)—
this is an example of an internal voltage generated within a quenching magnet,
discussed in 8.3.3. From this voltage, we estimate that the total magnet resistance
has grown to ∼33 Ω (∼3000 V/90 A).
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e) According to our criterion, and incorporated in quench codes developed over
the past ∼10 years at FBNML and successfully applied [8.45, 8.47, 8.55, 8.85], an
induced quench in a target coil occurs when the target coil’s transport current
[in this case I8(t)] reaches the critical current corresponding to temperature Top

(4.2 K) and maximum field within the coil. Based on this criterion, the observed
premature quench should never have taken place at 270 A; it is much lower than
900 A, the estimated critical current of Coil 8’s conductor at the time of the quench.
Apparently, the criterion works well for premature quenches in the source coil
occurring at relatively high currents, near designed operating currents, so that
they are closer to the critical currents (at Top) of the target coils.

It should be noted that the condition of constant conductor temperature at Top is
not valid, particularly in adiabatic windings subjected to time-varying magnetic
field and current [8.79]. AC losses raise the local conductor temperature, reducing
critical current in the target coil. Thus it is indeed possible to have a target coil
quenching at a current close to the observed value of ∼270 A.

That coupling loss is an additional heating source in a quenching adiabatic winding
is quite significant. Because filament twist pitch length (�p) is a key parameter
in controlling coupling loss, it implies that �p is another critical design parameter
relating to protection of these high-performance magnets; within a reasonable
extent, �p should be specified to be intentionally long for protection purposes.

f) Both Coils 11 and 12 are situated off the magnet midplane. There is thus a net
axial force acting on Coil 11 (located below the midplane) towards the midplane
(+z-directed) and a net axial force acting on Coil 12 (located above the midplane)
towards the midplane (−z-directed). As long as the currents through Coil 11 and
Coil 12 are identical, there will be no net unbalancing axial force acting on the
system. This force-balance condition can be preserved only if the two coils are
connected in series with a common shunt resistor across them.

If each coil is shunted independently, the current induced in each coil will be
different, potentially creating a massive net unbalanced force on the system. At
t = 1 s, suppose, instead of both coils carrying a current of 250 A as is the case
according to Fig. 8.29, Coil 11 carried 275 A and Coil 12 carried 225 A. Under
this condition, the force pushing Coil 11 upward would be 581 kN and the force
pushing Coil 12 down would be 525 kN, with a resulting net unbalanced upward
axial force of 56 kN, or almost 6 tons!

g) Although not evident from these sets of voltage and current traces, particu-
larly as the voltage trace for Coil 11/12 is saturated between t = 1.3 s and t = 2 s,
the most critical danger in connecting Coils 11 and 12 in series and having a com-
mon shunt resistor is that in case of a quench in either Coil 11 or Coil 12, very
high inductive voltages can be generated within the combined coil.

“Truth is not always in a well.” —C. Auguste Dupin
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DISCUSSION 8.7: To Protect or Not to Protect an HTS Magnet

Whether to protect or not to protect an HTS magnet against quench-induced
damage is a dilemma, because, under normal operating conditions an HTS magnet
is unlikely to quench. One decision-making guide is economics: let us assign the
costs of an unprotected HTS magnet, a quench detection/protection system, and
replacing the damaged magnet with another unprotected magnet, respectively, as
$M , $qp, and $rp. $rp includes not only $M but also, $ra, the costs associated with
magnet replacement activities. Let us assign Pdm as the probability of having to
replace the quench-damaged original unprotected magnet. Then the total costs
of an HTS magnet armed with a quench detection/protection, $T/w, and of an
unprotected HTS magnet but with $rp to be added later, $T/wo, are given by:

$T/w = $M + $qp (8.85a)

$T/wo = $M + Pdm($M + $ra) (8.85b)
In Eq. 8.85a it is assumed that a protected HTS magnet will never have to be
replaced because of quench-induced damages. Thus to protect or not protect an
HTS magnet depends on $M , $qp, $ra, and Pdm. If $qp is large and Pdm is small
enough such that $qp > Pdm($M + $ra), then $T/w > $T/wo. Under this condition,
economics dictates not to protect an HTS magnet against quench incidents.
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[8.42] D. Ciazynski, C. Curé, J.L. Duchateau, J. Parain, P. Riband, B. Turck, “Quench
and safety tests on a toroidal field coil of Tore Supra,” IEEE Trans. Magn. 24,
1567 (1988).

[8.43] A.A. Konjukhov, V.A. Malginow, V.V. Matokhin, V.R. Karasik, “Quenching of
multisection superconducting magnets with internal and external shunt resistors,”
IEEE Trans. Magn. 25, 1538 (1989).

[8.44] Arnaud Devred, “General formulas for the adiabatic propagation velocity of the
normal zone,” IEEE Trans. Magn. 25, 1698 (1989).

[8.45] C.H. Joshi and Y. Iwasa, “Prediction of current decay and terminal voltages in
adiabatic superconducting magnets,” Cryogenics 29, 157 (1989).

[8.46] Yu.M. Lvovsky, “Thermal propagation of normal zone with increasing temperature
level in helium-cooled and high temperature superconductors,” Cryogenics 30, 754
(1990).

[8.47] Z.P. Zhao and Y. Iwasa, “Normal-zone propagation in adiabatic superconduct-
ing magnets: I. Normal-zone propagation velocity in superconducting composites,”
Cryogenics 31, 817 (1991).

[8.48] G. Lopez and G. Snitchler, “Quench propagation in the SSC dipole magnets” IEEE
Trans. Magn. 27, 1973 (1991).

[8.49] A. Ishiyama, Y. Sato, and M. Tsuda, “Normal-zone propagation velocity in super-
conducting wires having a CuNi matrix,” IEEE Trans. Magn. 27, 2076 (1991).

[8.50] M. Iwakuma, K. Funaki, M. Takeo and K. Yamafuji, “Quench protection of super-
conducting transformers,” IEEE Trans. Magn. 27, 2080 (1991).

[8.51] S. Fujimura and M. Morita, “Quench simulation of 4.7 tesla superconducting mag-
net for magnetic resonance spectroscopy,” IEEE Trans. Magn. 27, 2084 (1991).



PROTECTION—REFERENCES 541

[8.52] C. Haddock, R. Jayakumar, F. Meyer, G. Tool, J. Kuzminski, J. DiMarco, M.
Lamm, T. Jeffery, D. Orris, P. Mazur, R. Bossert, J. Strait, “SSC dipole quench
protection heater test results,” 1991 Particle Accelerator Conf., 2215 (1991).

[8.53] E. Acerbi, G. Baccaglioni, M. Canali and L. Rossi, “Experimental study of the
quench properties of epoxy impregnated coupled coils wound with NbTi and
NbSn,” IEEE Trans. Magn. 28, 731 (1992).

[8.54] M.K. Chyu and C.E. Oberly, “Influence of operating temperature and contact
thermal resistance on normal zone propagation in a metal-sheathed high-Tc super-
conductor tape,” Cryogenics 32, 519 (1992).

[8.55] R.H.Bellis and Y. Iwasa, “Quench propagation in high Tc superconductors,” Cryo-
genics 34, 129 (1994).

[8.56] G. Baccaglioni, M. Canali, L. Rossi and M. Sorbi, “Measurements of quench veloc-
ity in adiabatic NbTi and NbSn coils. Comparison between theory and experiments
in small model coils and large magnets,” IEEE Trans. Magn. 30, 2677 (1994).

[8.57] Hunwook Lim and Yukikazu Iwasa, “Two-dimensional normal zone propagation in
BSCCO-2223 pancake coils,” Cryogenics 37, 789 (1997).

[8.58] Nghia Van Vo, Hua Kun Liu and Shi Xue Dou, “Construction and normal zone
propagation analysis of high Tc superconducting Bi(Pb)-2223/Ag class II coils and
magnets,” IEEE Trans. Appl. Superconduc. 7, 893 (1997).

[8.59] S.B. Kim and A. Ishiyama, “Normal zone propagation properties in Bi-2223/Ag
superconducting multifilament tapes,” Cryogenics 38, 823 (1998).

[8.60] S.S. Oh, Q.L. Wang, H.S. Ha, H.M. Jang, D.W. Ha and K.S. Ryu, “Quench char-
acteristics of Bi-2223 coil at liquid helium temperature,” IEEE Trans. Appl. Su-
perconduc. 9, 1081 (1999).

[8.61] V.S. Vysotsky, Yu. A. Ilyin, T. Kiss, M. Takeo, M. Lorenz, H. Hochmuth, J. Schnei-
der, R. Woerdenweber, “Quench propagation in large area YBCO films,” IEEE
Trans. Appl. Superconduc. 9, 1089 (1999).

[8.62] A.V. Dudarev, A.V. Gavrilin, H.H.J. ten Kate, D.E. Baynham, M.J.D. Courthold
and C. Lesmond, “Quench propagation and protection analysis of the ATLAS
toroids,” IEEE Trans. Appl. Superconduc. 10, 365 (2000).

[8.63] F.-P. Juster, J. Deregel, B. Hervieu, J.-M. Rey, “Stability and quench propagation
velocities measurements on the ‘racetrack’ mock-up of ATLAS toroid coil,” IEEE
Trans. Appl. Superconduc. 10, 677 (2000).

[8.64] J.W. Lue, M.J. Gouge, R.C. Duckworth, D.F. Lee, D.M. Kroeger, and J.M. Pfoten-
hauer, “Quench tests of a 20-cm long RaBiTS YBCO tape,” Adv. Cryogenic Engr.
48, 321 (2002).

[8.65] Naoyuki Amemiya, Noritaka Hoshi, Nobuya Banno, Takao Takeuchi, and Hitoshi
Wada, “Quench propagation and stability of Nb3Al superconductors made by rapid
heating, quenching, and transformation process,” IEEE Trans. Appl. Superconduc.
12, 1001 (2002).

[8.66] R. Grabovickic, J.W. Lue, M.J. Gouge, J.A. Demko, R.C. Duckworth, “Measure-
ments and numerical analysis of temperature dependence of stability and quench
propagation of 9.5- and 20-cm long RaBiTS YBCO tapes,” IEEE Trans. Appl.
Superconduc. 13, 1726 (2003).

[8.67] F. Trillaud, H. Palanki, U.P. Trociewitz, S.H. Thomson, H.W. Weiers, J. Schwartz,
“Normal zone propagation experiments on HTS composite conductors,” Cryogenics
43, 271 (2003).

[8.68] François-Paul Juster, Alexey V. Dudarev, Philippe Fazilleau, and François Kircher,



542 CHAPTER 8—REFERENCES

“Conceptual and experimental results of the transverse normal zone propagation in
the B0ATLAS-barrelmodel coil,” IEEETrans.Appl. Superconduc.14, 1322 (2004).

[8.69] Atsushi Ishiyama, MasahiroYanai, Toru Morisaki, Hiroshi Ueda, Yuh Shiohara,
Teruo Izumi, Yasuhiro Iijima, and Takashi Saitoh, “Normal transition and propa-
gation characteristics of YBCO tape,” IEEE Trans. Appl. Superconduc. 15, 1659
(2005).

[8.70] H. van Weeren, N.C. van den Eijinden, W.A.J. Wessel, P. Lezza, S.I. Schlachter,
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CHAPTER 9

SOLENOID EXAMPLES, HTS MAGNETS &

CONCLUDING REMARKS

9.1 Introduction

This chapter consists of three segments. The first segment presents solenoid
magnet EXAMPLES, each accompanied by a study section, Questions/Answers
(Q/A). The next segment discusses HTS, magnet applications and outlook. The
chapter ends with brief concluding remarks.

The four solenoid magnet EXAMPLES described and studied here are selected not
because of their especial importance nor uniqueness—no magnet system is unique
or, perhaps to some, every magnet is unique. The selection stems chiefly from
the author’s familiarity with these magnets. In the Q/A section that follows each
description, some of the design and operation issues, covered in the previous seven
chapters, CHAPTERS 2–8, are studied and revisited.

Here, we emphasize once again our basic philosophy, first stated in CHAPTER 1,
that in any problem solving that requires numerical solution, the very first step
is to get ballpark figures, computed on a simple model amenable to numerical so-
lution. The ballpark figures quickly tell the magnet designer if the magnet is on
the right track. This exercise is important with any magnet, simple or complex.
An “innovative” magnet idea often begins with an individual. To assess whether
the idea is realistic and worth pursuing further with colleagues or even forming
a design team, the initiator must first compute ballpark figures of key design and
operation parameters, those covered in CHAPTERS 2–8, e.g., from simple param-
eters like total ampere turns, overall operating current density, size and weight
of the magnet, total length of conductor, to more intricate ones like stability and
protection, forces, and cryogenic requirements. The key word here is ballpark: in
the later stages of a magnet project, specialists in the design team, armed with so-
phisticated codes, will compute accurate parameter values. Leave the exact values
to the specialists, but be prepared to verify that theirs indeed fall within the range
of independently computed ballpark figures. The author hopes that after having
studied CHAPTERS 2–8, the reader—a specialist in whatever area, electromagnetic
fields, stresses, cryogenics, or even materials—will be capable of handling most of
the questions included in the four magnet EXAMPLES presented below.

9.2 Solenoid Magnet EXAMPLES

The four solenoid magnet EXAMPLES described and studied are: 1) a hybrid mag-
net comprised of a large superconducting magnet with a resistive insert; 2) a
magnet on a steel plate; 3) a flat HTS plate (disk) levitated by a magnetic field
generated by solenoid coils below; and 4) a “solenoid” magnet comprising a stack
of HTS annuli, each prepared from a bulk disk or coated conductor “plate.”

“What good is a newborn baby?” —Ben Franklin

© Springer Science + Business Media, LLC 2009
DOI: 10.1007/b112047_9,
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EXAMPLE 9.2A: Series-Connected-Hybrid Magnet (SCH)

A high-field magnet, with a central axial field of 35–40 T, depending on bore size
(32–50 mm), at the National High Magnetic Field Laboratory comprises principally
a 5-coil high-homogeneity resistive (water-cooled) insert in the bore of a supercon-
ducting magnet. Because the superconducting magnet and 5-coil resistive insert
are connected electrically in series and driven by the same DC power supply, the
magnet is called a “Series-Connected-Hybrid” (SCH). Note that the SCH generates
a central field greater than the highest field generated by any NHMFL resistive
magnet (35 T) or superconducting magnet (21 T). Figure 9.1 shows a cross sec-
tional drawing of the SCH magnet—with parameter values slightly different from
the final values in the SCH magnet [9.1].

Although not included in Fig. 9.1, the SCH also contains a “thin” (α�1) super-
conducting “shield” coil having a winding radius of about 1 m. The shield coil, of
reverse polarity, reduces the fringe field of the SCH magnet. In the Q/A section,
we shall compute the approximate ampere turns required for this superconducting
shield coil. Also, we shall design an alternate shielding system comprised of a steel
cylindrical shell.

305 305

⊕ 942
(0,0)

↑
1511

4

↓×12
3

4

5︸ ︷︷ ︸
5-Coil Resistive Insert

Superconducting Magnet

Fig. 9.1 Cross sectional view of one half of the SCH magnet at the NHMFL [9.1]—
the superconducting “shield” coil (of radius ∼1m) is not shown here. The winding
dimensions, in mm, are approximate; × (in Coil 5) marks its magnetic center after a
fault mode, discussed in the Q/A section.
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EXAMPLE 9.2A: Series-Connected-Hybrid Magnet (SCH) (continuation)

20-kA/2-kV Breaker

Dump
Resistor
RD = 0.1 Ω

Superconducting
Magnet

Ls = 260mH

Msr = 17mH

Resistive
Magnet

Lr = 10mH
Rr = 30 mΩ

20-kA/600-V
DC Power
Supply

Fig. 9.2 Circuit diagram of the SCH magnet. [Courtesy: NHMFL, 2005]

Figure 9.2 shows a circuit diagram of the SCH, in which a superconducting magnet
(of self inductance, Ls = 260 mH) is connected in series with a resistive magnet
(of Lr = 10 mH, and resistance, Rr = 30 mΩ). The magnets are powered by a
20-kA/600-V supply. For protection, the superconducting magnet is shunted by a
dump resistor, RD =0.1 Ω, with a diode connected in series; the resistive magnet
is shunted by a diode. (Assume that both diodes are “ideal,” i.e., zero forward
resistance and infinite backward resistance.) As indicated in Fig. 9.2 the mutual
inductance, Msr, between the two magnets is 17 mH. In case of a malfunction of
either magnet, the 20-kA/2-kV breaker is opened.

Table 9.1 lists key parameter values of the superconducting magnet and the CIC
conductor used in the innermost layer of the magnet. Note that Asc, Am, Am,
and Acl are cross sectional areas in the CIC conductor, respectively, of Nb3Sn;
non-matrix metal; matrix metal (copper); and supercritical helium at 4.5 K.

Table 9.1: Parameters of
Superconducting Magnet & CIC Conductor

Parameters Value

Superconducting Magnet

Winding i.d. (2a1) [mm] 610.0

Winding o.d. (2a2) [mm] 1220.2

Winding height (2b) [mm] 942.0

Turns/layer 42

Layers 18

Total turns (N) 756

CIC Conductor @ Innermost Layer

Asc+Am [mm2] 40.2

Am [mm2] 57.4

Acl [mm2] 76.0
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Q/A 9.2A: SCH Superconducting Magnet

a) Overall Current Density What is the overall current density, λJop, of the
superconducting magnet at its operating current, Iop =20 kA?

• The Answer to each question begins with a large, bold slanted letter, as A, below.

Applying Eq. 3.108a with N =756 and I =Iop =20 kA, we obtain:

λJop =
NI

2b(a2 − a1)
(3.108a)

=
756(20×103 A)

(942.0 mm)(610.1 mm − 305.0 mm)
= 52.6 A/mm2

b) Central Field What is the field (magnetic induction) at the center, Bz(0, 0),
generated by the superconducting magnet at Iop =20 kA?

Similarly from Table 9.1, we have: α = (1220.2 mm)/(610.0 mm) = 2.00; β =
(942.0 mm)/(610.0 mm)=1.544. Applying Eq. 3.110, we have:

Bz(0, 0) =
μ◦NI

2a1(α − 1)
ln

(
α +

√
α2 + β2

1 +
√

1 + β2

)
(3.110)

Thus:

Bz(0, 0) =
(4π×10−7 H/m)(756)(20×103 A)

(0.610 m)(2.00−1)
ln

(
2.00+

√
(2.00)2+(1.544)2

1+
√

1+(1.544)2

)

= 14.52 T

c) Midplane Radial Field What is the radial component of the field at the
midplane (z = 0) at r = a2, Br(z = 0, r = 2a2), generated by the superconducting
magnet? Assume the magnet winding to be an ideal solenoid.

The radial component of field along the midplane of an ideal solenoidal magnet
or nested-coil magnet symmetric about its midplane is always zero: Br(0, a2)=0.

d) Inductance Using Eq. 3.81 and Fig. 3.14, compute an approximate value of
the magnet’s self inductance, Ls. As noted above the exact value is 260 mH.

Applying Eq. 3.81 and from Fig. 3.14, L(α=2.00, β=1.544)�1.2, we obtain:

L = μ◦a1N
2L(α, β) (3.81)

Ls = (4π×10−7 H/m)(0.305 m)(756)2(1.2) = 263 mH

e) Stored Magnet Energy What is the total magnetic energy, Ems, of the
superconducting magnet at the operating current, Iop, of 20 kA?

Here we must include the effect of the mutual inductance. Thus:

Ems = 1
2 (Ls + Msr)I2

op

= 1
2 (260 mH + 17 mH)(20 kA)2 = 55.4 MJ



SOLENOIDEXAMPLES, HTSMAGNETS & CONCLUDINGREMARKS 549

Q/A 9.2A: SCH Superconducting Magnet (continuation)

f) Diode Explain two functions of the diode connected in series with RD across
the superconducting magnet.

The diode, connected in the backward direction, performs two functions: 1) when
the magnet is being energized, it prevents current from flowing through RD; i.e.,
100% of the supply current flows through the magnet; 2) when the switch is opened,
it permits the current to be discharged through RD.

g) Charging Voltage For a constant charging rate of 400 A/s, dIs/dt=dIr/dt
=dIS/dt=400 A/s, where Is is the current through the superconducting magnet,
Ir is the current through the resistive magnet, and IS is the power supply current,
what is the required supply voltage, VS , at Is =Ir =IS =10 kA?

The supply voltage VS is given by:

VS = Ls
dIs

dt
+ Msr

dIr

dt
+ Msr

dIs

dt
+ Lr

dIr

dt
+ RrIr (g.1a)

= (Ls + 2Msr + Lr)
dIS

dt
+ RrIS (g.1b)

Inserting appropriate values in Eq. g.1b, we have:

VS = (260 mH + 2×17 mH + 10 mH)(400 A/s) + (30 mΩ)(10 kA) = 421.6 V

h) Power What is the total instantaneous power, PS , delivered to the magnets,
superconducting and resistive, by the power supply when it is charging the magnets
at a rate of dIS/dt=400 A/s when IS =10 kA?

As in g), we have:

VS = (Ls + 2Msr + Lr)
dIS

dt
+ RrIS (g.1b)

= 421.6 V

PS =VSIS ; thus: PS =(421.6 V)(10 kA)=4.216 MW. Note that of the 4.216 MW,
1.216 MW [= 4.216 MW− (30 mΩ)× (10 kA)2] is “reactive,” i.e., it is stored as
magnetic energy in the two magnets, and as the current is reduced to zero through
the supply, the magnetic energy is “returned” to the supply.

TRIVIA 9.1 List the items below in descending order of stress (tension or compression).

i) Maximum tension in the winding of a 35-T magnet;

ii) On the Titanic, at the bottom of the Atlantic;

iii) Sound of rock music;

iv) Synthesizing diamond.
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Q/A 9.2A: SCH Superconducting Magnet (continuation)

i) 600-V Supply Voltage Show that at this rate of current increase, i.e.,
400 A/s, the supply voltage maximum of 600 V is reached at IS �16 kA.

The total inductive voltage required, Vind, is given by:

Vind = (Ls + 2Msr + Lr)
dIS

dt

which, for dIS/dt=400 A/s, becomes:

Vind = (260 mH + 2×17 mH + 10 mH)(400 A/s) = 121.6 V

We also have: VS =Vind +RrIr. Inserting VS =600 V and Rr =30 mΩ, and solving
for Ir, we find: Ir =15946.7 A; IS �16 kA.

j) 16 kA→20 kA Charging Time Show that beyond 16 kA (I16), as the supply
voltage is maintained at 600 V, it takes about one minute for the current to reach
within ∼10 A of the operating current of 20 kA (I20).

When the current reaches 16 kA, the supply runs out of voltage to maintain the
charging rate of 400 A/s. Beyond Is(t)≥ I16 = 16 kA, Is(t) = I20+(I20−I16)[1 −
exp(−t/τ)], where I20 =20 kA and τ , the effective circuit time constant, is ∼10 s,
given by the total effective circuit inductance of 304 mH [= 260 mH+(2×17 mH)+
10 mH] divided by 30 mΩ. In a minute, which is six time constants, the total
current will be within 10 A (�4000e−6) of 20 kA.

k) CIC—Helium Flow The CIC conductor has a helium cross sectional area
of Acl =76.0 mm2 (Table 9.1). Supercritical helium of 3.5 atm and 4.5 K flows at
a mass rate of ṁhe = 5 g/s through the conduit. Show that the flow is turbulent
with a Reynolds number, Re� 105. Use the following parameter values—helium
density: �he = 0.132 g/cm3; helium viscosity: νhe = 35.9×10−6 g/cm s; hydraulic
diameter: Dhe = 1 cm.

Fluid velocity, vhe, is given by: ṁhe =�heAclvhe. Thus:

vhe =
ṁhe

�heAcl

=
(5 g/s)

(0.132 g/cm3)(0.760 cm2)
� 50 cm/s

Reynolds number Re is given by:

Re =
�hevheDhe

νhe

� (0.132 g/cm3)(50 cm/s)(1 cm)
(35.9×10−6 g/cm s)

� 1.8×105

Flow is turbulent when its Reynolds number exceeds ∼2300.
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Q/A 9.2A: SCH Superconducting Magnet (continuation)

l) CIC—Cryostability At an operating current of Iop =20 kA, is the CIC con-
ductor cryostable? You may use the following parameter values: Am =57.4 mm2;
fdPD =30 mm; Tc =10.3 K; ρm =2×10−8 Ω cm; helium mass flow rate, ṁhe =5 g/s.

From Eq. 6.30, we have:

Ilim =

√
AmfpPDhhe(Tc − Top)

ρm
(6.30)

Figure 6.3 (p. 359) shows liquid helium heat transfer coefficients. From this figure,
we find that for P = 3.5 atm, Top = 4.5 K, and ΔT = 5.8 K, hq � 0.26 W/cm2 K at
Re=105. Noting that hhe∝ Re0.8 (Eq. 6.29), hq �0.42 W/cm2 K at Re=1.8×105.
Thus:

Ilim =

√
(57.4×10−2 cm2)(3 cm)(0.42 W/cm2 K)(5.8 K)

(2×10−8 Ω cm)
� 14.4 kA<20 kA

That is, this superconducting magnet operates at ∼40% more than the “Stekly
current” of 14.4 kA: this CIC conductor is not cryostable at 20 kA.

m) Current Dump Suppose that both magnets are at 20 kA, and the pro-
tection system detects a fault in either one of the magnets at t = 0 and opens
the 20-kA/2-kV breaker without a delay, i.e., at t = 0. For a “quick” estimate
of Is(t) and Ir(t), solve for Is(t) and Ir(t) assuming that Msr = 0, i.e., the two
magnet circuits are uncoupled. Actually, the coupling is not quite negligible, i.e.,
ksr = Msr/

√
LsLr = (0.017 H)/

√
(0.260 H)(0.010 H) = 0.333; nevertheless, the re-

sults with Msr =0 are informative and give a “feel” for the time scale.

With Msr �= 0 the circuit equation for each magnet is given by:

Ls
dIs(t)

dt
+ Msr

dIr(t)
dt

+ RDIs(t) = 0 (m.1a)

Msr
dIs(t)

dt
+ Lr

dIr(t)
dt

+ RrIr(t) = 0 (m.1b)

With Msr =0 Eqs. m.1a and m.1b are then simplified to:

Ls
dIs(t)

dt
+ RDIs(t) = 0 (m.2a)

Lr
dIr(t)

dt
+ RrIr(t) = 0 (m.2b)

Equations m.2a and m.2b may be solved independently of each other:

Is(t) = I◦e
−tRD/Ls (m.3a)

Ir(t) = I◦e
−tRr/Lr (m.3b)

where I◦ =20 kA, Ls/RD =2.6 s (= 260 mH/0.1 Ω), and Lr/Rr =0.33 s (= 10 mH/
30 mΩ). Equations m.3a (solid circles) and m.3b (open) are shown in Fig. 9.3.
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Q/A 9.2A: SCH Superconducting Magnet (continuation)

m) Current Dump Answer (continuation)
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Fig. 9.3 Is(t) by Eq. m.3a (solid circles) and Ir(t) by Eq. m.3b (open circles),
both with Msr =0. The curve nearby each gives the solution with Msr =0.017H.

n) Coupling Effect The magnets are of course inductively coupled—Msr �=0.
Explain why, for example, the solution for Is(t) with Msr = 0.017H shown in
Fig. 9.3, traces above the solid circles of m) computed with Msr =0.

We may express Eq. m.1a as:

Ls
dIs(t)

dt
= −RDIs(t) − Msr

dIr(t)
dt

(n.1)

Because dIr(t)/dt < 0, the term −MsrdIr(t)/dt in Eq. n.1 is positive, making
|dIs(t)/dt| with Msr �= 0 smaller than |dIs(t)/dt| with Msr = 0. That is, Is(t)
decays more slowly with Msr �=0 than with Msr =0. Nevertheless, because ksr is
modest, the quick solution with Msr =0 is not far off, at least for Is(t).

o) Effective Decay Time Constant As stated above in n), when the induc-
tive coupling of the two magnets is included, Is(t) and Ir(t) decay more slowly
than in the uncoupled system of m). Assuming that the total magnetic energy
stored in the superconducting magnet at 20 kA of Es = 55.4MJ, as computed in
e), is entirely dissipated in the dump resistor (RD) and that Is(t) in the coupled
system is represented by a single “effective” time constant of τeff , compute τeff .

The magnetic energy of the superconducting magnet is dissipated all in RD:

Es = RD

∫ ∞

0

I2
s (t) dt (o.1a)

And because Is(t)=I◦e−t/τeff , Eq. o.1a becomes:

Es = RD

∫ ∞

0

I2
◦e−2t/τeff dt =

RDI2
◦τeff

2
(o.1b)

Solving Eq. o.1b for τeff , we have:

τeff =
2Es

RDI2
◦

=
2(55.4×106 J)

(0.1Ω)(2×104 A)2
= 2.77 s

Note that this is ∼6% greater than the 2.6 s computed for the uncoupled system.
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p) Hysteresis Loss As the magnet is energized from 0 to Bm, hysteresis loss
is generated within each superconducting strand. Make an estimate of ehy1, the
spatially-averaged hysteresis energy density of one Nb3Sn filament of diameter
df = 42 μm in the strands within the innermost layer of the CIC conductor, as
the magnet is slowly charged to 20 kA, at which Bm =14 T. Start with Eq. 7.23a
(Table 7.3B), valid for a Bean slab in the presence of transport current (Case 4i):

ehy = 1
2μ◦HpHm(1 + i)2 [Hm ≥ Hp(1 − i)] (7.23a)

Because we are dealing with a wire of diameter df , assumed to be of circular cross
section, use Hp =(8/3π)Jc(df/2), valid for wire in a perpendicular field (Eq. 5.29b).
Next, because It starts at 0 and ends at 20 kA, which is well below Ic of nearly
40 kA, simplify Eq. 7.23a by making (1+i)2 � 1 in the equation. Jc defining Hp

varies significantly between 0 and 14 T. That is, we must integrate Eq. 7.23a from
μ◦Hm =Bm =0 to Bm =14 T, the average field over the innermost layer at 20 kA:

ehy1 � 2df

3π

∫ Bm

0

Jc(B, T, ε)dB (p.1)

Here, Jc(B, T, ε), the critical current density of Nb3Sn, includes dependences of Jc

not only on B and T but also on ε, strain, because as the magnet is energized or
discharged, strain acting on each composite Nb3Sn strand changes. The depen-
dence of T can also be important, because the strand temperature can rise unless
the magnet is energized or discharged slowly enough for the composite to transfer
heat to the coolant with negligible temperature rise. Generally the integration of
Eq. p.1 is too complicated to be performed in a closed form.

However, we shall here perform a closed-form integration by: 1) changing the field
at a rate slow enough to keep the composite at 4.5 K; and 2) neglecting the strain
effects on Jc. For the composite Nb3Sn strands in the magnet midplane and the
innermost layer, we may use the average current density, J̃c(B, 4.5 K), given below:

J̃c(B, 4.5 K, ε=0) = J̃c(0, 4.5 K)
b◦

b◦ + B
(p.2)

where J̃c(0, 4.5 K)=42 ×109 A/m2 and b◦ =1 T. Equation p.2 is a rough approxi-
mation of Jc(B, T, ε) for Nb3Sn at 4.5 K and for ε=0.

Using Eq. p.1, we first perform the integral within Eq. p.1:∫ Bm

0

J̃c(B, 4.5 K) dB = J̃c(0, 4.5 K)b◦
∫ Bm

0

dB

b◦+B
= J̃c(0, 4.5 K)b◦ ln

(
b◦+Bm

b◦

)

= (42×109 J/m2)(1 T) ln 15 = 113.7×109 J/m4

Inserting this into Eq. p.1, we obtain:

ehy1 � 2(42×10−6 m)
3π

(113.7×109 J/m4) � 1014 kJ/m3

Using GANDALF, Gavrilin obtains ehy1 = 1039 kJ/m3 for Eq. p.1; for the case
T =4.5 K and ε=0, as in our simple model above, he obtains 1122 kJ/m3—greater
than 1039 kJ/m3 because Jc(B, 4.5 K, ε=0)>Jc(B, T >4.5 K, ε>0) [9.2].
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q) Charging Rate vs. Helium Temperature Rise Hydraulically, each layer
in this magnet is connected in parallel. Assuming that the only heat input to the
coolant is the spatially-averaged hysteresis energy, compute the maximum constant
current charging rate of the magnet, (dIs/dt)mx, from 0 to 20 kA, that limits the
time-averaged temperature rise in the helium to ΔT̃he�4.0 K (= T̃cs−Top) in the
innermost layer with a mass rate of ṁhe = 5 g/s. Here, T̃cs is the time-averaged
current-sharing temperature, given by Tcs = 10.3 K at Iop = 0 and Tcs = 6.7 K at
Iop =20 kA: T̃cs =8.5 K. In this computation use ehy =1014 kJ/m3 computed above
in p) under the condition of constant temperature.

Use the following property values for helium at 4.5 K and 3.5 atm: specific heat
at constant pressure, Che = 4.28 J/g K; density, �he = 0.132 g/cm3, both assumed
temperature- and pressure-independent, over the innermost layer. First show that
the total hysteresis energy released in the innermost layer, Ehy1, is 3.5 kJ.

The total hysteresis energy, Ehy1, released in the innermost layer is given by:

Ehy1 = ehy(Asc+Am)�1
where Asc+Am =40.2 mm2 and �1 is the total conductor length in the innermost
layer. We have: �1 � 2π(a1 + w)(42), where a1 is the winding inside radius, w is
the conduit radial depth, and 42 is the number of turns per layer—all obtainable
from Table 9.1. From Fig. 9.1 and Table 9.1, we know that the radial winding
extent of the magnet, a2−a1, is 305.1 mm, which contains 18 layers of the CIC
conductor: w=(305.1 mm)/18�17 mm. Thus:

�1 � 2π(0.305 m + 0.017 m)42 � 85 m

Ehy1 = (1014×103 J/m3)(40.2×10−6 m2)(85 m) � 3.5 kJ

The time-averaged rate of change of helium enthalpy, dHhe/dt, from the inlet to
the exit of the innermost layer at a flow rate of ṁhe =5 g/s is given by:

dHhe

dt
= CheṁheΔT̃he

= (4.28 J/g K)(5 g/s)(4.0 K) � 86 W

That is, the cooling power by helium in the innermost layer is 86 W for a time-
averaged temperature rise of 4.0 K. This cooling power must be matched by the
maximum dissipation rate, Phy1mx

given by:

Phy1mx =
Ehy1

Δtmn
= 86 W (q.1)

Solving Eq. q.1 for Δtmn, we obtain:

Δtmn =
Ehy1

Phy1mx

� 3.5 kJ
86 W

� 41 s

Thus: (
dIs

dt

)
mx

=
ΔIs

Δtmn
� 20×103 A

41 s
� 490 A/s

A nominal charging rate of 400 A/s thus should keep the conductor below its
current-sharing temperature, which varies from 10.3 K at Iop =0 to 6.7 K at 20 kA.
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r) Coupling Loss Using Eqs. 7.36 and 7.39c (Table 7.8), compute the coupling
dissipation energy density, ecp, for a strand of Dmf =0.6 mm (� strand diameter)
and �p = 10 mm, as the magnet is ramped from 0 to 20 kA (Bm = 14 T) at a
constant charging rate of 400 A/s or τm = 50 s (for Triangular field excitation in
Fig. 7.18). For this Nb3Sn strand, τcp =30 ms [9.2].

With τm 	 τcp the time-averaged ecp for a triangular excitation is given by a
combination of Eqs. 7.36 and 7.39c:

ecp = 2μ◦H
2
m

[
1+ 1

4

(
πDmf

�p

)2
]

Γ (7.36)

Γ � 4τcp

τm
(τm 	 τcp) (7.39c)

(πDmf/�p)2 
 1 and Hm = Bm/μ◦ in Eq. 7.36; the charging time period covers
only 1/2 of the complete triangular excitation (Fig. 7.18), thus a factor of 1/2
must also be introduced into Eq. 7.36. Thus, ecp becomes:

ecp � 1
2

(
2
B2

m

μ◦

)
Γ

=
4B2

mτcp

μ◦τm
(r.1)

Inserting Bm =14 T, τcp =30 ms, and τm =50 s, we obtain:

ecp =
4(14 T)2(30×10−3 s)
(4π×10−7 T)(50 s)

� 375 kJ/m3

Thus, the coupling dissipation is ∼1/3 as large as the hysteresis dissipation.

Answer to TRIVIA 9.1

Diamond (20,000, in atm); magnet (5,000); Titanic (400); rock (0.0004).
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s) Hot-Spot Temperature Suppose that at t = 0, a quench is detected in
the superconducting magnet and the breaker opened without a delay—opened
at t = 0. Assume that the current in the superconducting magnet, Is(t), decays
exponentially with an effective decay time constant, τeff =2.77 s, as computed in o).
Assuming also that the initial quench point—“hot spot”—is heated adiabatically
by Joule heating, estimate the final temperature, Tf , reached at the hot spot.
Also assume that only the CIC conductor—superconductor, non-matrix metal,
and matrix (copper: RRR = 100)—absorbs the Joule heating and that the heat
capacity of copper may be used to represent that of the entire conductor.

From Eq. 8.16a we have:

Z(Tf , Ti) =
(

Am

Acd

)∫ ∞

0

J2
m◦

e−2t/τdg dt =
(

Am

Acd

)
J2

m◦
× 1

2τdg (8.16a)

With parameter values from Table 9.1, Am = 57.4 mm2; Acd = Am +Asc +Am =
97.6 mm2; and Jmop

= Iop/Am = (20, 000 A)/(57.4×10−6 m2) = 3.48×108 A/m2,
inserted to Eq. 8.16a and τdg = τeff = 2.77 s in Eq. s.1, and solving Zcu(Tf , Ti),
Z(Tf , Ti) for copper, we have:

Zcu(Tf , Ti) =
(

57.4×10−6 m2

97.6×10−6 m2

) (
3.48×108 A/m2

)2 (
2.77 s

2

)

� 9.9×1016 A2 s/m4

From Fig. 8.2, we find that Zcu(Tf , Ti = 4.5K) = 9.9×1016 A2 s/m4 corresponds,
for copper (RRR = 100), to Tf �125 K.

TRIVIA 9.2 Of the four contemporary mathematicians or physicists (born 1768–1776)
below, who is credited with originating dimensional analysis.

i) Ampére; ii) Avogadro; iii) Biot; iv) Fourier.
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t) Dump Initiation Delay A more realistic scenario includes a delay time, τdl,
from the time the hot spot is created, t = 0, to the time the breaker is actually
opened, initiating a dump. This is because it takes time for the hot spot voltage
to rise to a detectable level and for the switch to open. Assuming that during this
period, td, the current in the superconducting magnet remains at 20 kA, estimate
the final hot spot temperature, Tf , for the same conditions and assumptions as
s), except here τdl =0.5 s.

Applying Eq. 8.66b with τdg in the equation substituted by τeff , Eq. 8.66b is mod-
ified and given by:

Z(Tf , Ti) =
(

Am

Acd

)(
τdl + 1

2
τeff )J2

mop

� 13.5×1016 A2 s/m4

From Fig. 8.2, we find that Zcu(Tf , Ti =4.5K)=13.5×1016 A2 s/m4 corresponds,
for copper (RRR = 100), to Tf �225 K, which is nearly the limit of acceptable hot
spot temperature. Although, in reality, because of cooling by the coolant, Tf will
likely be <225 K, it is prudent to make sure that for this magnet the breaker switch
is opened no later than 0.5 s after the initiation of a hot spot. This may imply
that the hot spot must be detected within much less than 0.5 s of its initiation.

Figure 9.4 shows temperature (solid) and pressure (dashed) vs. time plots, com-
puted by Gavrilin [9.2], who applied GANDALF for the case similar to that con-
sidered in s), except in this analysis not only is the exact solution of Is(t) used
but also effects of helium cooling and AC losses are included. Chiefly because of
helium cooling, the hot spot temperature, Tf , reaches only ∼95 K instead of the
125K computed in s) under adiabatic conditions and with τdl = 0.. The analysis
also shows that the peak helium pressure reached in the conduit is 23.5 atm.

100 25

80 20

60 15

40 10

20 5

0 0
0 2 4 6 8 10

Time [s]

H
o
t-

S
p
o
t

T
em

p
er

at
u
re

[K
]

M
ax

im
u
m

P
re

ss
u
re

[a
tm

]

Fig. 9.4 Temperature (solid, the left y-axis) and pressure (dashed, the right
y-axis) vs. time plots after a dump from 20 kA, computed by Gavrilin [9.2].
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Table 9.2: Parameters of 5-Coil Resistive Insert [9.3]

Parameters Coil 1 Coil 2 Coil 3 Coil 4 Coil 5

Winding i.d. (2a1) [mm] 54.0 80.4 151.4 241.8 347.8

Winding o.d. (2a2) [mm] 78.0 145.4 235.8 341.8 500.0

Winding height (2b) [mm] 239 238 317 353 605

Central field [T] 4.03 6.33 4.78 4.37 3.72

u) Fault-Mode Axial Forces One likely fault mode in the SCH magnet is a
failure, at the nominal operating current of 20 kA, of the 5-coil resistive insert
(Fig. 9.1), in which, under the worst scenario, an entire half of each coil is de-
stroyed, and electrically shorted, with the remaining half still alive and generating
field. With the top half of each coil shorted, the axial field center of each coil moves
downward by b/2; in the case of Coil 5 (outermost) this is 1511

4 mm, as indicated
in Fig. 9.1. Table 9.2 lists key parameters of the 5-coil resistive insert [9.3].

When this happens the superconducting magnet will experience a downward axial
force, which is matched by an upward force on the resistive magnet. Looking at
Fig. 9.1, we may conclude that the largest force on the superconducting magnet
will come from Coil 5, despite its central field being smallest, because: 1) Coil 5
is the largest; and 2) it is coupled most closely with the superconducting magnet.
Following a step-by-step “simple” but “well-reasoned” procedure described below,
compute ballpark forces on the superconducting magnet exerted by Coils 5 and 4.
The aim here is to enable a non-specialist on the design team to obtain ballpark
figures, realizing full well that the team’s specialist will use a code to compute
“accurate” values.

In 3.5 analytical methods are discussed to compute axial forces between combina-
tions of “simple” solenoids, specifically, “ring” coils, thin-walled coils, and other
cases. Of these combinations, the simplest is the force computation between two
ring coils (Fig. 3.5), Coil A of diameter aA, total turns NA, and current IA and Coil
B of diameter aB, total turns NB, and current IB.

Step-by-Step Procedure

The procedure consists of the following two steps.

Step 1 Model each coil as a ring coil that generates the same central field as the
original coil. Compute the total number of turns, N , for the ring coil at
20 kA, the operating current of the SCH. Although the superconducting
magnet and resistive coils both are more accurately modeled as “thin-
walled” solenoids (Fig. 3.7) than as ring coils, the corresponding axial force
expression is more complex than necessary for estimating these figures.

Step 2 Use Eq. 3.34 to compute the axial force between two ring coils: first between
the superconducting ring coil (Coil A) and the resistive ring Coil 5 (Coil
B); then between the superconducting ring coil (Coil A) and the resistive
ring Coil 4 (Coil B).
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u) Fault-Mode Axial Forces (continuation)

Review of Axial Force Between Two “Ring” Coils

For two “ring” coils, Coil A and Coil B, coaxially displaced from each other by a
distance ρ, the axial force on Coil A due to Coil B, FzA(ρ), is given by:

FzA(ρ) =
μ◦
2

(NAIA)(NBIB)
ρ
√

(aA + aB)2 + ρ2

(aA − aB)2 + ρ2

×
{

k2K(k) + (k2 − 2)[K(k) − E(k)]
}

(3.34)

K(k) and E(k) are the complete elliptic integrals, respectively, of the first and
second kinds. The modulus, k, of the elliptic integrals for this system is given by:

k2 =
4aAaB

(aA + aB)2 + ρ2
(3.36)

We may compute NA for the “superconducting ring” Coil A by using the field
expression given by Eq. 3.111a:

Bz(0, 0) =
μ◦NI

2a1
(3.111a)

Here, N = NA, I = IA, and a1 = aA. An appropriate value of aA for the super-
conducting coil is the mean winding radius given by its i.d. and o.d. (Table 9.1):
aA�458 mm. Thus, with Bz(0, 0)=14.52 T and IA =20 kA, we obtain:

NA =
2aABz(0, 0)

μ◦IA

=
2(0.458 m)(14.52 T)

(4π×10−7 H/m)(2×104 A)
= 529

Note that NA is less than the magnet’s real number of turns, 756, because to
generate the same central field, a ring coil is much more efficient than the real
magnet in which turns are distributed over a large winding cross section.

We must be a bit more careful modeling Coil 5 as “ring” coil 5 (Coil B): the central
field of 3.72 T cannot be used, because it is the central field generated by Coil 5
before the fault. Now the axial length (2b) is halved, and thus we must first
compute the central field generated by a Coil 5 of β′=β/2. For a “Bitter” magnet,
the “field factor,” [F (α, β)]B , is given by Eq. 3.115b:

[F (α, β)]B = ln

(
α

β +
√

1+β2

β +
√

α2+β2

)
(3.115b)

Because the rest of the coil parameters remain the same in the healthy half of the
half-burned coil, the new central field, [B′

z(0, 0)]B may be given in terms of the
original central field [Bz(0, 0)]B by:

[B′
z(0, 0)]B

[Bz(0, 0)]B
=

[F (α, β′]B
[F (α, β)]B

=

ln

(
α

β′ +
√

1+β′2

β′ +
√

α2+β′2

)

ln

(
α

β +
√

1+β2

β +
√

α2+β2

) (u.1)
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u) Fault-Mode Axial Forces Answer (continuation)

Inserting into Eq. u.1, [Bz(0, 0)]B =3.72 T, α� 1.44 (=500.0 mm/347.8 mm), β �
1.74 (=605 mm/347.8 mm), and β′=β/2�1.74/2=0.87 for Coil 5, and solving for
[B′

z(0, 0)]B , we obtain: [B′
z(0, 0)]B =2.66 T.

An appropriate value of aB for Coil 5′ is the geometric mean, aB =
√

a1a2 =208.5 mm
instead of the arithmetic mean, (a1+a2)/2=212.0 mm, because the current density
in Bitter coils is not uniform but varies as ∝1/r (Eq. 3.114). For simplicity, let us
take aB =174 mm. Thus, with [B′

z(0, 0)]B =2.66 T and IB =20 kA:

NB =
2(0.174 m)(2.66 T)

(4π×10−7 H/m)(2×104 A)
� 37

With aA =0.458 m, aB =0.174 m, aA+aB =0.632 m and ρ=0.151 m (1/4 of Coil 5’s
original height), we first compute the modulus k:

k2 =
4aAaB

(aA + aB)2 + ρ2
(3.36)

=
4(0.458 m)(0.174 m)

(0.632 m)2 + (0.151 m)2

� 0.7550 (k � 0.8689)

Inserting K(0.8689)=2.1655, E(0.8689)=1.2079, aA−aB =0.284 m, and the rest of
other parameters into Eq. 3.34, we obtain the force on Coil A (superconducting
magnet) by Coil B (half of Coil 5), FzA(ρ=151 mm):

FzA(151 mm) =
(4π×10−7 H/m)

2
(529)(2×104 A)(37)(2×104 A)

×
[
(0.151 m)

√
(0.632 m)2 + (0.151 m)2

(0.284 m)2 + (0.151 m)2

×
{

0.7550(2.1655) + (0.7550−2)(2.1655−1.2079)
}]

= (4.92 MN)×
[
0.948×0.443)] = 2.06 MN

To compute the force on Coil A by a Coil B that is half of Coil 4, we have the
following new parameters for Coil B: α=1.41; β=1.46; β′=0.73; B′

z(0, 0)=2.96 T;
NB�28; aB =0.121 m. With ρ=0.088 m; aA+aB =0.579 m; aA−aB =0.337 m; we have:
k2 � 0.6463 (k� 0.8039), which gives K(0.8039)� 2.0030 and E(0.8039)� 1.2728.
Inserting these values into Eq. 3.34, we obtain FzA(88 mm) = 0.49 MN on the
superconducting magnet by the half-burnt Coil 4. This is less than a fourth of the
force from Coil 5, suggesting that the contributions of Coils 1–3 may be neglected.

The total force (from Coils 1–5) computed with a code is 1.9 MN [9.3]. Our method,
based on a simple analytical model requiring a “reasonable” computing period
with a hand calculator, generates an answer (2.06 MN from Coil 5 only) that is
well within the range expected of an estimated figure.
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Magnetic Field Shielding

Because the larger a magnet, in size, field strength, or both, the further the reach
of its fringe field, a “large” magnet is generally “shielded.” Active shielding uses
an electromagnet (shield coil); passive shielding, a ferromagnetic structure (steel
shell). An active shield should be as far away from its main magnet as possible
consistent with other design specifications, because it subtracts from the field; a
passive shield usually adds to the field. High-field (> 1 T) MRI and most NMR
magnets are now shielded, actively, passively, or by a combination of both.

As stated at the outset, the SCH magnet is housed in a cell among neighboring ex-
perimental cells. To minimize the field interferences on the experiments conducted
in the neighboring cells, the SCH magnet system has a shield coil, as indicated
on the right-hand side of the cross-sectional drawing of the SCH magnet shown
in Fig. 9.5. The resistive magnet, which in comparison with the large-bore main
superconducting magnet contributes little to the fringe field, is omitted from the
drawing. The left-hand side of Fig. 9.5 shows a steel shell for passive shielding, an
alternative way to shield the main superconducting magnet.

As shown in Fig. 9.5, the active shield coil, as first proposed for this SCH sys-
tem [9.1], actually consists of two subcoils, one placed above and the other placed
below the midplane; here each subcoil will be modeled as a ring coil. The steel
shell is a cylinder that in the analysis here is modeled to completely surround the
main magnet azimuthally. Important aspects of both elements are studied here.

a2ps a2as

rth a2 (610.1mm)

δab

a1 (305.0mm)

a1ps a1as︸︷︷︸ ︸ ︷︷ ︸ ︸︷︷︸
Steel Shell Main Superconducting Magnet Shield Coil

(Passive Shielding) (N =756; Iop =20 kA) (Active Shielding: Nas; Ias)

Fig. 9.5 Cross sectional view of the main superconducting magnet with either a shield
coil (active shielding) or a steel shell (passive shielding). Note that the active shield coil
consists of two subcoils, one above and the other below the midplane.
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v) Active Shield Coil—Number of Turns Model the two-subcoil shield coil
as a single shield coil. Then, transform both the main superconducting coil and
this model shield coil to dipole moments. Now, estimate the total number of turns
for this model shield coil to make its magnetic moment match that of the main
magnet. The shield coil and the main magnet are connected in series but in reverse
polarity, and operated at 20 kA.

The magnetic field far from the center of a solenoidal magnet, �Hf , may be modeled
by a dipole moment (PROBLEM 3.11):

�Hf = H0

(
Re

r

)3

(cos θ�ır + 1
2 sin θ�ıθ) (3.163)

Re is the dipole moment radius. For a solenoid of uniformly-distributed ampere-
turns, NI, the product H0R

3
e is given by Eq. 3.165:

H0R
3
e = 1

6 (a2
1 + a2

2 + a1a2)NI (3.165)

where a1 and a2 are, respectively, the inside and outside winding radii of the
magnet. Because of �Hf ∝(Re/r)3 (Eq. 3.163) and H0R

3
e ∝a2

1 (Eq. 3.165), we may
indeed ignore the resistive insert here—a1 =173.9 mm for Coil 5 and a1 =305.0 mm
for the superconducting magnet. Applying Eqs. 3.163 and 3.165 to the main
superconducting magnet and shield coil (subscript as), we have:

a2
1(1 + α2 + α)NIop = a2

1as(1 + α2
as + αas)NasIas (v.1)

where αas =a2as/a1as. Solving Eq. v.1 for Nas, with Ias =Iop, we obtain:

Nas =
(

a1

a1as

)2 (
1+α2+α

1+α2
as+αas

)
N (v.2)

With a1 = 0.305 m, a1as = 1.203 m, α = 2.00, αas = 1.04, and N = 756 inserted to
Eq. v.2, Nas becomes:

Nas =
(

0.305 m
1.203 m

)2 (
1+4+2

1+1.08+1.04

)
(756)

� 109

The actual value is 78 for the shield coil [9.4], which actually consists of two sub-
coils, as shown in Fig. 9.5. The magnetic moment is undiminished by axial dis-
placement of loops; only the field, not the magnetic moment, decreases if turns
are spread out axially.
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Q/A 9.2A: SCH Superconducting Magnet (continuation)

w) Field Subtraction from Central Field by Active Shield Coil As noted
above, the active shield coil generates a field directed opposite from that of the
superconducting magnet. Compute the axial field at the center, Bas

z (0, 0), of the
active shield coil. Use the following parameters for the shield coil: a1as =1.203 m;
a2as =1.250 m; bas =0.471 m (in the actual system, the active shield coil consists of
two shorter subcoils with a gap at the midplane [9.4]); Nas =78; and Ias =20 kA.

Field computation is a straightforward application of Eq. 3.110:

Bz(0, 0) =
μ◦NI

2a1(α − 1)
ln

(
α +

√
α2 + β2

1 +
√

1 + β2

)
(3.110)

With N → Nas = 78, I → Ias = 20 kA, α → αas = 1.04, β → βas = 0.392, and
a1→a1as =1.203, Bas

z (0, 0) becomes:

Bas
z (0, 0) =

(4π×10−7 H/m)(78)(20×103 A)
(2.406 m)(1.04−1)

ln

(
1.04+

√
(1.04)2+(0.392)2

1+
√

1+(0.392)2

)

� 0.75 T

Because without the active shield coil, the central field of the main superconducting
magnet at 20 kA is 14.52 T, as computed in Q/A 9.1: b), −0.75 T at the center
by the active shield coil is slightly over 5%, which is not altogether inconsequential.

x1) Active Shield Coil—Interaction Force: 1 If the shield coil were a single
coil as modeled, then there would be no net interaction force between it and the
main magnet. In the original system, the shield coil is split into two subcoils. Still,
there will be no net interaction force between the shield coil as a whole and the
main magnet, but there is between each subcoil and the the main magnet. We shall
here compute its ballpark magnitude by modeling both the main magnet and one
of the subcoils as “ring coils.” Take ρ = 0.277 m (center-to-center displacement).
Note that because δab in Fig. 9.5 is equal to 2ρ, δab =0.554 m.

The main magnet was already modeled as a “ring coil” in t) above: NA =529; aA�
458 mm. Similarly, we may model one of the subcoils as a “ring coil” generating
a central field of 0.375 T (half of 0.75 T, though each is displaced vertically): aB =
1.227 m (average of a1as and a2as), and NB is given by:

NB � (0.375 T)2aB

μ◦IB

=
(0.375 T)2(1.227 m)

(4π×10−7 H/m)(20×103 A)
� 37

It is not surprising that the “effective” number of turns of 37 is very close to the
actual number of turns of 39, because each subcoil, with α = 1.04 and small β
clearly indicates that it is essentially a ring coil (α=1, β =0). First, we compute
the modulus constant, k, given by Eq. 3.36 used in t) above.

k2 =
4aAaB

(aA + aB)2 + ρ2
(3.36)

=
4(0.458 m)(1.227 m)

(0.458 m + 1.227 m)2 + (0.277 m)2
� 0.7709 (k � 0.8780)
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Q/A 9.2A: SCH Superconducting Magnet (continuation)

x1) Active Shield Coil—Interaction Forces: 1 Answer (continuation)

The interaction force between two “ring coils” is given by Eq. 3.34:

FzA(ρ) =
μ◦
2

(NAIA)(NBIB)
ρ
√

(aA + aB)2 + ρ2

(aA − aB)2 + ρ2

×
{

k2K(k) + (k2 − 2)[K(k) − E(k)]
}

(3.34)

With K(0.8780)=2.1957, E(0.8780)=1.1977, aA+aB =1.685 m, aA−aB =−0.769 m,
we obtain the force on Coil A (main magnet) by Coil B (the upper of the two
subcoils), FzA(ρ=0.277 m):

FzA(0.277 m) =
(4π×10−7 H/m)

2
(529)(2×104 A)(37)(−2×104 A)

×
[
(0.277 m)

√
(1.685 m)2 + (0.277 m)2

(−0.769 m)2 + (0.277 m)2

×
{

0.7709(2.1957) + (0.7709−2)(2.1957−1.1977)
}]

= −(4.91 MN)×(0.7080×0.4660) = −1.62 MN

The interaction force on the main magnet is negative (downward); the same force
acts upward on the shield subcoil above the midplane; i.e., if the coil weren’t
restrained, it would fly away from the midplane. Of course combined with the
second subcoil below, the net interaction force from the main magnet is zero.

x2) Active Shield Coil—Interaction Force: 2 Here we compute the attrac-
tive force between the two subcoils, modeling each as a “ring coil” of the same
diameter (1.227 m), number of turns (37), and current (−20 kA), with ρ=0.554 m,
which in this case is equal to δab of Fig. 9.5.

Because the rings have the same diameter (a), and though here the condition
ρ(= 0.554 m)
2a(=2.454 m) is not strictly met, we use the much simpler version
of Eq. 3.34 given by Eq. 3.39d valid for ρ
2a, noting that here NBIB =NAIA:

FzA(ρ) � μ◦(NAIA)(NBIB)
(

a

ρ

)
(3.39d)

= μ◦(NAIA)2
(

a

ρ

)

= (4π×10−7 H/m)[(37)(−2×104 A)]2
(

1.227 m
0.554 m

)
� 1.5 MN

This agrees quite well with 1.6 MN computed with a code [9.3].



SOLENOIDEXAMPLES, HTSMAGNETS & CONCLUDINGREMARKS 565

Q/A 9.2A: SCH Superconducting Magnet (continuation)

y1) Passive Shield Shell: 1 An alternative to active shielding is passive shield-
ing, achieved with ferromagnetic material, often steel (see PROBLEM 2.3 and Ta-
ble 2.5). The advantage of passive shielding over active shielding is generally
the cost, but its cost advantage can diminish for “large” and “high-field” mag-
nets. Another advantage, often overlooked, is its “reverse-shielding” capability,
i.e., shielding the main magnet against the fringe fields of neighboring magnets.
The biggest disadvantage of passive shielding is its massiveness.

Here, consider a steel cylinder of inside radius a1 ≡ a1as = 1.203 m and height
2bs =2a1as (Fig. 9.5), equal to the active shield coil i.d. Assuming that the main
superconducting magnet (N = 756; Iop = 20 kA) may be modeled as a dipole
moment and its B0R

3
e given by Eq. v.1 (ignoring the resistive insert), estimate the

cylinder’s outside radius, a2as, that will make the cylinder’s thickness sufficient to
keep the magnetization of steel, μ◦Ms, at 1.25 T, at which level the steel can still
retain a high enough (μ/μ◦)dif : (μ/μ◦)dif =180 (Table 2.5 for as-cast steel).

At (μ/μ◦)dif =180 we may treat the steel as ideal (μ/μ◦)dif =∞. Of all the flux
lines of the main magnet emanating from the magnet bore, those at r≥a1as enter
the steel cylinder at the top and leave at the bottom, returning to the magnet bore.
A bit complicated are the flux lines in the annular space between the magnet outer
radius, a2�0.610 m, and the steel cylinder’s inner radius, a1ps =1.203 m.

Here, each flux line follows a path of least “magnetic” resistance through steel
rather than air. Thus, the flux line just outside r = a2 may flow either vertically
down in the air to the midplane over a distance of b = 0.471 m (2b = 942.0 mm,
Table 9.1) or else radially first in the air over a distance of a1ps−a2 =0.593 m (=
1.203 m−0.610 m) to the top of the steel cylinder and then vertically, “resistance-
free,” in the steel to the midplane; because 0.471 m < 0.593 m, this particular
flux line does not flow through the steel. Using this argument we may assign
a threshold radius, rth, beyond which flux lines detour to flow through the steel
cylinder, roughly as a1ps−b=0.732 m. That is, all the flux lines from rth =0.732 m
to r=∞ flow through the steel cylinder. Thus, the total flux from r=rth to ∞ at
the midplane, Φ(rth/∞, z=0) and that through the steel cylinder at the midplane,
Φs(z=0), are given, with α=a2/a1, respectively by:

Φ(rth/∞, z=0) = 1
2

[
μ◦a2

1(1+α2+α)NIop

6

] ∫ ∞

rth

2πr

r3
dr (y1.1a)

Φz(z=0) = π(a2
2ps − a2

1ps)(μ◦Ms) (y1.1b)

Because the two fluxes are equal, Φ(rth/∞, z=0)=Φz(z=0), we have:

μ◦a2
1(1+α2+α)NIop

6rth
= (a2

2ps − a2
1ps)(μ◦Ms) (y1.2)

Solving Eq. y1.2 for a2ps, we obtain:

a2ps =

√
a2
1ps +

μ◦a2
1(1+α2+α)NIop

6rth(μ◦Ms)
(y1.3)
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Q/A 9.2A: SCH Superconducting Magnet (continuation)

y1) Passive Shield Shell: 1 Answer (continuation)

Inserting appropriate parameter values in Eq. y1.3, we compute

a2ps =

√
(1.203 m)2 +

(4π×10−7 H/m)(0.305 m)2(7)(756)(20×103 A)
6(0.732 m)(1.25 T)

=
√

1.447 m2 + 2.254 m2 = 1.924 m

The steel cylinder thickness, a2ps−a1ps thus becomes 72 cm. The total weight of
this steel cylinder, 2.4-m high, is 133,000 kg or over 100 tonnes.

Because the field within the steel cylinder is chiefly axially (z)-directed and because
the tangential field (here z-directed) must be continuous at the steel-air boundary,
the magnetic field is given by ∼μ◦Ms/(μ/μ◦)dif , i.e., 1.25 T/180 = 0.0069 T or
69 gauss at r = a1ps = 1.203 m and r = a2ps = 1.924 m; by r � 20 m, the field
falls to less than 1 gauss. From the law of flux continuity in the normal (axial)
direction, the flux in the steel cylinder, 1.25 T and directed downward, becomes
upward as it “returns” towards the magnet midplane, enhancing the central field
of 14.52 T generated by the main superconducting magnet. In this respect this
passive shielding is superior to active shielding.

y2) Passive Shield Shell: 2 Clearly, the further away from the main magnet
the steel shell is placed, the thinner will be the shell thickness required, as indicated
explicitly by Eq. y1.3. However, according to a basic principle of passive shielding,
to cancel a given dipole moment the amount of steel is independent of the location
of steel shielding, if the steel is magnetized to the same level. Here, consider Shell 2
of a1ps =1.805 m (3.6-m high), 50% larger than Shell 1, and compute new a2ps and
check to see if the mass of Shell 2 is still 133,000 kg, computed above for Shell 1.

Using the same argument as above, we obtain a new threshold radius for flux
lines: rth =a1ps−b=1.805 m−0.471 m=1.334 m. Inserting appropriate parameter
values in Eq. w.3, we compute

a2ps =

√
(1.805 m)2 +

(4π×10−7 H/m)(0.305 m)2(7)(756)(20×103 A)
6(1.334 m)(1.25 T)

=
√

3.258 m2 + 1.237 m2 = 2.120 m

The cylinder thickness, a2ps − a1ps, thus becomes 32 cm, less than half that of
Shell 1, resulting in a total mass of 109,000 kg for Shell 2 cylinder (3.6-m high),
somewhat less than that for Shell 1. This discrepancy implies that this simple
analytic approach is valid only for a ballpark estimate of the mass of a steel shield.

Answer to TRIVIA 9.2 iv). The French mathematician Jean Baptise Joseph Fourier
(1768–1830) made it clear, in his work on heat conduction, that a scientific equation
must involve a consistent set of units.
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EXAMPLE 9.2B: Superconducting Coil on Steel Plate

In this example of a solenoidal magnet system, we will apply the basic princi-
ple used to study field-shielding of a spherical volume by ferromagnetic material
(PROBLEM 2.3) and the effect of steel yokes in an ideal dipole (PROBLEM 3.8)
to study how the field generated by a superconducting coil is affected by a circular
steel plate on which the coil is placed. We shall see that the steel plate enhances
the field significantly above the plate and virtually eliminates the field below the
plate. As in the cases of the field shielding and the dipole magnet, the steel here
too is modeled by an “ideal” ferromagnetic material of μ/μ◦=∞.

Figure 9.6 shows the cross sectional view of a superconducting coil placed on a
circular steel plate of large diameter and thickness δst. The center of the z-r
coordinates coincides with the coil’s center. Here, the coil is drawn without its
coil form. Table 9.3 presents parameters of the coil.

Figure 9.7 shows Bz(z, r) plots at z = 0, 5, 7.5, 10, 12.5, 15, 17.5, and 20 mm
generated by the coil at 25 A without the steel disk.

Table 9.3: Coil Parameters

Parameters Value

Winding i.d. (2a1) [mm] 40

Winding o.d. (2a2) [mm] 70

Winding height (2b) [mm] 10

Total turns (N ) 150

70

40

z

10 � r
(0, 0)

δst Steel Plate

Fig. 9.6 Cross sectional view of a superconducting coil on a steel disk.
Dimensions are in mm.
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EXAMPLE 9.2B: Superconducting Coil on Steel Plate (continuation)
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Fig. 9.7 Bz(z, r) generated by the coil at z=0, 5, 7.5 10, 12.5, 15, 17.5, and 20mm
at 25A without the steel plate. Bz(0, 20 mm)=0.158T and Bz(0, 35 mm)=−0.068T.

Review of Inductance

As discussed in 3.7 the coil’s self inductance, L, may be given from an equation
relating Φ and I:

Φ = LI (3.78)

Φ is the total magnetic flux linkages at current I:

Φ = 2π
N∑

j=1

∫ Rj

0

r Bz(zj , r) dr (9.1)

where Rj is the radius of the jth turn located at an axial distance z=zj . Obviously
this integration is quite tedious to carry out by hand, but this is unnecessary
nowadays, with a variety of codes to compute inductances.

We shall here compute a “reasonably accurate” value of the inductance of the coil
shown in Fig. 9.6 by combining Eq. 3.78 and a simplified version of Eq. 9.1. Thus:

L � 2Nπ

I

∫ a2

0

Bz(z=0, r) r dr (9.2)

In Eq. 9.2, the integrand of Eq. 9.1, rBz(zj , r), is approximated by a simpler
integrand involving only the field along the coil’s midplane Bz(0, r). Note that
Eq. 9.2 gives the “upper limit” of L because not all N turns link the flux all the
way to r=a2; some in fact link the flux only up to a1. Perhaps the midway point,
(a1+a2)/2, is a good compromise for the radial limit of the integration.
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Q/A 9.2B: Superconducting Coil on Steel Plate

a) Coil Inductance Using Eq. 9.2 and the Bz(0, r) plot of Fig. 9.7, estimate
the coil’s self inductance (with no steel disk). Use Bz(0, r=20 mm)=0.158 T and
Bz(0, r=35 mm)=−0.068 T.

First, data for Bz(0, r) and Bz(0, r) r are tabulated in Table 9.4. Figure 9.8 shows
the Bz(0, r)r vs. r plot, from which

∫
Bz(0, r)r dr and Φ may be computed:∫ a2

0

Bz(0, r)r dr � 38.0 T mm2 [shaded area in Fig. 9.8]

= 3.80×10−5 T m2

Φ = 2π(3.80×10−5 T m2) � 23.9×10−5 T m2

Thus,

L =
NΦ
I

� 150(23.9×10−5 T m2)
(25 A)

� 1.43 mH

which is ∼10% above the actual value of 1.33 mH. Equation 9.2 overestimates L
because Bz(0, r) is greater than Bz(z, r) averaged over the range −5 ≤ z ≤ 5 mm.
Note that because the Bz(0, r)r integration is negative between r � 31 mm and
a2 and it matches closely the positive integration between (a1+a2)/2 = 27.5 mm
and 31 mm, the integration between 0 and a2 turns out to be nearly equal to that
between 0 and (a1+a2)/2, which as noted above is a more appropriate limit.

As discussed in 3.7.2, for a solenoid of a1, α, β, and number of turns N , its self
inductance L may also be computed from:

L = μ◦a1N
2L(α, β) (3.81)

where L(α, β), shown in Fig. 3.14, depends only on α and β.

From Table 9.3 we have: a1 = 0.02 m; α = 70/40 = 1.75; β = 10/40 = 0.25; and
N = 150. Using the L(α, β) plots of Fig. 3.14 and making linear interpolation
between β=0.2 and β=0.4 lines at α=1.75, we find L(1.75, 0.25) � 2.35. Thus:

L � (4π×10−7 H/m)(0.02 m)(150)2(2.35) = 1.33 mH

which is indeed equal to the actual value.

Table 9.4: Br(0, r) & Bz(0, r)r

r Bz(0, r) Bz(0, r)r
[mm] [T] [Tmm]

0 0.0863 0
5 0.0886 0.443
10 0.0966 0.966
15 0.1150 1.725
20 0.1579 3.158
25 0.0735 1.838
30 0.0221 0.664
35 −0.0678 −2.373

Bz(0, r)r [Tmm]

3

2

1

0 r [mm]
0 10 20 30 35

−1

−2

Fig. 9.8 Bz(0, r)r vs. r plot.
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Q/A 9.2B: Superconducting Coil on Steel Plate (continuation)

b) Steel Plate We shall now consider the steel plate. To simplify the problem,
we first assume the plate to be of infinite permeability, i.e., μ/μ◦ =∞. Next, to
simulate the plate’s effect on the magnetic field above it, i.e., z ≥ −5 mm, we
replace the plate with an image coil identical to the original coil directly beneath
it, as illustrated in Fig. 9.9.

Explain how the image coil placed directly beneath the original coil simulates the
effect of an ideal steel plate, by showing that the image coil satisfies the boundary
conditions imposed at (r, z=−5 mm) by this ideal steel plate.

The boundary condition for an ideal steel plate of μ/μ◦=∞ is that the tangential
(here radial) component of magnetic field at the plate surface must be zero, i.e.,
Br(z = −5 mm, r) = 0. That is, the field must enter or leave the plate in the
direction normal to the disk surface. A coil identical to the original coil and right
beneath it satisfies, through symmetry, this boundary condition at z=−5 mm, the
location of the upper face of the steel plate.

c) Field Enhancement by Steel Plate Using the model shown in Fig. 9.9,
compute the coil’s field at the center, Bz(0, 0), for the system shown in Fig. 9.6
when the coil is energized at 25 A.

Without the steel plate, the coil at 25 A, from Fig. 9.7, generates [Bz(0, 0)]w/o �
0.0863 T. With the steel plate, we must include the field contribution of the image
coil, centered at r=0 and z=−10 mm.

[Bz(0, 0)]with = [Bz(0, 0) + B(z=10 mm, 0)]w/o

� 0.0863 + 0.0711 � 0.1574 T

The second term in the right-hand side is the contribution at (z = 0, 0) of the
image coil, whose center is at (z=−10 mm, 0). Note that the steel plate does not
quite double the field in the upper region—it does so only at z=−5 mm. It is as if
the steel plate flipped the field in the lower region over to the upper region about
the x-y plane at z=−5 mm. Below an ideal steel plate, the field is zero.

z

� r
(0,0)

Fig. 9.9 Coil arrangement to model the effect of the steel plate. Dimensions are
the same as in Fig. 9.6. An image coil identical to the original and directly beneath
it replaces the steel plate, here idealized to be of of μ/μ◦ =∞.
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Q/A 9.2B: Superconducting Coil on Steel Plate (continuation)

d) Plate Thickness Compute the minimum thickness of the steel plate required
to keep the steel disk’s magnetization induction (μ◦Mst) below 1.25 T to ensure
that our assumption of μ/μ◦ 	 1 for the steel is valid.

We proceed through the following steps: 1) Assume that the steel plate is of
μ/μ◦=∞; 2) Determine, from Fig. 9.7, r=r±, the radial location at z=−5 mm at
which the direction of total Bz (by the real and image coils) changes—Bz leaves
the steel plate in the range 0 ≤ r ≤ r± and enters it in the range r ≥ r±; 3)
Determine the total flux leaving the steel plate in the range 0 ≤ r ≤ r±; and 4)
Equate Φr(r=r±) to the total flux flowing radially in the steel at r=r±.

The total axial field at the ideal steel is twice Bz(−5 mm, r) of the real coil—twice
because of the identical contribution by the image coil. Note that Bz(−5 mm, r)=
Bz(5 mm, r). Values of 2Bz(5 mm, r) and 2Bz(5 mm, r)r are given in Table 9.5.
The

∫
2Bzr dr is obtained from the 2Bz(5 mm, r)r plot shown in Fig. 9.10:∫ r±

0

2Bz(z=5 mm, r)r dr � 7.22×10−5 T m2 (from Fig. 9.10)

The total flux leaving the steel disk in the range 0≤r≤r±=31.56 mm (Fig. 9.10),
Φr± , is thus:

Φr± = 2π(7.22×10−5 T m2) � 45.4×10−5 T m2

This flux is flowing inward at r = r± and equal to the total flux flowing through
the steel, Φst:

Φst = 2π r±δst(μ◦ Mst) = Φr±

Solving the above equation for δst, we have:

δst =
Φr±

2r±(μ◦ Mst)
=

45.4×10−5 T m2

2π(0.03156 m)(1.25 T)
� 1.8 mm

That is, a ∼2-mm thick steel plate should be ample for the job. From Table 2.5
we note that as-cast steel has (μ/μ◦)dif =180 at μ◦M =1.25 T.

Table 9.5:
2Bz(5mm, r) and 2Bz(5mm, r)r

r 2Bz(5mm, r) 2Bz(5mm, r)r
[mm] [T] [Tmm]

0 0.1640 0
5 0.1675 0.838
10 0.1788 1.788
15 0.2010 3.015
20 0.2377 4.754
25 0.1282 3.205
30 0.0344 1.032

31.56 0 0

2Bz(5mm, r)r [Tmm]

5

4

3

2

1

0 r [mm]
0 10 20 30

Fig. 9.10 Bz(5mm, r)r vs. r plot.
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Q/A 9.2B: Superconducting Coil on Steel Plate (continuation)

d) Plate Thickness Answer (continuation)

What should the plate’s outer radius, rod, be? Theoretically, it should be infinite,
which of course is impractical. What we need to do is to integrate rBz(r, 5 mm)
from r± to rod such that the following condition is satisfied.∫ rod

r±

Bz(r, z=5 mm)r dr >∼(0.8)
∫ r±

0

Bz(r, z=5 mm)r dr

That is, the steel plate should extend to capture at least 80% of the flux leaving
the plate from the inner region (0 ≤ r ≤ r±). To satisfy the above condition, it
turns out that rod close to 60 mm is adequate.

EXAMPLE 9.2C: Levitation of a Flat HTS Plate

Figure 9.11 shows a cross sectional view of a system in which a flat HTS plate,
δd-thick and radius Rd, is levitated z� above the center of two nested coils, Coils 1
and 2, energized “reversed” relative to each other. The two coils, each “formless,”
are placed on a steel plate. Note that the HTS plate, the coils, and the steel plate
are axially coincident. Table 9.6 presents parameters of both coils.

Table 9.6: Coil Parameters

Parameters Coil 1 Coil 2

Winding i.d. (2a1) [mm] 40 20

Winding o.d. (2a2) [mm] 70 30

Winding height (2b) [mm] 10 10

Total turns (Ns) 150 50

z

Flat HTS Plate

δd

2Rd
z�

� r
(0, 0)

Steel Plate

Coil 2

Coil 1

Fig. 9.11 Cross sectional view of a levitation system comprised of a flat HTS
plate (of thickness δd and radius Rd) and two nested coils, Coils 1 and 2
energized reversed relative to each other. The two coils, each “formless,” are
placed on a steel plate. The drawing is only approximately in scale.
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EXAMPLE 9.2C: Levitation of a Flat HTS Plate (continuation)

Figure 9.12 shows Bz(z, r) vs. r plots at z=0, 5, 7.5, 10, 12.5, 15, 17.5, and 20mm,
with Coil 1 energized at 25 A and Coil 2 at −15 A; Fig. 9.13 shows Br(z, r) vs. z
plots at r=5, 10, 12.5, 15, and 17.5mm for the same currents as in Fig. 9.12. Note
that the steel plate is absent in these plots.
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Fig. 9.12 Bz(z, r) vs. r plots, at z = 0, 5, 7.5, 10, 12.5, 15, 17.5, and
20mm, with Coil 1 at 25 A and Coil 2 at −15A without the steel plate.
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Fig. 9.13 Br(z, r) vs. z plots, at r=5, 10, 12.5, 15, and 17.5mm, with
Coil 1 at 25A and Coil 2 at −15 A without the steel plate.
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Q/A 9.2C: Levitation of a Flat HTS Plate

a) Levitation Force—Lift Assuming that the supercurrent induced in the flat
HTS plate, Is, is confined to the plate’s rim, show first that the levitation force
on the plate levitated axially z� above the center, Fz(z�), is given by:

Fz(z�) = 2πRdIsBr(z�, Rd) (9.3a)

where Br(z�, Rd) is the radial field at (z�, Rd) generated by the two coils.

Next, modeling the plate as an infinitely long cylinder of the same radius exposed
to a uniform axial field, Hz(z�, Rd) 
 JcRd, the Bean’s critical-state field, show
the explicit dependence of Fz(z�, Rd, ) on δd and Bz(z�, Rd, ).

For the condition Hz(z�, Rd) 
 JcRd, where Jc is the plate material’s critical
current density, the supercurrent, Is, is confined to a thin surface layer of thickness
δs. Assume that this surface current is uniform and confined to the rim. We may
then equate the levitation force Fz(z�, Rd) to the Lorentz force on Is at the rim
(r=Rd), which is the product of 2πRd, Is, and Br(z�, Rd):

Fz(z�) = 2πRdIsBr(z�, Rd) (9.3a)

According to the Bean’s critical-state model, for Hz(z�, Rd)<Hp, where Hp =JcRd

is the critical-state field, the supercurrent layer, δs, is given by:

δs =
Hz(z�, Rd)

Jc
=

1
Jc

[
Bz(z�, Rd)

μ◦

]
(a.1)

That is, the total supercurrent induced in the plate is given by:

Is = δdδsJc = δd

[
Bz(z�, Rd)

μ◦

]
(a.2)

Combining Eqs. 9.3a and a.2, we obtain:

Fz(z�) = 2πRdδd

[
Bz(z�, Rd)Br(z�, Rd)

μ◦

]
(9.3b)

Equation 9.3b states that Fz(z�) ∝ Bz(z�, Rd)Br(z�, Rd). That is, in this levitation
system, the currents in the two coils may be varied to set a levitation height [9.5–
9.8]. Also note that as long as the condition δs 
Rd is satisfied, i.e., for “large”
Jc, Fz(z�) is independent of Jc.

Our Picture of The Universe

—Passage from Stephen Hawking’s A Brief History of Time [9.9].

A well-known scientist (some say it was Bertrand Russell) once gave a public
lecture on astronomy. He described how the earth orbits around the sun and how
the sun, in turn, orbits around the center of a vast collection of stars called our
galaxy. At the end of the lecture, a little old lady at the back of the room got up and
said: “What you have told us is rubbish. The world is really a flat plate supported
on the back of a giant tortoise.” The scientist gave a superior smile before replying,
“What is the tortoise standing on?” “You’re very clever, young man, very clever,”
said the old lady. “But it’s turtles all the way down.”
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Q/A 9.2C: Levitation of a Flat HTS Plate (continuation)

b) YBCO Plate Using the Bz(z, r) and Br(z, r) plots of Figs. 9.12 and 9.13,
and Eq. 9.3b, compute Fz(z�) for a YBCO plate of Rd =15 mm and δd =5 mm at a
levitation height of z� =10 mm, assuming that the steel plate is still absent. Also,
compute the mass of this plate and show that at this height the levitation force
can support the plate mass. YBCO density: �=6.4 g/cm3.

From Figs. 9.12 and 9.12, we obtain: Bz(z = 10 mm, r = 15 mm) � 0.070 T and
Br(z=10 mm, r=15 mm)�0.0181 T. Thus:

Fz(z�) = 2πRdδd

[
Bz(z�, Rd)Br(z�, Rd)

μ◦

]
(9.3b)

� 2π(15×10−3 m)(5×10−3 m)(0.070 T)(0.0181 T)
(4π×10−7 H/m)

� 0.475 N(� 48.5 g)

The mass of the YBCO plate, mp, is given by:

mp = πR2
dδd�

= π(1.5 cm)2(0.5 cm)(6.4 g/cm3) � 23 g

Thus even in the absence of the steel plate, the levitation force on the plate at
z� =10 mm is double the plate weight.

c) Induced Supercurrent Again, assuming the absence of the steel plate, com-
pute the supercurrent layer, δs, for the same YBCO plate at z� =10 mm and show
δs
Rd. Use Jc =108 A/m2. Also compute Is.

Applying Eq. a.1 and noting Bz(z�, Rd)�0.070 T, we have:

δs =
Hz(z�, Rd)

Jc
=

1
Jc

[
Bz(z�, Rd)

μ◦

]
(a.1)

� (0.070 T)
(108 A/m2)(4π×10−7 H/m)

� 0.56 mm

The required condition of δs
Rd is indeed satisfied. Using the first two equations
of Eq. a.2, we have:

Is = δdδsJc (a.2)

� (5×10−3 m)(0.56×10−3 m)(108 A/m2) � 280 A

This supercurrent of 280 A is induced in the YBCO plate when the plate is exposed
to the axial field, Bz(Rd, z�), of 0.07 T.
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Q/A 9.2C: Levitation of a Flat HTS Plate (continuation)

d) Suspension Stiffness Derive an expression for the suspension stiffness, kz

at z=z�. Compute kz for Rd =15 mm; δd =5 mm; and z� =10 mm.

The suspension stiffness at z=z� is given by:

kz = −∂Fz(z, Rd)
∂z

∣∣∣∣
z�

(d.1)

The minus sign indicates that Fz(z, Rd) increases with decreasing z. Combining
Eqs. 9.3b and d.1, we have:

kz = −2πRdδd

{[
Br(z�, Rd)

μ◦

]
∂Bz(z, Rd)

∂z

∣∣∣∣
z�

+
[
Bz(z�, Rd)

μ◦

]
∂Br(z, Rd)

∂z

∣∣∣∣
z�

}
(9.4)

Inserting appropriate parameter values in Eq. 9.4, we obtain:

kz � −2π(15×10−3 m)(5×10−3 m)

×
[(

0.0181 T
4π×10−7 H/m

)
(−5.2 T/m)+

(
0.070 T

4π×10−7 H/m

)
(1.1 T/m)

]

= −2π(75×10−6 m2)
(

107

4π
m/H

)
(−0.0943 T2/m + 0.0758 T2/m)

� 6.9 N/m

From Fig. 9.12 kz > 0 at Rd = 15 mm and z� = 10 mm; we thus conclude that
the plate is levitated stably against a small axial displacement, i.e., if the plate is
pushed downward, the levitation force increases.

e) Resonant Frequency Compute the resonant frequency, νz, of the axial mo-
tion for this YBCO plate levitated at z� =10 mm. Use mp =23 g computed in b)
for the YBCO plate.

For a simple mass (m)-spring (k) system, the resonant frequency, ν, is given by:

ν =
1
2π

√
k

m

Thus:

νz � 1
2π

√
(6.9 N/m)

(23×10−3 kg)

� 3 Hz

When the plate is displaced vertically, it will oscillate with a frequency of 3 Hz.
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Q/A 9.2C: Levitation of a Flat HTS Plate (continuation)
z

� x
−Rd+Δx 0 Rd+Δx

Fx(Rd−Δx, z�) Fx(Rd+Δx, z�)

Fig. 9.14 Cross sectional view of a levitated HTS plate displaced in
the lateral (+x) direction by Δx. The y-direction is into the paper.

f 1) Lateral Stability 1 Show that the HTS plate is stable at z� =10 mm against
a small displacement in the lateral (in the r- or here x-axis) direction. Assume
that the induced supercurrent in the plate is confined within a thin layer, δs, at
the rim. Also, ignore the steel plate.

In the lateral (x-axis) direction, Fx is proportional to the cross product of Is

and Bz. Consider the HTS plate levitated axially aligned to the coils as shown
in Fig. 9.11 (p. 572). Fx(z�, Rd) is −x-directed, because Is(z�, Rd) is −y-directed
and Bz(x=0) is +z-directed: Fx(z�, Rd)∝−Is(z�, Rd)Bz(z�, Rd)�ıx. Fx(z�,−Rd),
on the other hand, is +x-directed, because Is(z�,−Rd) is +y-directed, while
Bz(z�,−Rd) remains +z-directed: Fx(z�,−Rd) ∝ +Is(z�, Rd)Bz(z�, Rd)�ıx. Be-
cause Bz(z�, Rd)=Bz(z�,−Rd) and Is(z�, Rd)=−Is(z�,−Rd), we have:

Fx(z�, Rd)+Fx(z�,−Rd) ∝ −Is(z�, Rd)Bz(z�, Rd)+Is(z�,−Rd)Bz(z�,−Rd)

= 0

That is, the net lateral force on the plate centered at x=0 is zero.

Now consider a slight lateral displacement of the plate in the +x direction by Δx,
as in Fig. 9.14. Here, we have:

Fx(z�, Rd+Δx)+Fx(z�,−Rd+Δx) ∝ −Is(Rd+Δx)Bz(z�, Rd+Δx)
+Is(−Rd+Δx)Bz(z�,−Rd+Δx) (f1.1)

We may assume Is(z�, Rd +Δx) � Is(z�, Rd) and Is(z�,−Rd +Δx) � Is(z�,−Rd).
Also because Is(z�, Rd)=−Is(z�,−Rd) Eq. f1.1 may be simplified to:

Fx(z�, Rd+Δx)+Fx(z�,−Rd+Δx) ∝ −Is(Rd)
[
Bz(z�, Rd+Δx)

−Bz(z�,−Rd+Δx)
]

(f1.2)

From Fig. 9.12 we note that in the vicinity of z = 10mm (z�) and Rd = 15 mm,
Bz(z�, Rd +Δx) > Bz(z�,−Rd +Δx) for “small” Δx. Thus, the lateral force is
restoring for a “small” lateral displacement. Note that the trace for z=10 mm in
Fig. 9.12 peaks at r � 16.5 mm; ∂Bz/∂r changes sign, and for a displacement of
Δx > 4 mm the plate is no longer stable. The traces in Fig. 9.12 corresponding
to z ≥ 12.5 mm indicate that the plate is neutrally stable at z� � 12.5 mm and
unstable for z� >12.5 mm.
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Q/A 9.2C: Levitation of a Flat HTS Plate (continuation)

f 2) Lateral Stability 2 By demonstrating that the lateral spring constant, kx,
is positive at r = Rd, i.e., kx ≡−∂Fx(z�, r)/∂x >0, show that the plate is stable
against a small radial displacement. Also determine the numerical values of kx and
νx, the natural frequency in the lateral direction, at z=10 mm and x=15 mm.

To quantify the analysis in f 1), consider the differential force Δfx+ on the right-
most element of current of length Δy: Δfx+ = IsΔyBz(Rd + Δx). Δfx+ is bal-
anced only incompletely by the force Δfx− on the corresponding leftmost element:
Δfx− = IsΔyBz(Rd − Δx). The net differential force Δfx =Δfx+ +Δfx− is given
by:

Δfx(z, Rd) = 2IsΔy
∂Bz(z, r)

∂r

∣∣∣∣
Rd

Δx (f2.2)

The net force per unit current length is Δfx/Δy. If this force were constant around
the loop, the total differential force, ΔFx, would be 2Rd×Δfx. Actually, Δfx/Δy
varies along the loop as

√
1−(r/R)2; the average value is π/4 the peak value:

ΔFx(z, Rd) = πRdIs
∂Bz(z, r)

∂r

∣∣∣∣
Rd

Δx (f2.2)

kx thus may be given by:

kx(z, Rd) =
ΔFx(z, Rd)

Δx
= πRdIs

∂Bz(z, r)
∂r

∣∣∣∣
Rd

Evaluating kx for Rd = 15 mm, Is = 280 A, and ∂Bz(z�, r)/∂r = 1.08 T/m at z� =
10 mm and Rd =15 mm, we have: have:

kx(z�, Rd) = 2(15×10−3 m)(280 A)(1.08 T/m) � 14.2 N/m

Compared with kz(z�, Rd), the lateral stiffness, kx(z�, Rd), is about double.

The natural frequency in the lateral direction, νx, is given by:

νx =
1
2π

√
kx

mp
(f2.4)

� 1
2π

√
14.2 N/m

(23×10−3 kg)
� 4 Hz

These values are in the order of magnitude of measured values [9.5, 9.6]

TRIVIA 9.3 List the items below in descending order of number.

i) Air bubbles, in the winding of an epoxy-impregnated superconducting coil;

ii) Bubbles, in a freshly served glass of champagne;

iii) Helium-inflated toy balloons, just enough to lift a newborn baby;

iv) Stars, in our galaxy The Milky Way.
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Q/A 9.2C: Levitation of a Flat HTS Plate (continuation)

g) Power Requirement Provided the power to liquify the nitrogen is ignored,
it saves power to operate copper coils in a bath of liquid nitrogen boiling at at-
mospheric pressure. Compute the total electric power, PT =P1+P2, required by
the two coils operating at 77.3 K, P1 by Coil 1 at 25 A and P2 by Coil 2 at 15 A.
Assume that the “space factor” (λ) of each coil is 0.785. Use ρcd =2.5 nΩ m as the
resistivity of conductor (copper) at 77 K.

From Eq. 3.112, we have:

P = ρcdJ
2λa3

12πβ(α2 − 1) (3.112)

= ρcd
(λJ)2

λ
a3
12πβ(α2 − 1)

With λJ =NI/2b(a2−a1)=NI/2a2
1β(α−1), P becomes:

P =
πρcd(NI)2(α+1)

2λa1β(α−1)
(g.1)

For Coil 1 with a1 = 20×10−3 m; α = 2a2/2a1 = (70 mm)/(40 mm) = 1.75 β =
2b/2a1 =(10 mm)/(40 mm)=0.25, Eq. g.1 gives:

P1 =
π(2.5×10−9 Ω m)(150×25 A)2(1.75+1)
2(0.785)(20×10−3 m)(0.25)(1.75−1)

� 52 W

Similarly,

P2 =
π(2.5×10−9 Ω m)(50×15 A)2(1.5+1)
2(0.785)(10×10−3 m)(0.5)(1.5−1)

� 3 W

The total power dissipation by the two coils, PT =P1+P2, is thus about 55 W.

h) Liquid Nitrogen Boil-off Rate Compute an approximate boil-off rate, Q̇�

in [cm3/h], of liquid nitrogen at a power dissipation of 55 W.

The liquid nitrogen boil-off rate, Q̇�, for power dissipation P is given by:

Q̇� =
P

hL
(h.1)

where hL is the latent heat of vaporization of liquid nitrogen. With hL =161 J/cm3

(Table 4.2), Eq. h.1 gives:

Q̇� =
(55 W)

(161 J/cm3)
= 0.34 cm3/s = 1224 cm3/h

∼ 1 liter/h

For long operation of this system the cryostat holding the coils may require liquid
nitrogen replenishment at a rate of ∼1 liter/h.
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Q/A 9.2C: Levitation of a Flat HTS Plate (continuation)

z

� r
(0, 0)

Fig. 9.15 Coil arrangement to model the presence of the steel plate in Fig. 9.11.

We shall now study the effects of the steel plate in Fig. 9.11. To simplify the
problem, we first assume the plate to be of infinite permeability, i.e., μ/μ◦ =∞.
Next, to take account of the plate’s effect on the magnetic field above the plate,
i.e., z ≥ −5 mm, we replace the steel plate with a two-coil unit identical to the
original two-coil unit, placing it directly beneath the original unit, as illustrated
in Fig. 9.15. (Note also here that each coil form is assumed to be “formless.”)

i) With Steel Plate Now compute the levitation force Fzsteel(z�) on the plate
at z� =10 mm with an ideal steel plate (μ/μ◦ =∞). Also, discuss stability in the
axial and radial directions.

Without the steel plate, we have, from Figs. 9.12 and 9.13, [Bz(z�, Rd)]w/o �
0.070 T and [Br(z�, Rd)]w/o � 0.019 T. With an ideal steel plate, the contribution
of each of the image coils located at z=−10 mm must be included.

[Bz(z�, Rd)]with = [Bz(z�, Rd) + Bz(z�+10.0 mm, Rd)]w/o

� (0.070 T) + (0.036 T) = 0.106 T

[Br(z�, Rd)]with = [Br(z�, Rd) + Br(z�+10.0 mm, Rd)]w/o

� (0.018 T) + (0.015 T) = 0.033 T

Inserting these field values into Eq. 9.3b, we obtain:

Fz(z�, Rd) = 2πRdδd

[
Bz(z�, Rd)Br(z�, Rd)

μ◦

]
(9.3b)

� 2π(15×10−3 m)(5×10−3 m)(0.106 T)(0.033 T)
(4π×10−7 H/m)

� 1.31 N(� 134 g)

Thus, with an ideal steel plate, the system generates a levitation force that is six
times the plate weight (0.23 N), i.e., the plate can support a load mass of more
than 110 g. The system is stable in the axial direction (kz �6.9 N/m) as well as in
the lateral direction (kx�9.1 N/m).
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Example 9.2D: HTS “Annulus” Magnet

One magnet design option possible with HTS, but impossible with LTS, consists
of a stack of many HTS bulk or plate annuli. Figure 9.16 shows schematic cross
sectional views, each of 2a1 i.d. and 2a2 o.d. of: a) a bulk annulus of thickness δb;
b) a thin-plate annulus of overall thickness δp and superconducting film thickness
δf ; and c) an “annulus magnet” of overall height 2b comprising a stack of bulk or
plate annuli. Note that an annulus magnet contains neither splices nor terminals.

With YBCO and other rare-earth based HTS bulks [9.10–9.14], practical values
for 2a1 and 2a2 are, respectively, 40–60 mm and 70–100 mm, making the devel-
opment of a “small” NMR magnet based on these bulk annuli a realistic possi-
bility [9.15]. Also, because coated YBCO conductor of width 40–100 mm is being
developed [9.16, 9.17], it may become feasible in the very near future to punch out
plate annuli from a wide strip of coated superconductor with a die.

Typically, the bulk annulus thickness, δb, is ∼10 mm, while the plate annulus
thickness, δp, is ∼100 μm, with δf � 1 μm.
Thus an annulus magnet of 2b = 300 mm,
for example, will contain about 30 bulk an-
nuli or ∼3000 plate annuli. Because each
annulus is a loop, the energizing procedure
of an annulus magnet is quite different from
a wire-wound magnet—see PROBLEM 1.2.

2a2

2a1

B◦�ız

2b

(c)

δb

2a1

2a2

(a)

δp δf

2a1

2a2

(b)

Fig. 9.16 Schematic cross sectional views, each of 2a1 i.d. and 2a2 o.d.:
a) bulk annulus of thickness δb; b) thin-plate annulus of overall thickness
δp and superconducting film thickness δf ; and c) a magnet of overall
height 2b assembled from a stack of bulk (or plate) annuli.
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Q/A 9.2D: HTS “Annulus” Magnet

a) Overall (Engineering) Current Density Assuming that an annulus mag-
net is “long,” i.e., β	1, compute the overall current density, λJ (or Je) required to
generate an axial central field, B◦, of 11.74 T (corresponding to an NMR frequency
of 500 MHz) for 2a1 =50 mm, 2a2 =75 mm, and 2b=300 mm.

With α=1.5 and β =6, this “solenoidal” magnet may be considered “long;” i.e.,
the axial field at the magnet center, B◦=Bz(0, 0), may be given by Eq. 3.111e:

Bz(0, 0) = μ◦λJa1(α − 1) (3.111e)

Note that Bz(0, 0) is independent of the magnet length and directly proportional
to the “winding” build. Solving Eq. 3.111e for λJ , we obtain:

λJ =
Bz(0, 0)

μ◦a1(α−1)
=

(11.74 T)
(4π×10−7 H/m)(0.025 m)(1.5−1)

= 7.5×108A/m2

b) Current Density Requirement—Bulk vs. Plate Discuss the overall (en-
gineering) current density found above for bulk annuli and plate annuli.

Although Fig. 9.16c shows the winding to be entirely occupied by bulk annuli
or plate annuli, as discussed shortly, in a real annulus magnet a “thin” spacer is
placed between adjacent annuli. These spacers not only strengthen the winding
against magnetic forces but also, with different thickness depending on the axial
location, are used to adjust the axial field distribution.

Bulk Because the spacer occupancy will be no greater than ∼10% of the entire
winding volume, λJ�Jc, where Jc is the bulk critical density. That is, in a bulk-
annulus magnet the material critical current density should not be a limiting issue
to generate a center field of 11.74 T (or even greater).

Plate Coated YBCO conductor, for example, is “loaded” with nonsuperconduct-
ing materials (e.g., buffer layer and substrate), whose total thickness in Fig. 9.16b
is represented by δp−δf . Typically δp and δf are, as stated above, respectively,
75–100 μm and 1μm. Thus, to achieve an overall current density of 108–109 A/m2,
YBCO film Jc must be at least 1010 A/m2, a level achievable only at temperatures
below 77 K.

c) Energizing Technique Discuss ways to energize a “large” and “high-field”
annulus magnet.

Generally, it is not possible to change the flux enclosed by a superconducting
loop unless at least part of the loop is in the normal state—the “flux gate”
has to be open. Thus, it is impossible to energize even a superconducting loop
(PROBLEM 1.2), let alone a full-fledged superconducting magnet, if the loop or
the magnet remains superconducting.

As studied in DISCUSSION 7.4 (p. 455), a solution to energize a “conventional”
persistent-mode magnet is the use of a persistent-current switch (PCS). Here, by
conventional we mean a wire-wound magnet that can be energized with a power
supply while the PCS maintains a small portion of the wire resistive.
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Q/A 9.2D: HTS “Annulus” Magnet (continuation)

Another technique sometimes used is to place a “virgin” wire superconducting
magnet (or a bulk disk), already in the superconducting state, in the bore of an ex-
ternal pulse-field magnet. The fast-varying magnetic field of the rising-and-falling
pulse field heats up a part or most of the superconducting magnet, permitting flux
penetration. By making sure that the superconducting magnet is well-cooled, it is
possible to make the magnet return to the fully-superconducting state and “trap” a
part of the pulse field, which will remain as a persistent-mode field. The disadvan-
tages of this technique are: 1) it is difficult to accurately control the level of the
resulting persistent-mode field, because it critically depends on heating/cooling
conditions; and 2) for a large, high-field magnet, this pulse magnet itself becomes
quite large and elaborate, with the usual complexities of a pulse magnet.

To energize a large and high-field annulus magnet, a DC and superconducting
external field is the best choice. Figure 9.17 shows a schematic drawing of one
of the early steps of a technique to energize an annulus magnet, which is here
indicated as a stack of annuli (no spacers) with the center portion “notched” (see
PROBLEM 3.7). The procedure for energizing an annulus magnet involves the
following five steps.

1. Place the magnet/cryostat unit, still at room temperature, in the bore of an
external DC superconducting magnet.

2. With the annulus magnet still in the normal state, expose the magnet to a
field generated by the external magnet (Fig. 9.17). Field lines are schematically
drawn in the figure.

3. Cool the annulus magnet to the fully superconducting state. Because these
annuli are of Type II superconductors the field lines remain essentially un-
changed as the annulus magnet is cooled through its transition temperature.

Fig. 9.17 Schematic drawing of an annulus magnet system after Step 2 of a
technique to energize an annulus magnet. The magnet/cryostat unit, still at
room temperature and placed in the bore of an external DC superconducting
magnet, is exposed to a field generated by the external magnet.
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Q/A 9.2D: HTS “Annulus” Magnet (continuation)

Fig. 9.18 Schematic drawing of an annulus magnet system after Step 5 of the energizing
sequence. The annulus magnet, now cold and superconducting, is generating a persistent-
mode field, which in turn is generated by the annuli, each with a supercurrent distribution
induced when the external magnet was discharged to zero. A field-shielding assembly
made of steel annuli surrounds the magnet/cryostat unit.

4. Discharge the external magnet, slowly, to zero, setting up a supercurrent dis-
tribution in each annulus, which in turn generates a persistent-mode field.
This process is called “field-cooling.”

5. Remove the magnet/cryostat unit from the external magnet and around it
place a field-shielding assembly made of steel annuli. A schematic drawing of
the whole assembly after Step 5 is shown in Fig. 9.18.

d) Field-Shielding It is desirable to minimize the fringe field outside a magnet.
As shown in Fig. 9.18, an annulus magnet can be surrounded by a field-shielding
assembly of steel annuli. Estimate the outside diameter, Dso, of steel annuli for the
following parameters: steel annuli inside diameter, Dsi = 225 mm; 2a1 = 50 mm;
2a2 =75 mm; Bz(0, 0)≡B◦=11.74 T; μ◦Ms =1.25 T.

Because virtually the entire axial flux of the bore flows through the steel assembly
of Dso o.d. and Dsi i.d., conservation of flux results in:

π

3
(a2

2 + a2a1 + a2
1)B◦ � π

4
(D2

so − D2
si)μ◦Ms (d.1)

where B◦ is the central field. The left-hand side of Eq. d.1 represents the total
flux in the magnet bore (πB◦a2

1) plus that in the annular space between a1 and
a2, where B(r) = B◦(a2−r)/(a2−a1), decreasing linearly from B◦ at a1 to 0 at
a2; Ms is the magnetization of steel, low enough to make its effective μ ≥ 100μ◦.
With the parameter values inserted into Eq. d.1, we obtain: Dso�296 mm.

Note that for this annulus magnet system with Dso � 296 mm, the steel annuli
assembly occupies a considerable radial extent. Nevertheless, a radial extent of
still only ∼0.15 m for a shielded magnet generating a center field of 11.74 T must
be considered remarkably compact.
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Q/A 9.2D: HTS “Annulus” Magnet (continuation)

e) Spacers Spacers between adjacent HTS annuli can satisfy key requirements
of an annulus magnet. Describe these and propose an appropriate spacer material.

These requirements include: 1) mechanical reinforcement; 2) thermal stability;
and 3) field homogeneity, for NMR magnets.

Mechanical At 11.7 T, for example, the maximum Lorentz-force induced tensile
stress in each annulus, 50-mm i.d., 75-mm o.d, is ∼270 MPa, which is above the
strength of YBCO bulk. High-strength spacers inserted between HTS annuli can
be made to shoulder most of this load. An excellent candidate for the spacer is a
high-strength sheet of Cu-Ag alloy [9.18], originally developed for high-field Bitter
magnets. It has an ultimate strength close to 1,000 MPa, a Young’s modulus
∼150 GPa, and nearly the same thermal conductivity as copper.

Thermal During the field-cooling process when the external electromagnet is
discharged, AC losses, primarily hysteretic, will heat the bulk disks [9.19, 9.20].
Here, the field discharge rate can be reduced to limit the temperature rise. Still,
it is desirable to use strong and thermally conductive spacers: the Cu/Ag alloy
sheet deemed fit for mechanical strength above is also a good candidate to satisfy
this thermal requirement.

Field Homogeneity It is possible to tailor the thickness of a spacer located
at a specific axial location to achieve a desired spatial field homogeneity at the
magnet center. Here, only the thickness matters.

f) Bulk vs. Plate Compare bulk annuli vs. plate annuli, citing pros and cons
of these two options, including manufacturability.

Each option has strengths and weaknesses, as briefly discussed below.

Bulk As already remarked in b), the overall current density of a bulk-based an-
nulus magnet can be close to the material’s Jc: this is the bulk’s greatest strength.
Thus, HTS bulk disks currently available may be assembled to build annulus mag-
nets that can generate 12 T and greater. The weakest point perhaps is its thickness:
10 mm. It is likely that the distribution of the induced current in each annulus will
not be uniform, making it difficult to achieve a desired field distribution. Another
weak point is manufacturing of bulk annuli, because the center portion of each disk
must be drilled out. This drilling process can be time-consuming and it might also
damage superconducting properties of the annuli.

Plate The bulk’s strong point is the plate’s weak point and vice versa. Thus
to build a high-field annulus magnet with plate annuli, the superconductor’s Jc

must be further enhanced, or the thickness of the superconducting film must be
increased, or that of the nonsuperconducting materials must be reduced. The
strongest point is the thinness (∼1 μm) of the superconducting film. Compared
with a bulk-based annulus magnet, it should be easier to tailor the spatial field
homogeneity. Last but not least, it should be much easier, and thus less expensive,
to mass produce annuli from thin plates than from bulk disks: simply “punch” out,
with a die, thin annuli from a wide, e.g., 100 mm, coated superconductor strip, as
cookies are punched out from a thin layer of dough moving on a conveyor.
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Q/A 9.2D: HTS “Annulus” Magnet (continuation)

g) Stability Briefly discuss the thermal stability of an annulus magnet.

The operating temperature of an annulus magnet may range from 4.2 K (the
magnet immersed in a bath of liquid helium) to as high as 77 K (liquid nitrogen).
Because the energy density required to quench the annuli is well above the “energy
margin,” regardless of the annulus magnet’s operating temperature, the magnet
will be very stable against quenching induced by any disturbances likely to occur
in this system. The only time the annuli may be overheated is during the field-
cooling process [9.20]. To minimize overheating, the external field must be reduced
at a slow enough rate.

h) Protection Briefly discuss protection of an annulus magnet.

The induced currents in the annuli are not series-connected. Each annulus may
be considered a one-turn coil, inductively coupled to a significant degree only to its
adjacent annuli. Thus, the likelihood of one annulus absorbing the entire stored
magnetic energy of the magnet is negligible. Quenching may spread out slowly
from one annulus to the adjacent annuli. In the worst case each annulus is heated
by the magnetic energies stored by only itself and its most adjacent annuli.

i) Temporal Field Stability Briefly discuss the temporal field stability of an
annulus magnet.

Even if the temperature is kept constant, when the current is induced initially in
an HTS disk, it is expected to decay, caused chiefly by dissipation generated by
motion of flux in the disk. This decay is no different from any Type II supercon-
ductor, LTS or HTS, wire or disk. However, after this initial period, which may
last for a “long” period of time, the induced supercurrent will remain constant if
the temperature and external field remain constant.

If the operating temperature, Top(t), of an annulus is to vary with time, the
trapped field is expected to remain constant, provided the condition Top(t)<Tfc

is maintained, where Tfc is the field-cooling temperature. Experimental results
appear to confirm this field-independence when Top(t)<Tfc [9.21]; the results also
show that this time-constancy of induced supercurrent appears to be firmer the
further away (colder) Top is from Tfc. This constancy of field under the condition
of Top(t) < Tfc has recently been confirmed in flywheel energy storage systems
based on bulk HTS disks [9.22]. To ensure a field constancy with time to the
degree required, for example, by a high-resolution NMR magnet, Top should be as
far below Tfc as practical.

Answer to TRIVIA 9.3

Stars (1011); champagne bubbles (107); helium balloons (103); air bubbles (0*).

* This is the goal, which we may nearly achieve by epoxy-impregnating the coil under vacuum.
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9.3 HTS Magnets

9.3.1 Major Areas of Application—HTS (and LTS)

A technology is generally either enabling or replacing. If the technology is enabling,
because of a feature or features that existing or (competing) technologies do not
offer, it can compete with existing technologies by a criterion other than price,
often the most common and crucial criterion in the marketplace. If replacing, the
technology generally must compete with the existing technologies by price alone.

Listed in Table 9.7 on the next page are LTS and HTS applications, chiefly mag-
nets, proven successful in the marketplace (marketplace in the table) or still in an
R&D stage. The table also lists selected references, mostly of R&D papers and,
with a few exceptions, exclusively those published either in IEEE Transactions
on Magnetics or Applied Superconductivity, that report chiefly a completed mag-
net with experimental results and occasionally those focusing on specific design or
operation issues, e.g., cryogenics, conductors, AC losses, protection, of a device.
Rarely cited are those reporting results of only a design, modeling, or simulation
study. For electric power applications, a few overview papers are included. Among
many papers on a device or its upgraded versions from the same group, only a few
papers are cited, generally one or two early papers and the latest ones, to reflect
the team’s activities. Each application is briefly discussed below.

Current Leads—Both LTS and HTS versions are commercial success; selected
papers, both LTS and HTS, are cited in CHAPTER 4.

Electric Power—With exceptions for fusion magnets, LTS magnets for electric
power applications listed in the table have ended at the R&D stage. Obviously,
as stated above, in term of sheer volume, electric power offers HTS the greatest
opportunities, but at the same time poses difficult challenges.

•Generation & Storage: Fusion; Generator; SMES/Flywheel There
are six on-going major superconducting fusion machines, all LTS-based, running
(Tore Supra, Large Helical Device, KSTAR) or under development, listed in
order of nearness to completion (EAST, Wendelstein 7-X, ITER). One small
machine, LDX, uses an HTS magnet. As for Generator and SMES/Flywheel,
HTS applications are in R&D stage.

•Distribution: Fault Current Limiter; Transformer; and Transmission
All HTS applications are in R&D stage.

•End User: Motor: HTS applications are in R&D stage.

MAGLEV—Although there are many applications of magnetic levitation, the
papers cited are confined to MAGLEV applied to human transportation and elec-
tromagnetic launch (here, mostly analysis and design); HTS in R&D stage.

Magnetic Separation—LTS-based high-gradient magnetic separation (HGMS)
is a marketplace success (marketplace), but in a limited way, really only for kaolin
clay—HGMS for other materials, including water purification, is struggling [9.23];
HTS in R&D stage. As with other marketplace LTS systems listed in Table 9.7,
no papers are cited for LTS systems; some HTS-based R&D papers are cited.
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Table 9.7: Areas of Application for LTS and HTS—Chiefly Magnets

Application Remarks [Selected references]

Current leads—marketplace (LTS; HTS, limited) {see CHAPTER 4 }
Electric Power—General Overview [9.24–9.29]

• Generation&Storage:

Fusion LTS [9.30–9.56]; LTS/HTS [9.57, 9.58]

Generator LTS* [9.59–9.62]; HTS [9.63–9.74]

SMES/Flywheel LTS* [9.75–9.80]; HTS [9.81–9.111]

• Distribution:

Fault Current Limiter LTS* [9.112–9.115]; HTS [9.116–9.151]

Transformer LTS* [9.152–9.156]; HTS [9.157–9.171]

Transmission LTS* [9.172–9.179]; HTS [9.180–9.201]

• End User: Motor LTS* [9.202–9.204]; HTS [9.205–9.233]

MAGLEV LTS* [9.234–9.247]; HTS [9.248–9.258]

Magnetic Separation LTS (marketplace); HTS [9.259–9.267]

Medical MRI LTS (marketplace)

Research Magnets

High Energy Physics LTS* [9.268–9.336]; HTS [9.337–9.341]

High-Field DC Solenoids† LTS (marketplace); LTS/HTS&HTS‡ [9.342–9.369]

NMR/MRI§ LTS (marketplace); LTS/HTS&HTS [9.370–9.385]

Silicon Wafer Processing LTS (marketplace); HTS [9.386]

* Early (up to the mid 1980s, except for MAGLEV and High Energy Physics) papers listed for
historical interest; others only analysis, concept, design, overview, plans, projection, or status.

† Hybrid magnet papers not listed (see CHAPTER 3 REFERENCES); selected recent papers on
cryogen-free LTS magnets (above ∼10T) listed.

‡ “Low-field” HTS coils included.

§ Selected papers on LTS magnets listed.

Medical MRI—HTS moving into R&D stage [9.28].

Research Magnets—Superconducting magnets dominate in research fields, be-
cause here performance often trumps price.

High Energy Physics All magnets—detectors, dipoles, quadrupoles —are
LTS-based; HTS in early R&D stage.

High-Field DC Solenoids LTS/HTS (HTS as an insert to an LTS magnet),
all HTS, and cryogen-free LTS (above ∼10 T) are in R&D stage.

NMR/MRI All marketplace magnets are LTS-based; high-field LTS/HTS
(NMR) and HTS (MRI) in early R&D stage.

Silicon Wafer Processing LTS-based magnets are successful in the market-
place, though used only by wafer manufacturers; HTS is in R&D stage.

The successful superconducting applications listed above are, at least currently
(2008), all LTS-based, despite operation at liquid helium temperatures. For the
most prized applications—in terms of sheer volume—electric power, as noted
above, LTS has been demonstrated to be not enabling: hope hinges on HTS.
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9.3.2 Outlook on HTS Magnets

There are two groups of marketplace applications for HTS. The first belongs to
those applications in which LTS has failed or which have never been explored
by LTS. Here, the HTS’s most distinctive enabling feature over LTS—the higher
operating temperature—may enable it to succeed in these old or unexplored appli-
cations; a key to this success could, surprisingly, be less striking technical benefits
such as a less intrusive cryogenic system, more likely achievable with operation at
well above 4.2 K. For this group YBCO and BSCCO, with critical temperatures
93 K and>100 K, should have an edge over MgB2 (39 K).

The second group is the one already conquered by LTS. For this group of applica-
tions, HTS is a replacer of, rather than an enabler, over LTS. Its success thus may
not derive from its distinctive enabling feature but from the clearest criterion for
any replacer: HTS must compete head-on against LTS on price. Here, it currently
appears that MgB2 is in a better position than BSCCO and YBCO.

The cost of running the cryogenic system surely decreases with operating temper-
ature, but the overriding challenge to cryogenics, as remarked above, is to make
it less intrusive, rather than to emphasize the improved efficiency of a higher
operating temperature. Of course, as studied in DISCUSSION 7.5, in applications
where AC losses are present the cryogenic efficiency becomes a key or even decisive
factor if a superconducting version can outperform its room-temperature counter-
part. For a magnet of significance to the marketplace, equally important are also
mechanical integrity, stability, protection, and conductor specification; on these
issues, as we have studied, the impact of increased operating temperature, though
complex and mixed, appears to favor HTS magnets.

9.4 Concluding Remarks

This 2nd Edition, like the 1st Edition, presents and discusses key design and opera-
tional issues for superconducting magnets, LTS and HTS, with, where appropriate,
emphasis on issues that are more relevant to HTS magnets. The reader should
have gained an enhanced understanding, and appreciation, that a higher operating
temperature doesn’t necessarily make the magnet designer’s task easier. Finally,
it is hoped that the 2nd Edition will be an essential companion to superconducting
magnet designers, experienced specialists, as well as those just starting as profes-
sionals and as graduate students.

“Il resto nol dico, . . .” —Figaro
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[9.362] F. Hornung, M. Kläser, T. Schneider, “Usage of Bi-HTS in high field magnets,”
IEEE Trans. Appl. Superconduc. 14, 1102 (2004).

[9.363] R. Musenich, P. Fabbricatore, S. Farinon, C. Ferdeghini, G. Grasso, M. Greco,
A. Malagoli, R. Marabotto, M. Modica, D. Nardelli, A.S. Siri, M. Tassisto, and
A. Tumino, “Behavior of MgB2 react & wind coils above 10K,” IEEE Trans.
Appl. Superconduc. 15, 1452 (2005).

[9.364] M. Beckenbach, F. Hornung, M. Kläser, P. Leys, B. Lott, and Th. Schneider,
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APPENDIX 1A

PHYSICAL CONSTANTS AND CONVERSION FACTORS

Table A1.1: Selected Physical Constants*

Speed of light c 3.00×108 m/s

Permeability of free space μ◦ 4π×10−7 H/m

Permittivity of free space ε◦ 8.85×10−12 F/m

Avogadro’s number NA 6.023×1023 particle/mole

Electronic charge e 1.60×10−19 C

Electron rest mass m◦ 9.11×10−31 kg

Proton rest mass Mp◦ 1.67×10−27 kg

Planck’s constant h 6.63×10−34 J s

Boltzmann’s constant kB 1.38×10−23 J/K

Gas constant R 8.32×103 J/kg-moleK

Molal gas volume VR 22.4 m3/kg-mole

Stefan-Boltzmann constant σSB 5.67×10−8 W/m2 K4

Acceleration of gravity g 9.81 m/s2

Wiedemann-Franz number Λ 2.45×10−8 WΩ/K2

* Except for the permeability of free space, values are approximate.
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Table A1.2: Selected Conversion Factors

“Common” Non-SI Units* SI Units*

Electromagnetic

1 gauss 10−4 T

1oersted 250/π A/m

1 emu/cm3 1000A/m

Pressure

1mmHg (1 torr) 133 Pa

1 atm (760 torr) 101 kPa

1 bar (750 torr) 0.1 MPa

1 psi (52 torr) 6.9 kPa

Viscosity

1 poise 0.1 Pa s (0.1 kg/m s)

Energy & Power

1 eV 1.6×10−19 J

1 cal 4.18 J

1BTU 1055 J

1 hp (horsepower) 746 W

Temperature

0◦C 273 K

1 eV 11600 K

Mass

1 lb 0.45 kg

1metric ton 1000 kg

Dimension

1 in 25.4mm

1French league 4 km

1 liter (1000 cm3) 0.001m3

1 ft3 (28.3 liter) 0.0283 m3

* Values in italics are approximate.



APPENDIX 1B

UNIFORM-CURRENT-DENSITY SOLENOIDAL COIL

FIELD ERROR COEFFICIENTS

As discussed in 3.4, the product F (α, β)En(α, β) is given by Eq. 3.15b:

F (α, β)En(α, β) =
1

Mn βn−1

[
fn(α=1, β)

(1 + β2)n−0.5
− α3fn(α, β)

(α2 + β2)n−0.5

]
(3.15b)

fn+1(α, β) may be derived from the following recurrence formula:

fn+1(α, β) =
1

(n + 1)Mn

∂

∂β

[
fn(α, β)

(α2 + β2)(n−0.5)

]

Values of Mn and expressions of fn(α, β) for n from 2 to 20 are given below:*

n=2: M2 =2; f2(α, β)=1

n=3: M3 =6; f3(α, β)=α2+4β2

n=4: M4 =24; f4(α, β)=2α4+7α2β2+20β4

n=5: M5 =40; f5(α, β)=2α6+9α4β2+12α2β4 + 40β6

n=6: M6 =240; f6(α, β)=8α8+44α6β2+99α4β4+28α2β6+280β8

n=7: M7 =336; f7(α, β)=8α10+52α8β2+143α6β4+232α4β6−112α2β8+448β10

n=8: M8 =896; f8(α, β)=16α12+120α10β2+390α8β4+715α6β6+1080α4β8

−1008α2β10+1344β12

n=9: M9 =1152; f9(α, β)=16α14+136α12β2+510α10β4+1105α8β6+1480α6β8

+2592α4β10−2688α2β12+1920β14

n=10: M10 =11520; f10(α, β)=128α16+1216α14β2 + 5168α12β4+12920α10β6

+20995α8β8+19976α6β10 + 49632α4β12−46464α2β14+21120β16

n=11: M11 =14080; f11(α, β)=128α18+1344α16β2 + 6384α14β4+18088α12β6

+33915α10β8+44436α8β10+23408α6β12+114048α4β14−88704α2β16+28160β18

n=12: M12 =33792; f12(α, β)=256α20+2944α18β2+15456α16β4+48944α14β6

+104006α12β8+156009α10β10+177268α8β12 − 2288α6β14+494208α4β16

−311168α2β18+73216β20

The author thanks Robert Weggel for supplying these expressions of fn(α, β).
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n=13: M13 =39936; f13(α, β)=256α22+3200α20β2+18400α18β4+64400α16β6

+152950α14β8+260015α12β10+324268α10β12+355160α8β14−228800α6β16

+1006720α4β18−512512α2β20+93184β22

n=14: M14 =186368; f14(α, β)=1024α24+13824α22β2+86400α20β4+331200α18β6

+869400α16β8+1651860α14β10+2340135α12β12+2465460α10β14

+3027960α8β16−3615040α6β18+7742592α4β20−3214848α2β22+465920β24

n=15: M15 =215040; f15(α, β)=1024α26+14848α24β2+100224α22β4+417600α20β6

+1200600α18β8+2521260α16β10+3991995α14β12+4850640α12β14

+4232160α10β16+6980480α8β18−10286848α6β20+14137344α4β22

−4845568α2β24+573440β26

n=16: M16 =491520; f16(α, β)=2048α28+31744α26β2+230144α24β4+1035648α22β6

+3236400α20β8+7443720α18β10+13026510α16β12+17678835α14β14

+18886320α12β16+12335200α10β18+33747584α8β20−49956608α6β22

+49334272α4β24−14135296α2β26+1392640β28

n=17: M17 =557056; f17(α, β)=2048α30+33792α28β2+261888α26β4+1265792α24β6

+4272048α22β8+10680120α20β10+20470230α18β12+30705345α16β14

+36455760α14β16+35305600α12β18+11776512α10β20+81808896α8β22

−109531136α6β24+82722816α4β26−20054016α2β28+1671168β30

n=18: M18 =10027008; f18(α, β)=32768α32+573440α30β2+4730880α28β4

+24442880α26β6+88605440α24β8+239234688α22β10+498405600α20β12

+818809200α18β14+1074687075α16β16+1132428880α14β18+1047367552α12β20

−149334528α10β22+3085089280α8β24−3565506560α6β26+2143272960α4β28

−444530688α2β30+31752192β32

n=19: M19 =11206656; f19(α, β)=32768α34+606208α32β2+5304320α30β4

+29173760α28β6+113048320α26β8+327840128α24β10+737640288α22β12

+1317214800α20β14+1893496275α18β16+2209194460α16β18

+2080028192α14β20+2015437312α12β22−1533862400α10β24+6968944640α8β26

−6839951360α6β28+3365732352α4β30−603291648α2β32+37355520β34

n=20: M20 =24903680; f20(α, β)=65536α36+1277952α34β2+11821056α32β4

+68956160α30β6+284444160α28β8+881776896α26β10+2130960832α24β12

+4109710176α22β14+6421422150α20β16+8205150525α18β18

+8620015404α16β20+7193248608α14β22+8412511744α12β24

−11477921280α10β26+30055434240α8β28−25007497216α6β30

+10287710208α4β32−1608155136α2β34+87162880β36



APPENDIX II

THERMODYNAMIC PROPERTIES OF CRYOGENS

Most thermodynamic property values given here (and generally given only up to
three significant figures) are for “ballpark” computation and “first-cut” design.
For hydrogen (H2), properties of “normal” hydrogen (n-H2) are listed. As for
enthalpy, it is its difference between two temperatures or at a phase transition
that matters; i.e., an enthalpy is not always set to 0 at 0 K as is the case with
the specific heat from which the enthalpy vs. temperature data are computed.
Therefore, enthalpy values given here may numerically differ from those given in
other sources, but the difference agrees reasonably well.

Symbols: Tb, Tct, Tm, Ts, and T�, respectively, boiling, critical, melting, satu-
ration, and triple temperatures [K]; Ps: saturation pressure [torr/atm]; �: den-
sity [kg/m3]; h: enthalpy:[kJ/kg]; hL: heat of fusion (at Tm or T�) or vapor-
ization (at Tb) [kJ/kg]; h�: volumetric heat of vaporization [J/cm3]; k: thermal
conductivity [W/m K]; ν: viscosity [Pa s (pascal second)]; Pr: Prandtl number.

Property Data Sources

Because most property data presented in the above tables are compiled from many
sources, the sources are grouped together and presented below. Recognize that
some property values—all based on measurement—do not agree exactly.

Randall F. Barron, Cryogenic Systems 2nd Ed., (Clarendon Press, Oxford, 1985).

GASPAK (V.D. Arp and R.D. McCarty of Cryodata Inc.).

V.A. Grigoriev, Yu.M. Pavlov, and E.V. Ametistov, Boiling of Cryogenic Liquids (in
Russian; Energia, Moscow, 1977).

R.T. Jacobsen, S.G. Penoncello, and E.W. Lemmon, Thermodynamic Properties of
Cryogenic Fluid (Plenum, New York, 1997).

E.W. Lemmon, M.O. McLinden, and D.G. Friend, Thermal Properties of Fluid Sys-
tems (NIST Chemistry WebBook; http://webbook.nist.gov).

R.D. McCarty, Thermophysical Properties of Helium-4 from 2 to 1500K with Pressures
to 1000 Atmospheres (NBS Technical Note 631, 1972).

Robert D. McCarty, The Thermodynamic Properties of Helium II from 0K to the
Lambda Transitions (NBS Technical Note 1029, 1980).

NIST Reference Fluid Thermodynamic and Transport Properties Database (REF-
PROP): Version 8.0. Website: http://www.nist.gov/srd/nist23.htm

V.A. Rabinovich, A.A. Vasserman, V.I. Nedostup, L.S. Veksler, Thermophysical Prop-
erties of Neon, Argon, Krypton, and Xenon (Hemisphere Pub. Corp., New York, 1988).

Russell B. Scott, Cryogenic Engineering (1963 Edition reprinted in 1988 by Met-Chem
Research, Boulder, CO).

Property Data Sources continue on next page.

621
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Table A2.1: Selected Properties of Cryogens at 1 atm

Property He n-H2 Ne N2 Ar O2

Boiling temperature, Tb [K] 4.22 20.39 27.10 77.36 87.28 90.18

Heat of vaporization, hL [kJ/kg] 20.7 443 85.9 199 162 213

h� [J/cm3] 2.6 31.3 104 161 226 243

Density(Tb, liquid) [kg/m3] 125 70.8 1206 807 1394 1141

Density(Tb, vapor) [kg/m3] 16.9 1.33 9.37 4.60 5.77 4.47

Density @273K (0◦C)* [kg/m3] 0.179 0.090 0.900 1.251 1.784 1.429

@293K (20◦C) [kg/m3] 0.166 0.083 0.834 1.158 1.652 1.324

Density(Tb, liquid)/density(273K) 700 787 1340 645 781 798

Density(Tb, liquid)/density(293K) 753 853 1446 697 844 862

* Standard conditions.

Property Data Sources (continuation from p. 621)

T.A. Scott, “Solid and liquid nitrogen,” Physics Reports 27C, 89 (1976).

P.C. Souers, Hydrogen Properties for Fusion Energy (University of California Press,
Berkeley, 1986).

R.B. Stewart, ASHRAE Thermodynamic Properties of Refrigerants (American Society
of Heating, Refrigerating and Air Conditioning Engineers, New York, 1969).

Thomas R. Strobridge, Thermodynamic Properties of Nitrogen (National Bureau of
Standards, Technical Note 129, 1962).

V.V. Sychev, A.A. Vasserman, A.D. Kozlov, G.A. Spiridnonov, and V.A. Tsymarny,
Thermodynamic Property of Helium, Neon, Argon, Krypton and Xenon—A Series of
Property Tables, National Standard Reference Data Service of the USSR.

E. Yu. Tonkov, High Pressure Phase Transformations, Volume 2 (Gordon and Breach,
1992).

Steven W. Van Sciver, Helium Cryogenics (Plenum Press, New York, 1986).
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Table A2.2: Density and Enthalpy Data of Solid Cryogens at 1 bar*/1 atm

Neon (1 bar) Nitrogen (1 atm) Argon (1 bar)

T [K] � [kg/m3] h [kJ/kg] � [kg/m3] h [kJ/kg] � [kg/m3] h [kJ/kg]

4 1507 0.02 1032 0.008 1771 0.01

5 1507 0.09 1032 0.021 1771 0.015

6 1506 0.10 1032 0.044 1771 0.024

8 1505 0.31 1032 0.15 1771 0.08

10 1503 0.75 1031 0.38 1771 0.20

12 1499 1.43 1031 0.80 1771 0.42

15 1490 2.76 1029 1.85 1769 0.96

20 1466 6.78 1027 4.74 1765 2.20

22 1452 8.84 1025 6.29 1763 2.80

1429 12.0
1240† 24.2†

30 — — 1016 14.5 1752 6.12

1002 22.7
994 30.8

40 — — 989 37.1 1731 11.3

45 — — 981 44.3 1725 14.2

50 — — 970 52.1 1715 17.3

60 — — 949 68.9 1691 23.9

946 74.3
877† 100.0†

70 — — — — 1664 31.1

80 — — — — 1633 39.1

1619 42.3
71.6†

24.56 1022 8.51 1760 3.90

35.61‡ — — 1742 8.90

63.16 — — 1683 25.5

83.81 — — — —

* 1 bar=750 torr= 0.987 atm.

† Liquid phase.

‡ Solid-to-solid phase transition; nitrogen expands and absorbs an energy density of 8.17 ×
103 [kJ/kg].
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Table A2.3a: Helium at Saturation

T p* ρ† h†
[K] [torr/atm] [kg/m3] [kJ/kg]

1.50 3.53 145 0.15 0.26 22.61

1.55 4.47 145 0.19 0.32 22.85

1.60 5.59 145 0.23 0.39 23.09

1.65 6.90 145 0.27 0.48 23.33

1.70 8.45 145 0.33 0.58 23.56

1.75 10.2 145 0.38 0.70 23.79

1.80 12.3 145 0.45 0.84 24.02

1.85 14.6 145 0.52 1.00 24.25

1.90 17.2 145 0.60 1.18 24.47

1.95 20.2 145 0.69 1.38 24.69

2.00 23.4 146 0.78 1.63 24.91

2.05 27.0 146 0.89 1.92 25.13

2.10 31.0 146 0.99 2.23 25.33

Tλ : 2.18 38.0 146 1.18 — 25.41

2.20 39.9 146 1.24 3.28 25.51

2.30 50.4 146 1.50 3.57 25.91

2.40 62.5 145 1.81 3.82 26.30

2.50 76.6 145 2.14 4.05 26.68

2.60 92.6 144 2.52 4.27 27.04

2.80 133 142 3.40 4.73 27.71

3.00 182 141 4.46 5.23 28.33

3.25 257 139 6.08 5.93 28.99

3.50 352 136 8.09 6.72 29.52

3.75 470 133 10.5 7.62 29.91

4.00 615 129 13.6 8.65 30.12

4.22 760/1.00 125 16.9 9.71 30.13

4.30 1.07 124 18.2 10.1 30.1

4.40 1.17 121 20.2 10.7 30.0

4.50 1.28 119 22.1 11.3 29.8

4.75 1.58 112 28.7 13.0 29.0

5.00 1.93 101 39.3 15.4 27.3

Tct : 5.20 2.24 69.6 21.4

* In torr below 760 torr (1 atm) and in atm above 760 torr.

† Italics are for the vapor phase.
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Table A2.3b: Density and Enthalpy Data of Helium at 1, 6, and 10 atm

1 atm 6 atm 10 atm

T [K] � [kg/m3] h [kJ/kg] � [kg/m3] h [kJ/kg] � [kg/m3] h [kJ/kg]

2.5 147 4.58 156 7.56 161 9.93

3.0 143 5.64 153 8.45 159 10.7

3.5 138 6.96 150 9.55 157 11.7

4.0 130 8.70 146 10.9 153 13.0

125 9.71
16.9 30.13

4.5 14.5 32.5 140 12.5 148 14.4

5.0 11.9 36.2 133 14.6 144 16.2

5.5 10.3 39.5 124 17.2 138 18.2

6 9.15 42.5 112 20.3 131 20.5

7 7.53 48.4 78.5 30.0 115 26.0

8 6.44 54.0 54.1 40.5 94.5 33.4

9 5.64 59.5 42.2 48.9 75.5 42.1

10 5.02 64.9 35.1 56.1 62.4 50.3

12 4.13 75.7 27.0 69.0 46.9 64.3

14 3.52 86.3 22.2 81.0 37.9 77.1

16 3.07 96.9 18.9 92.6 32.0 89.4

18 2.72 107 16.5 104 27.8 101

20 2.44 118 14.7 115 24.6 113

25 1.95 144 11.5 142 19.3 141

30 1.62 170 9.65 169 16.0 168

35 1.39 196 8.26 196 13.6 195

40 1.22 222 7.22 222 11.9 222

45 1.08 248 6.42 249 10.6 249

50 0.973 274 5.78 275 9.54 275

55 0.885 300 5.25 301 8.68 301

60 0.811 326 4.82 327 7.96 328

65 0.749 352 4.45 353 7.36 354

70 0.696 378 4.13 379 6.84 380

75 0.649 404 3.86 405 6.39 406

80 0.609 430 3.62 431 5.99 432

90 0.541 482 3.22 484 5.34 484

100 0.487 534 2.90 536 4.81 537

125 0.390 664 2.33 666 3.86 667

150 0.325 794 1.94 796 3.22 797

175 0.279 924 1.66 925 2.76 927

200 0.244 1054 1.46 1055 2.42 1057

225 0.217 1183 1.30 1185 2.15 1186

250 0.195 1313 1.17 1315 1.94 1316

275 0.177 1443 1.06 1445 1.76 1446

300 0.163 1573 0.973 1575 1.62 1576

4.224 145 11.6 151 13.6
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Table A2.4a: Nitrogen at Saturation

T p* ρ† h†
[K] [torr]/[atm] [kg/m3] [kJ/kg]

Tm : 63.16 93.48 868 0.67 0 216.1

64 109 865 0.77 1.74 216.9

65 131 861 0.92 3.80 217.9

66 154 857 1.07 5.86 218.8

67 182 853 1.24 7.7 219.7

68 213 849 1.43 10.0 220.7

69 249 844 1.65 12.1 221.6

70 288 840 1.89 14.1 222.5

71 334 836 2.16 16.2 223.4

72 384 831 2.46 18.3 224.2

73 440 827 2.78 20.4 225.1

74 502 823 3.14 22.4 226.0

75 570 818 3.53 24.5 226.8

76 645 814 3.96 26.6 227.6

Tb : 77.364 760/1.00 807 4.60 29.4 228.7

78 1.08 804 4.93 30.7 229.1

79 1.21 800 5.48 32.8 229.9

80 1.35 795 6.07 34.8 230.6

82 1.67 786 7.40 39.0 232

84 2.05 776 8.94 43.1 233

86 2.48 766 10.7 47.3 235

88 2.98 756 12.7 51.5 236

90 3.55 746 15.0 55.7 237

92 4.20 735 17.6 59.9 237

94 4.93 724 20.6 64.3 238

96 5.75 713 23.9 68.7 239

98 6.66 702 27.7 73.1 239

100 7.68 690 31.9 77.7 239

102 8.80 677 36.7 82.4 239

104 10.03 664 42.0 87.2 239

106 11.4 651 48.0 92.2 239

108 12.9 637 54.8 97.2 238

110 14.5 622 62.6 102 237

112 16.2 606 71.4 108 236

114 18.1 589 81.5 113 234

116 20.2 570 93.4 119 232

118 22.4 549 107 125 230

120 24.8 525 124 132 226

Tct : 126.3 33.6 254 194

* In torr below 760 torr (1 atm) and in atm above 760 torr.

† Italics are for the vapor phase.
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Table A2.4b: Density and Enthalpy Data of Nitrogen at 1, 15, and 20 atm

1 atm 15 atm 20 atm

T [K] � [kg/m3] h [kJ/kg] � [kg/m3] h [kJ/kg] � [kg/m3] h [kJ/kg]

64 865 1.82 867 2.97 897 3.39

65 861 3.87 863 5.02 864 5.43

66 857 5.93 859 7.06 860 7.47

67 853 7.99 855 9.12 856 9.52

68 849 10.1 851 11.2 852 11.6

69 844 12.1 847 13.2 848 13.6

70 840 14.2 843 15.3 844 15.7

71 836 16.3 839 17.3 839 17.7

72 832 18.3 834 19.4 835 19.8

73 827 20.4 830 21.4 831 21.8

74 823 22.5 826 23.5 827 23.9

75 818 24.5 821 25.5 822 25.9

76 814 26.6 817 27.6 818 28.0

77 809 28.6 812 29.6 813 30.0

807 29.4
4.60 228.7

79 4.50 230 803 33.7 804 34.1

80 4.44 232 799 35.8 800 36.1

85 4.15 237 775 46.0 776 46.3

90 3.90 242 750 56.2 752 56.5

95 3.68 248 723 66.8 725 67.0

100 3.48 253 694 77.8 697 77.9

105 3.31 258 661 89.6 665 89.5

108 3.21 262 639 97.1 644 96.8

617 104.0
6.51 237.0

112 3.09 266 6.29 240 611 107

114 3.04 268 6.01 243 592 113

571 118.6
9.22 232.6

118 2.93 272 5.56 250 8.59 238

120 2.88 274 5.37 253 8.13 242

125 2.76 280 4.97 260 7.28 252

130 2.65 285 4.65 267 6.67 260

135 2.55 290 4.37 274 6.19 268

140 2.46 295 4.14 281 5.81 275

150 2.29 306 3.76 293 5.20 288

200 1.71 358 2.64 351 3.56 349

250 1.37 410 2.07 406 2.77 404

275 1.24 436 1.87 433 2.50 431

300 1.14 462 1.71 459 2.28 458

77.364 811 30.4 812 30.7

110.60 3.13 264 623 104

115.823 2.99 270 5.79 246
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Table A2.5: Hydrogen, Neon, and Argon at Saturation

T p* ρ† h†
[K] [torr]/[atm] [kg/m3] [kJ/kg]

Normal Hydrogen

T�: 13.95 57.6 76.9 0.14 213 662

Tm : 14.0 59.2 76.9 0.14 213 662

15 100.7 76.0 0.22 221 672

16 161.5 75.1 0.34 228 680

17 246 74.2 0.49 236 688

18 361 73.2 0.69 244 696

19 510 72.2 0.94 253 702

20.28 760/1.00 70.8 1.34 265 710

21 1.23 70.0 1.62 272 714

22 1.61 68.7 2.07 283 718

23 2.07 67.4 2.61 395 722

Tct : 32.94 13.0 32.2 555

Neon

24.55‡ 325 1248 4.41 28.2 117.0

25 383 1241 5.12 29.0 117.4

26 539 1224 7.00 30.9 118.1

Tb : 27.10 760/1.00 1207 9.58 33.0 118.8

28 1.30 1189 12.2 34.8 119.3

29 1.71 1170 15.7 36.8 119.8

30 2.21 1151 20.0 38.8 120.1

31 2.80 1131 25.0 40.9 120.4

32 3.51 1111 30.9 43.1 120.6

Tct : 44.40 26.2 483 92.5

Argon

83.78§ 515 1415 4.05 71.9 235.1

85 593 1407 4.60 73.2 235.6

86 662 1401 5.08 74.2 235.9

Tb : 87.28 760/1.00 1394 5.77 75.6 236.4

88 1.08 1388 6.18 76.4 236.7

89 1.19 1382 6.80 77.5 237.0

90 1.32 1376 7.45 78.6 237.4

95 2.11 1344 11.5 84.2 238.9

Tct : 150.86 48.3 536 189.9

* In torr below 760 torr (1 atm) and in atm above 760 torr.

† Italics are for the vapor phase.

‡ T� =24.556K; Tm =24.56K.

§ Tm =83.8 K; T� =83.806K.
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Table A2.6: Density and Enthalpy Data of Neon at 1, 10, and 20 atm

1 atm 10 atm 20 atm

T [K] � [kg/m3] h [kJ/kg] � [kg/m3] h [kJ/kg] � [kg/m3] h [kJ/kg]

1207 0
9.58 85.8

28 9.22 86.9 1197 2.12 1203 2.63

29 8.85 88.1 1179 4.02 1185 4.50

30 8.52 89.2 1160 5.97 1167 6.42

32 7.94 91.5 1119 10.06 1128 10.4

33 7.68 92.5 1097 12.21 1108 12.5

34 7.43 93.6 1074 14.43 1086 14.7

36 6.99 95.8 1023 19.13 1038 19.2

974.5 23.31
88.2 86.80

40 6.25 100 77.0 91.3 916.9 29.7

787.3 39.1
212.9 78.6

44 5.66 104 65.2 97.4 172.1 85.5

46 5.41 106 61.0 100 148.9 90.7

48 5.18 109 57.4 103 134.0 94.8

50 4.96 111 54.3 105 123.1 98.3

55 4.50 116 48.0 111 104.1 106

60 4.12 121 43.2 117 91.5 113

65 3.80 126 39.4 123 82.1 119

70 3.52 131 36.2 129 74.7 125

75 3.29 137 33.6 134 68.7 131

80 3.08 142 31.3 140 63.7 137

85 2.90 147 29.3 145 59.4 143

90 2.74 152 27.6 150 55.7 148

95 2.59 157 26.1 156 52.5 154

100 2.46 163 24.7 161 49.7 159

110 2.24 173 22.4 172 44.9 170

120 2.05 183 20.5 182 40.9 181

130 1.89 193 18.9 193 37.7 192

140 1.76 204 17.5 203 34.9 202

150 1.64 214 16.3 214 32.5 213

160 1.54 224 15.3 224 30.5 223

180 1.37 245 13.6 245 27.1 244

200 1.23 266 12.2 266 24.3 265

220 1.12 286 11.1 286 22.1 286

240 1.02 307 10.2 307 20.3 307

260 0.945 328 9.4 328 18.7 328

280 0.878 348 8.7 348 17.4 349

300 0.819 369 8.2 369 16.2 369

27.10 1213 0.43 1218 0.97

37.62 6.67 97.5 994.6 23.1

42.34 5.89 103 69.5 95.0
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Table A2.7: Selected Thermodynamic Properties of Cryogen Gases at 1 atm

T [K] 5 10 20 30 50 75 100 150 200 250 300

Density, � [kg/m3] {Liquid: He (125); n-H2(70.8); Ne (1206);N2(807); Ar (1394)}*
He 16.9† 5.02 2.44 1.62 0.97 0.65 0.49 0.32 0.24 0.20 0.16

n-H2 88.5‡ 88.2 1.33† 0.85 0.49 0.33 0.25 0.16 0.12 0.10 0.08
Ne 1520 1517 1484 9.37† 4.97 3.30 2.47 1.64 1.23 0.98 0.82
N2 1031 1031 1027 1016§ 970 4.60† 3.48 2.29 1.71 1.37 1.14
Ar 1771 1771 1765 1752 1715 5.77† 4.98 3.25 2.44 1.95 1.62

Thermal Conductivity, k [mW/mK] {He (19.6); n-H2(119); Ne (113);N2(140); Ar (123)}
He 10.6† 15.6 25.3 31.9 46.8 60.7 73.6 96.9 118 137 155

n-H2 400 800 15.8† 22.9 36.2 51.6 68.0 98.5 128 155 177
Ne 3500 950 370 9.86† 14.1 18.2 22.2 29.8 36.9 43.3 49.2
N2 4350 1450 500 280§ 690 7.23† 9.33 13.7 18.0 22.1 25.8
Ar 3250 3575 1410 900 500 5.48† 6.41 9.58 12.5 15.2 17.7

Viscosity, ν [10−6Pa s] {He (3.56); n-H2(13.2); Ne (130);N2(158); Ar (252)}
He 1.24† 2.15 3.37 4.37 6.09 7.88 9.47 12.4 15.0 17.4 19.9

n-H2 — — 1.11† 1.61 2.49 3.41 4.21 5.60 6.81 7.93 8.96
Ne — — — 4.77† 8.18 11.4 14.4 19.3 23.8 27.9 31.7
N2 — — — — — 5.41† 6.98 10.1 13.0 15.6 17.9
Ar — — — — — 7.43† 8.39 12.2 15.9 19.5 22.7

Prandl Number, Pr

He 0.90† 0.72 0.68 0.68 0.67 0.66 0.67 0.68 0.67 0.68 0.69
n-H2 — — 0.77† 0.75 0.72 0.71 0.70 0.72 0.72 0.72 0.73

Ne — — — 0.56† 0.62 0.65 0.67 0.67 0.66 0.66 0.66
N2 — — — — — 0.81† 0.80 0.77 0.75 0.73 0.72
Ar — — — — — 0.74† 0.71 0.67 0.67 0.67 0.67

* Values for liquid at saturation temperature, Ts, given between braces, { }.
† At saturation temperature, Ts, at 1 atm, e.g., Ts =4.22K (He), 87.28K (Ar).

‡ Bold: solid state.

§ Solid-solid phase transition at 35.61K: cp =1.63 [kJ/kgK] at 35.6− K and cp =1.30 [kJ/kgK]
at 35.6+ K; heat of transition: 8.17 kJ/kg. See Cp [J/cm3 K] vs. T plots (Fig. 4.2 on p. 223).
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PHYSICAL PROPERTIES OF MATERIALS

In using property data presented in this Appendix, we should be well aware that
although most data are given to at least three significant figures, implying these
particular data are quite accurate, they do not necessarily accurately represent
the property value of the specific material for which we seek information. Among
property data presented here, those that are subject to considerable degrees of
variation from one material batch to another include: thermal conductivity data
(Fig. A3.1); mechanical property data (Table A3.1); thermal expansion data (Table
A3.2), particularly of non-metals.

Property Data Sources

A.F. Clark, “Low temperature thermal expansion of some metallic alloys,” Cryogenics
8, 282 (1968).

C.C. Clickner, J.W. Ekin, N. Cheggour, C.L.H. Thieme, Y. Qiao, Y.-Y. Xie, A. Goyal,
“Mechanical properties of pure Ni and Ni-alloy substrate materials for Y-Ba-Cu-O
coated superconductors,” Cryogenics 46, 432 (2006).

Robert J. Corruccini and John J. Gniewek, Specific Heats and Enthalpies of Technical
Solids at Low Temperatures (NBS Monograph 21, 1960).

Cryogenic Materials Data Handbook Volumes 1 and 2 (Martin Marietta Corp. Air
Force Materials Laboratory, 1970).

C.C. Koch and D.S. Easton, “A review of mechanical behavior and stress effects in
hard superconductors,” Cryogenics 17, 391 (1977).

Materials Engineering Materials Selector 1987 (Penton Publishing, Cleveland, OH).

J.H. McTaggart and G.A. Slack, “Thermal conductivity data of General Electric No.
7031 varnish,” Cryogenics 9, 384 (1969).
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A3.1a Thermal Conductivity vs. Temperature Plots:
Mainly Conductive Materials
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Fig. A3.1a Thermal conductivity vs. temperature plots of mainly conductive materials.
(For clarity, selected plots are in dashed lines.)
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A3.1b Thermal Conductivity vs. Temperature Plots:
Nonconductive Materials
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Fig. A3.1b Thermal conductivity vs. temperature plots for nonconductive materials;
G-10‖ in the direction parallel to warp fibers and G-10⊥ in the direction normal to cloth.

(For clarity, selected plots are in dashed lines.)
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A3.2a Heat Capacity vs. Temperature Plots:
Aluminum, Copper, Silver, and Stainless Steel
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Fig. A3.2a Heat capacity vs. temperature plots for aluminum, copper, silver,
and stainless steel. Converted from specific heat [J/kgK] data with constant

densities: Aluminum (2700 kg/m3); Copper (8960 kg/m3); Silver (10490 kg/m3);

Stainless steel (7900 kg/m3).
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A3.2b Enthalpy vs. Temperature Plots:
Aluminum, Copper, Silver, Stainless Steel;
Solid Neon, Solid Nitrogen
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Fig. A3.2b Enthalpy vs. temperature plots for aluminum, copper, silver, stainless
steel. Converted from specific heat [J/kgK] data with constant densities: Alu-

minum (2700 kg/m3); Copper (8960 kg/m3); Silver (10490 kg/m3); Stainless steel

(7900 kg/m3). For densities of solid neon and nitrogen, at 1 bar, see TableA2.2.
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Table A3.1: Heat Capacity Data for Selected Materials

Density @“Room Temperature” [kg/m3]

Copper Nickel Tungsten “Epoxy” Kapton Teflon

8960 8908 19250 1150 1140 2200

Heat Capacity [kJ/m3 K]

T [K] Copper Nickel Tungsten “Epoxy” Kapton Teflon

2 0.251 2.16 0.304 0.116 0.164 0.2*

4 0.816 4.48 0.757 0.869 1.34 3*

6 2.06 7.30 1.51 3.70 4.43 10*

8 4.21 10.6 2.71 9.25 10.1 22*

10 7.71 14.4 4.50 17.5 18.9 39.6

15 24.2 27.6 14.0 48.7 54.5 106

20 69.0 51.7 34.7 92.1 105 167

25 143 90.0 81.0 143 164 224

30 242 149 151 195 226 275

40 538 339 354 271 349 363

50 887 608 639 383 465 444

60 1.23×103 918 930 490 571 524

70 1.55×103 1.24×103 1.16×103 588 670 603

80 1.84×103 1.54×103 1.38×103 679 762 686

90 2.08×103 1.82×103 1.56×103 761 850 770

100 2.28×103 2.07×103 1.71×103 836 933 849

120 2.58×103 2.48×103 1.94×103 969 1.09×103 1.01×103

140 2.80×103 2.80×103 2.12×103 1.09×103 1.24×103 1.16×103

160 2.97×103 3.05×103 2.25×103 1.19×103 1.38×103 1.32×103

180 3.10×103 3.25×103 2.35×103 1.29×103 1.52×103 1.49×103

200 3.19×103 3.41×103 2.41×103 1.40×103 1.66×103 1.63×103

220 3.26×103 3.54×103 2.46×103 1.51×103 1.79×103 1.76×103

240 3.32×103 3.65×103 2.50×103 1.63×103 1.92×103 1.89×103

260 3.37×103 3.76×103 2.54×103 1.77×103 2.04×103 2.01×103

280 3.41×103 3.86×103 2.58×103 1.93×103† 2.14×103 2.22×103

300 3.46×103 3.96×103 2.62×103 2.10×103† 2.28×103 2.24×103

* Interpolated.

† Extrapolated.
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Table A3.2: Enthalpy Data for Selected Materials

Density @“Room Temperature” [kg/m3]

Copper Nickel Tungsten “Epoxy” Kapton Teflon

8960 8908 19250 1150 1140 2200

Enthalpy [kJ/m3]

T [K] Copper Nickel Tungsten “Epoxy” Kapton Teflon

2 0.224 2.15 0.29 0.087 0.102

4 1.165 8.73 1.32 0.857 1.37

6 3.94 20.3 3.50 5.02 6.79

8 10.0 38.1 7.62 17.5 20.9

10 21.5 63.2 14.7 43.9 49.3 103

15 95.9 165 57.2 204 225 462

20 305 365 178 551 620 1.14×103

25 806 704 456 1.14×103 1.29×103 2.13×103

30 1.75×103 1.29×103 1.03×103 1.99×103 2.13×103 3.39×103

40 5.47×103 3.68×103 3.48×103 4.29×103 5.14×103 6.58×103

50 1.25×104 8.35×103 8.39×103 7.56×103 9.22×103 1.06×104

60 2.31×104 1.59×104 1.62×104 1.19×104 1.44×104 1.54×104

70 3.70×104 2.67×104 2.68×104 1.73×104 2.06×104 2.11×104

80 5.39×104 4.06×104 3.95×104 2.37×104 2.78×104 2.75×104

90 7.37×104 5.75×104 5.41×104 3.09×104 3.59×104 3.48×104

100 9.50×104 7.69×104 7.05×104 3.89×104 4.48×104 4.29×104

120 1.44×105 1.23×105 1.07×105 5.70×104 6.50×104 6.14×104

140 1.98×105 1.75×105 1.48×105 7.75×104 8.83×104 8.29×104

160 2.55×105 2.34×105 1.92×105 1.00×105 1.15×105 1.08×105

180 3.16×105 2.97×105 2.37×105 1.25×105 1.44×105 1.36×105

200 3.80×105 3.64×105 2.85×105 1.52×105 1.75×105 1.67×105

220 4.44×105 4.33×105 3.35×105 1.81×105 2.10×105 2.01×105

240 5.10×105 5.05×105 3.85×105 2.13×105 2.47×105 2.37×105

260 5.77×105 5.79×105 4.35×105 2.47×105 2.87×105 2.76×105

280 6.45×105 6.56×105 4.87×105 2.84×105* 3.09×105* 3.18×105

300 7.13×105 7.34×105 5.39×105 3.24×105* 3.53×105* 3.64×105

* Extrapolated.
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Table A3.3: Mechanical Properties of Selected Materials

Material σU [MPa] σY [MPa] E [GPa]

T [K] 295 77 295 77 295 77

Aluminum6061 (T6) 315 415 280 380 70 77

Copper (annealed) 160 310 70 90 70 100

Copper (1/4 hard) 250 350 240 275 130 150

Copper (1/2 hard) 300 280 130

Nickel 345→2000 51 58 60 70

Silver 190 295 40–60 45–70 82 90

Stainless steel 304 550→ 1450→ 200→ 260→ 190→ 200→
1030 1860 620 1400 190 200

Stainless steel 316LN 1290 1790 1100 1400 185 195

Epoxy 40 100 — — 27 28

G-10 (warp/normal) 280/240 — — — 18/14 —

Mylar 145 215 — — 7 13

Teflon 14 105 — — 0.4 5

Table A3.4: Mean Linear Thermal Expansion Data of Selected Materials

[L(T ) − L(293K)]/L(293K) [%]

Material T [K]

20 80 140 200 973†
Aluminum −0.415* −0.391 −0.312 −0.201 —

Brass (70Cu-30Zn) −0.369 −0.337 −0.260 −0.163 +1.30

Bronze −0.330 −0.304 −0.237 −0.150 +1.33

Copper −0.324 −0.300 −0.234 −0.148 +1.3

Nickel −0.224 −0.211 −0.171 −0.111 —

Silver −0.409 −0.360 −0.270 −0.171 +1.50

Stainless steel 304 −0.306 −0.281 −0.222 −1.40 +1.32

Epoxy −1.15 −1.02 −0.899 −0.550 —

G-10 (warp) −0.241 −0.211 −0.165 −0.108 —

G-10 (normal) −0.706 −0.638 −0.517 −0.346 —

Phenolic (normal) −0.730 −0.643 −0.513 −0.341 —

Teflon (TFE) −2.11 −1.93 −1.66 −1.24 —

Nb3Sn −0.171 −0.141 −0.102 −0.067 +0.55

Cu/NbTi wire −0.265 −0.245 −0.190 −0.117 —

Solder (50Sn-50Pb) — −0.510 −0.365 −0.229 —

* An aluminum bar 1-m long at 293K shrinks by 4.15mm when cooled to 20K.

† A common Nb3Sn reaction temperature.

‡ crosswise.
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ELECTRICAL PROPERTIES OF NORMAL METALS

Property Data Sources

A.F. Clark, G.E. Childs, and G.H. Wallace, “Electrical resistivity of some engineering
alloys at low temperatures,” Cryogenics 10, 295 (1970).

F.R. Fickett, “Aluminum 1. A review of resistive mechanisms in aluminum,” Cryo-
genics 11, 349 (1971).

F.R. Fickett, “Oxygen-free copper at 4K: resistance and magnetoresistance,” IEEE
Trans. Magn. MAG-19, 228 (1983).

A.M. Hatch, R.C. Beals, and A.J. Sofia, Bench-scale experiments on superconducting
material joints (Final Report, Avco Everett Research Laboratory, November 1976;
unpublished).

Y. Iwasa, E.J. McNiff, R.H. Bellis, and K. Sato, “Magnetoresistivity of silver over the
range 4.2–159K,” Cryogenics 33, 836 (1993).

G.T. Meaden, Electrical Resistance of Metals (Plenum Press, New York 1965).

Materials at low temperatures, Eds. Richard P. Reed and Alan F. Clark (American
Society For Metals, 1983).

Jean-Marie Noterdaeme, Demountable resistive joint design for high current supercon-
ductors (Master of Science Thesis, Department of Nuclear Engineering, Massachusetts
Institute of Technology, 1978).

M.T. Taylor, A. Woolcock, and A.C. Barber, “Strengthening superconducting com-
posite conductors for large magnet construction,” Cryogenics 8, 317 (1968).

Guy Kendall White, Experimental Techniques in Low-Temperature Physics (Clarendon
Press, Oxford, 1959).

J.L. Zar, “Electrical switch contact resistance at 4.2◦K,” Adv. Cryo. Engr. 13, 95
(1968).
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A4.1 Normalized Electrical Resistivity vs. Temperature Plots:
Conductive Metals and Stainless Steel
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Fig. A4.1 Normalized zero-field ρ(T ) plots for conductive metals and stainless steel:
aluminum (99.99%, ρ ≤26.44 nΩ m); copper (RRR= 50, ρ ≤17.14 nΩ m); copper (100,
ρ ≤17.03 nΩ m); copper (200, ρ ≤16.93 nΩ m); silver (99.99%, ρ ≤16.00 nΩ m). Stainless
steel (304L ρ ≤725 nΩ m) represents a “typical” alloy. For each metal, ρ(T ) is normalized
to its zero-field resistivity at 293 K.
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A4.2 RRR vs. Magnetic Field Plots: Aluminum; Copper; Silver
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Fig. A4.2 RRR vs. magnetic field plots: copper (solid) and aluminum (dotted),
both at 4.2K, and silver (dash-dotted, with temperatures indicated—RRR = 735 at
0T). At 77K, field-dependence of RRR for copper is similar to that of silver.

Table A4.1: 4.2-K Contact Resistance vs. Contact Pressure Data*

Copper Surface Treatment Contact Resistance [pΩm2]

Contact Pressure [MPa] 7 30 100 200 400

Bare, “freshly cleaned” 100 25 5 0.2 —

Oxidized — — — 3 1

Silver plated 1–10 0.4–3 0.2–0.8 0.04–0.06 —

Silver plated (10-μm thick) 1 0.9 — — —

Gold plated (1.3-μm thick) 14 6 — — —

* Based on >100MPa data of Noterdaeme and 7- and 30-MPa data of Zar.
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Table A4.2: Electrical Resistivity vs. Temperature Data of Selected Metals

ρ(T ) = ρ(76K) + ς(T − 76K) for T ≥ 76K (Eq. A2.1)

ρ [nΩm]; T [K]; ς [nΩm/K]

Metal Resistivity [nΩm]

T [K] 4 20 40 76 273 295* ς

Aluminum1100 0.82 0.84 1.14 3.10 26.7 29.3 0.120

Aluminum6061 13.8 13.9 14.1 16.6 39.4 41.9 0.116

HastelloyC [a] 1230 1230 1236 1240 1268 1271 0.142

CopperOFHC 0.16 0.17 0.28 2.00 15.6 17.1 0.069

Brass (Cartridge) [b] 42 42 43 47 67 69 0.102

(Naval) [c] 33 33 35 39 63 66 0.122

(Red) [d] 27 27 28 30 47 49 0.086

Bronze (Aluminum) [e] 139 138 140 140 162 164 0.112

(Commercial) [f] 21 21 22 24 39 41 0.076

(Ni-Al) [g] 157 157 158 160 184 187 0.122

(Phosphor) [h] 86 86 88 89 105 107 0.081

90Cu-10Ni 167 167 168 169 184 186 0.076

70Cu-30Ni 364 365 366 367 384 386 0.086

Stainless steel 304L 496 494 503 514 704 725 0.964

310 685 688 694 724 873 890 0.756

316 539 538 546 566 750 771 0.934

* Based on Eq. A2.1 given at the top of this table.

[a]: 58Ni-16Mo-15Cr-5Fe-3W; [b]: 70Cu-30Zn; [c]: 59Cu-40Zn; [d]: 84Cu-15Zn

[e]: 91Cu-7Al; [f]: really brass, 89Cu-10Zn; [g]: 81Cu-10Al-5Ni; [h]: 94Cu-5Sn-0.2P

Table A4.3: Electrical Resistivity of Selected Heater Metals*

Heater Metal ρ [nΩ m]

≤ 20K 76K 295K

Evanohm (75Ni-20Cr-2.5Al-2.5Cu) 1326 1328 1337

ChromelA (80Ni-20Cr) 1020 1027 1055

Constantan (60Cu-40Ni) 460 466 490

Cupron (55Cu-45Ni) 431 458 476

Manganin (86Cu-12Mn-2Ni) 425 444 475

TophetA (80Ni-20Cr) 1087 1090 1120

NbTi 600† — —

* Data for brass, bronze, and stainless steel are given in Table A4.2.

† In the normal state.
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PROPERTIES OF SUPERCONDUCTORS

Properties of superconductors in this Appendix, like properties of materials in
APPENDIX III, are representative and intended for use chiefly in the early stages
of magnet design. Unlike a design of a conventional electric motor, for example,
in which the designer can choose the copper wire from a wire catalogue, except for
a few cases involving staple items such as mass-produced, NbTi-based “standard”
MRI magnets, the design process of a superconducting magnet must still often
include design of superconductors by the magnet engineer, specifically tailored for
the magnet. That is, currently in nearly all superconducting magnets, supercon-
ductor manufacturers are involved from the early design stage. This practice, it is
hoped, will (and should) end in time as more magnets are mass-produced, leading
to a wide availability of a variety of “standard” magnet-grade superconductors.

Property Data Sources & Selected References

Selected References list only those papers that include data relevant to magnet
design; no purely materials-related papers on superconductors are included.

Jc(B) Data of LTS and HTS

Peter J. Lee (http://magnet.fsu.edu/∼lee/plot/plot.htm)—mostly only 4.2-K data.

Jc(B,T) Data of NbTi and Nb3Sn

C.R. Spencer, P.A. Sanger and M. Young, “The temperature and magnetic field de-
pendence of superconducting critical current densities of multifilamentary Nb3Sn and
NbTi composite wires,” IEEE Trans. Magn. MAG-15, 76 (1979).

K.F. Hwang and D.C. Larbalestier, “Generalized critical current density of commercial
Nb46.5, Nb50 and Nb53 w/o Ti multifilamentary superconductors,” IEEE Trans. Magn.
MAG-15, 400 (1979).

M.S. Lubell, “Empirical scaling formulas for critical current and critical field for com-
mercial NbTi,” IEEE Trans. Magn. MAG-19, 754 (1983).

Michael A. Green, “Calculating Jc, B, T surface for niobium titanium using a reduced-
state model,” IEEE Trans. Magn. 25, 2119 (1989).

L. Bottura, “A practical fit for the critical surface of NbTi,” IEEE Trans. Appl. Super-
conduc. 10, 1054 (2000).

Arno Godeke, Performance Boundaries in Nb3Sn Superconductors (Ph.D. thesis, Uni-
versity of Twente, Enschede, The Netherlands, 2005); also in J.P. Lee website, ibid.

Nikolai Schwerg and Christine Vollinger, “Development of a current fit function for
NbTi to be used for calculation of persistent current induced field errors in the LHC
main dipoles,” IEEE Trans. Appl. Superconduc. 16, 1828 (2006).

Takashi Hase (Kobe Steel; personal communication).

Property Data Sources & Selected References continue on p. 647.
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A5.1 Current Densities of NbTi, Nb3Sn, MgB2, YBCO, Bi2223

Current densities of NbTi, Nb3Sn, MgB2 (wires) and YBCO and Bi2223 (tapes),
are summarized in Table A5.1; the table does not include Bi2212 data—see Lee’s
website for 4.2-K data. (In the table, Jc and Je are rounded off to the nearest 0
or 5 A/mm2 and those interpolated or extrapolated are in italics.) At the present
time (2008), Je(B, T ) performances of MgB2 and YBCO are improving at rates
greater than those of NbTi, Nb3Sn, Bi2223, (and Bi2212). The best sources for the
latest data of these superconductors are the conductor manufacturers’ websites.

Note that the overall current density, Jov or λJop, in any magnet wound with NbTi,
Nb3Sn, MgB2, YBCO, Bi2223, (or Bi2212) will be less than Jc (or Je) given in
Table A5.1. To satisfy other design requirements, e.g., electrical, mechanical, pro-
tection, stability, each superconductor must contain other non-superconducting
materials, making Jov < Jc (orJe). In fact, even in the ultimate limit of improve-
ment, i.e., Jc =∞, Jov will remain well below 1000 A/mm2.

A5.2 Scaling Laws for NbTi and Nb3Sn

Scaling laws, developed for NbTi and Nb3Sn over the years, are presented here.

NbTi

Critical Field vs. Temperature, bc2(t) The reduced critical upper field,
bc2(t)≡Bc2(T )/Bc2(T =0), where t≡T/Tc(B=0), is given by

bc2(t) = 1 − t1.7 (A5.1)

Bc2(T =0) and Tc(B=0), for five values of Ti content, are Bc2 = [14.5, 14.2, 14.4,
14.4, 14.25 T] and Tc(B=0)= [9.2, 8.5, 8.9, 9.2, 9.35 K]. Lubell’s choices are: 14.5 T
and 9.2 K—the first combination.

Critical Current Density, Jc(b, t) The critical current density as functions
of reduced field, b≡B/Bc2(T ) and t, Jc(b, t) [A/m2] is given by:

Jc(b, t) =
C◦
B

bα(1 − b)β(1 − tn)γ (A5.2)

where B [T] is the magnetic field the NbTi superconductor is exposed to. Constants
C◦ [T], α, β, and γ depend on Ti content. Each constant has correspondingly five
values: C◦ (23.8, 28.6, 28.5, 37.7, and 28.4 T); α (0.57, 0.76, 0.64, 0.89, 0.80); β
(0.90, 0.85, 0.75, 1.10, 0.89); and γ (1.90, 1.76, 2.30, 2.09, and 1.87).

Nb3Sn

Critical Current Density, Jc(b, t,ε) The critical current density as a function
of reduced field, b≡B/Bc2(T ), t, and strain ε, Jc(b, t, ε) [A/m2], is given by:

Jc(b, t, ε) =
C

B
s(ε)(1 − t1.52)(1 − t2)bp(1 − b)q (A5.3)

where C [T], p, and q are parameters. s(ε) is a very complicated function of ε that
contains several parameters. The important point here is that Jc, as with that for
NbTi, decreases with magnetic field as 1/B and its temperature dependence is
steeper than that for NbTi.
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Table A5.1: Jc or Je Data: NbTi, Nb3Sn, MgB2 (Wires); YBCO, Bi2223 (Tapes)
—YBCO & Bi2223 ‖/⊥:* Field Parallel/Perpendicular to Tape’s Broad Surface—

Jc (NbTi, MgB2), Non-Copper Jc (Nb3Sn), or Je (YBCO & Bi2223) [A/mm2]

T [K] B [T]→ 3 5 8 12 15 20 25 30

1.8 NbTi >5000 >4000 >3000 900 NA† NA NA NA

Nb3Sna) >2000 >2000 >2000 >2000 >2000 800 155 NA

4.2 NbTi >3000 2500 1000 NA NA NA NA NA

Nb3Sna) >2000 >2000 >2000 >2000 1700 475 —‡ NA

Nb3Snb) >2000 >2000 1400 840 475 130 — NA

Nb3Snc) 3350 2100 1250 660 375 100 — NA

MgB2 1930 900 165 — NA NA NA NA

YBCO ‖ 1350 1270 1155 980 905 810 NA NA

⊥ 425 310 230 175 155 NA NA NA

Bi2223 ‖ 900 900 900 800 700 590 490 400

⊥ 560 530 500 485 465 455 440 435

10 Nb3Snc) 1400 850 375 70 10 — — —

MgB2 1595 610 75 — NA NA NA NA

Bi2223 ‖ 725 725 725 630 560 450 350 300

⊥ 505 455 390 350 325 285 265 245

15 MgB2 1160 280 20 NA NA NA NA NA

20 MgB2 585 80 — NA NA NA NA NA

YBCO⊥ 130 90 65 — NA NA NA NA

Bi2223 ‖ 730 650 575 510 460 370 280 200

⊥ 385 325 260 200 170 130 100 75

30 Bi2223 ‖ 640 540 480 365 300 200 150 100

⊥ 230 150 80 45 — — — —

35 YBCO⊥ 80 55 35 — NA NA NA NA

T [K] B [T]→ s.f.§ 0.1 0.3 0.5 0.8 1 3 5

50 Bi2223 ‖ 760 760 590 525 455 420 250 165

⊥ 760 485 305 215 140 105 — —

65 YBCO ‖ 205 195 180 160 145 100 NA NA

⊥ 205 115 80 55 45 20 NA NA

66 Bi2223 ‖ 405 405 295 250 200 185 75 25

⊥ 405 225 105 50 — — — —

70 Bi2223 ‖ 330 330 240 175 160 135 40 —

⊥ 330 175 70 25 — — — —

77 YBCO ‖ 100 95 85 75 60 55 NA NA

⊥ 100 80 45 30 15 — — —

Bi2223 ‖ 220 220 150 120 90 75 — —

⊥ 220 100 30 — — — — —

* Je‖ (B, T )/Je(77K, s.f.) and Je ⊥ (B, T )/Je(77K, s.f.) ratios for YBCO and Bi2223 may be
assumed constant for different values of Je(77K, s.f.)=Je‖(77K, s.f.)=Je ⊥(77K, s.f.).

† Data not available

‡ Jc or Je too low for magnet applications.

§ Self field: ∼0.1T for parallel field; ∼0.01T for perpendicular field.

a) Internal tin; b) ITER; c) ITER barrel.
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A5.3 Mechanical and Thermal Properties

A superconductor, LTS or HTS, never is used by itself. To meet stability, pro-
tection, and mechanical requirements, a magnet winding and a conductor itself
always contain other, non-superconducting, materials. Indeed, for a magnet, the
most important requirement of a superconductor is a critical current performance
ample enough for the magnet’s operating current, temperature, and magnetic field
ranges. Although in most magnet designs precise mechanical and thermal data of
superconductors, if available, are useful, this is usually not the case. The same is
true for the magnet winding consisting of different materials. For a composite con-
ductor or winding, a “mixture rule” is widely used to include the properties of con-
stituent materials. Table A5.2 presents approximate (italics) mechanical—density
(�), Young’s modulus (E), yield strength (σY )—and thermal—conductivity (k)
and heat capacity (Cp)—data of the five magnet-grade superconductors, and those
of, for mechanical, stainless steel (S.S.) and, for thermal, copper. These properties
are discussed briefly below.

Young’s Modulus and Yield Strength In “low-field” and “small” magnets,
chiefly of NbTi, copper matrix (σY , >250 MPa below ∼100 K), added to the NbTi
to meet stability and protection requirements, is often sufficient, with a contribu-
tion from the NbTi. To minimize bending strains in those more strain sensitive
than NbTi, e.g., Nb3Sn and YBCO, the superconductors are sometimes placed at
or near their neutral axes. Note also that among these superconductors, NbTi is
the most tolerant of tensile strains; even at 1% it retains 95% of zero-strain Jc.
Strain-to-failure, here defined as a strain beyond which strain-induced degradation
of Jc is not reversible, varies among these superconductors, ranging 0.2–0.45%.
Each composite superconductor has a nonlinear stress-strain curve indicative of
its respective constituents and is amenable to mixture-rule estimates.

Thermal Conductivity As discussed in CHAPTER 5, the thermal conductivi-
ties of these superconductors are at least two orders of magnitude smaller than
that of copper over the entire temperature range of interest: the superconductor
contributes negligibly to thermal conduction. Also, fine superconductor dimensions
(1–100μm) in composite conductors benefit thermal conduction to substrates. Here
too, the mixture rule may be sufficient for most analyses.

Table A5.2: Selected Mechanical and Thermal Property Data
—Comparison with Stainless Steel (S.S) & Cu (RRR= 50)—

Mechanical Property NbTi Nb3Sn MgB2 YBCO Bi2223 S.S.

� @295K [kg/m3] 6550 8950 2600 6380 4350 7900

E @ <100K [GPa] 55–65 <100 200

σY @ <100K [MPa] * <50 250

Thermal Property NbTi Nb3Sn MgB2 YBCO Bi2223 Cu

k @10K [W/mK] ∼1 5000

@100K [W/mK] <10 30000

Cp @30K [kJ/m3 K] 380 280 4 120 NA 240

@90K [kJ/m3 K] 2000 1400 NA 670 700 2100

* Ultimate tensile strength: 1.04GPa at 76K and 1.28GPa at 4.2K.
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A5.3 Mechanical and Thermal Properties (continuation)

Heat Capacity As a simplification step in protection analyses of CHAPTER 8 to
compute the final temperature of a “hot-spot,” we equate, on a volumetric basis,
the temperature-dependent heat capacity of a superconductor with that of copper.
From Table A5.2, we may conclude that this simplification is roughly valid, though
less so with MgB2, YBCO, and Bi2223. At least for YBCO tape, however, this
discrepancy is really moot, because YBCO occupies so small a fraction (∼1%) of
the total tape cross section.

Property Data Sources & Selected References (continuation, from p. 643)
Jc(B,T) and Jc(B,T) Data of MgB2, YBCO, Bi2223, (and Bi2212)

The latest Jc(B, T ) and Je(B, T ) data are best obtained from the HTS manufacturers.
Selected sources of MgB2, YBCO, Bi2223, (and Bi2212) conductors are listed below.

MgB2: Columbus Superconductors; Hyper Tech Research.

YBCO: American Superconductor Corp. (AMSC); European High Temperature Su-
perconductors (EHTS); SuperPower.

Bi2223: AMSC (while current stock lasts); EHTS; Innova Superconductor Technology
(InnoST); Sumitomo Electric.

Bi2212: Nexans; Oxford Superconducting Technology.

Potential sources in R&D stage for MgB2, YBCO, or Bi2223 include: MgB2—Hitachi;
Western Superconducting Technologies (WST); YBCO—Fujikura; InnoST; Nexans; Seo-
Nam; Sumitomo Electric (HoBCO with holmium replacing yttrium); WST.

Sources of Data in Table A5.1 (Personal Communication)

MgB2: David Doll and Matthew A. Rindfleisch (Hyper Tech Research).

Also, M.D. Sumption, M. Bhatia, M. Rindfleisch, M. Tomsic and E.W. Col-
lings, “Transport properties of multifilamentary, in situ route, Cu-stabilized
MgB2 strands: one metre segments and the Jc(B, T ) dependence of short
samples,” Superconductor Science and Technology 19, 155 (2006).

YBCO: John P. Voccio (AMSC).

Also, D. Turrioni, E. Barzi, M. Lamm, V. Lombardo, C. Thieme, and A.V.
Zlobin, “Angular measurements of HTS critical current for high field sole-
noids,” Adv. Cryogenic Engr. Mat. 54, 451 (2008).

Bi2223: Shin-ichi Kobayashi (Sumitomo Electric).

Strain Effects on Jc of NbTi and Nb3Sn

J.W. Ekin, “Strain scaling law for flux pinning in practical superconductors. Part 1:
Basic relationship and application to Nb3Sn conductors,” Cryogenics 20, 611 (1980).

J.W. Ekin, “Relationships between critical current and stress in NbTi,” IEEE Trans.
Magn. MAG-23, 1634 (1987).

W. Denis Markiewicz, “Elastic stiffness model for the critical temperature Tc of Nb3Sn
including strain dependence,” Cryogenics 44, 895 (2004).

David M J Taylor and Damian P Hampshire, “The scaling law for the strain depen-
dence of the critical current density in Nb3Sn superconducting wires,” Supercond. Sci.
Technol. 18, S241 (2005).
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Strain Effects on Jc of NbTi and Nb3Sn (continuation)

W. Denis Markiewicz, “Invariant temperature and field strain functions for Nb3Sn com-
posite superconductors,” Cryogenics 46, 846 (2006).

Najib Cheggour, Jack W. Ekin, and Loren F. Goodrich, “Critical-current measurements
on an ITER Nb3Sn strand: effect of axial tensile strain,” IEEE Trans. Appl. Supercon-
duc. 17, 1366 (2007).

Mechanical and Thermal Properties—LTS and HTS

Curt Schmidt, “Simple method to measure the thermal conductivity of technical super-
conductors, e.g., NbTi,” Rev. Sci. Instrum. 54, 454 (1979).

T. Nishio, Y. Itoh, F. Ogasawara, M. Suganuma, Y. Yamada, and U. Mizutani, “Su-
perconducting and mechanical properties of YBCO-Ag composite superconductors,” J.
Mat. Science 24, 3228 (1989).

Ctirad Uher, “Review: Thermal conductivity of high-Tc superconductors,” J. Supercon-
duc. 3, 337 (1990).

H. Ledbetter, “Elastic constants of polycrystalline Y1Ba2Cu3Ox,” J. Mat. Sci. Res. 7,
11 (1992).

S. Ochiai, K. Hayashi, and K. Osamura, “Strength and critical density of Bi(Pb)-Sr-Ca-
Cu-O and Y-Ba-Cu-O in silver-sheathed superconducting tapes,” Cryogenics 32, 799
(1992).

W. Schnelle, O. Hoffels, E. Braun, H. Broicher, and D. Wohlleben, “Specific heat and
thermal expansion anomalies of high temperature superconductors,” Physics and Mate-
rials Science of High Temperature Superconductors – II (Kluwer Publishers, Dordrecht,
The Netherlands, 1992), 151.

John Yau and Nick Savvides, “Strain tolerance of multifilament Bi-Pb-Sr-Ca-Cu-O/
silver composite superconducting tapes,” Appl. Phys. Lett. 65, 1454 (1994).

Neil McN. Alford, Tim W. Button, Stuart J. Penn and Paul A. Smith, “YBa2Cu3Ox

low loss current leads,” IEEE Trans. Superconduc. 5, 809 (1995).

Y. Yoshino, A. Iwabuchi, K. Katagiri, K. Noto, N. Sakai, and M. Murakami, “An eval-
uation of mechanical properties of YBaCuO and (Sm,Gd)BaCuO bulk superconductors
using Vickers hardness test at cryogenic temperatures,” IEEE Trans. Superconduc. 12,
1755 (2002).

K.P. Weiss, M. Schwarz, A. Lampe, R. Heller, W.H. Fietz, A. Nyilas, S.I. Schlachter,
and W. Goldacker, “Electromechanical and thermal properties of Bi2223 tapes,” IEEE
Trans. Superconduc. 17, 3079 (2007).

Arman Nyilas, Kozo Osamura, and Michinaka Sugano, “Mechanical and physical prop-
erties of Bi-2223 and Nb3Sn superconducting materials between 300K and 7K,” Su-
percond. Sci. Technolo. 16, 1036 (2003).

G. Nishijima, S. Awaji, K. Watanabe, K. Hiroi, K. Katagiri, T. Kurusu, S. Hanai, and H.
Takano, “Mechanical and superconducting properties of Bi-2223 tape for 19T cryogen-
free superconducting magnet,” IEEE Trans. Appl. Superconduc. 14, 1210 (2004).

Koji Shikimachi, Naoji Kashima, Shigeo Nagaya, Takemi Muroga, Seiki Miyata, Tomo-
nori Watanabe, Yutaka Yamada, Teruo Izumi, and Yuh Shiohara, “Mechanical proper-
ties of YBaCuO formed on Ni-based alloy substrates with IBAD buffer layers,” IEEE
Trans. Appl. Superconduc. 15, 3548 (2005).

Najib Cheggour, Jack W. Ekin, and Cees L.H. Thieme, “Magnetic-field dependence of
the reversible axial-strain effect in Y-Ba-Cu-O coated conductors,” IEEE Trans. Appl.
Superconduc. 15, 3577 (2005).
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GLOSSARY*

A-15: The cubic crystalline structure of most intermetallic compound LTS, e.g., Nb3Al,
Nb3Sn, V3Ga. Also known as the beta-tungsten (β-W) structure.

AC loss: Energy (power) dissipation in a conductor caused by a time-varying magnetic
field, transport current, or both; includes HYSTERESIS LOSS, COUPLING LOSS, SELF-

FIELD LOSS, EDDY-CURRENT LOSS.

Active shielding: A technique to reduce a FRINGING FIELD with magnets of reverse
polarity; used in some MRI (> 1.5T) and NMR (>9T) superconducting magnets.

Adiabatic demagnetization: A cooling technique that makes use of the magnetic
field and temperature dependences of entropy of a paramagnetic material to achieve a
temperature of millikelvins and below.

Adiabatic magnet: A magnet with its interior winding not exposed to liquid CRYOGEN;
its primary cooling source, e.g., liquid CRYOGEN, is outside the winding.

AE (AcousticEmission): Acoustic signals emitted by a sudden mechanical event in a
structure, e.g., a magnet, being loaded (charged) or unloaded (discharged); can detect a
conductor motion or epoxy fracture event and determine its site. See KAISER EFFECT.

Anisotropy: Property of exhibiting different values in different directions, e.g., magnetic
field orientation effect on superconductor CRITICAL CURRENT DENSITIY.

ATLAS (AToroidalLHCApparatuS): A large (overall: 25-m diameter and 46-m long)
particle detector superconducting magnet system for LHC, consisting of an inner Solenoid
and an axially-long Barrel Toroid, which is flanked by End-Cap Toroids.

BCS theory: A microscopic theory of superconductivity by J. Bardeen, L.N. Cooper,
and J.R. Schrieffer of the University of Illinois, published in 1957; explains electromag-
netic and thermodynamic properties of LTS.

Bean slab: A one-dimensional model of a bulk TYPE II SUPERCONDUCTOR introduced
in 1962 by C.P. Bean of the General Electric Research Laboratory to formulate a phe-
nomenological theory of magnetization.

Bi2212: One variant of BSCCO; processable into wire of round or other cross section.

Bi2223: Another variant of BSCCO; processable only into tape.

Breakdown voltage: The voltage at which an insulator fails. An important parameter
for magnet operation at DISCHARGE VOLTAGEs above ∼1 kV.

Bronze process: For making MULTIFILAMENTARY CONDUCTORs of A-15 superconduc-
tors, e.g., Nb3Sn, V3Ga; independently developed in 1970 for Nb3Sn by A.R. Kaufman at
the Whittaker Corp., U.S.A. and E.W. Howelett at the Atomic Energy Research Estab-
lishment in England, and for V3Ga by K. Tachikawa at the National Research Institute
for Metals (now the National Institute for Materials Science), Tsukuba, Japan.

BSCCO: A bismuth-based HTS; (BiPb)2Sr2Can−1CunO2n+4; n = 2 results in BSCCO
(Bi2212) having Tc of ∼85K, n=3 in BSCCO (Bi2223) with Tc of ∼110K. H. Maeda of
the National Research Institute for Metals is credited with the discovery in 1989.

Bubble chamber: A chamber filled with superheated liquid cryogen (often hydrogen),
in a magnet, usually superconducting, to study high-energy particle interactions.

* Includes terms discussed and mentioned only briefly or not at all in the main text but which
are of general interest in superconducting magnet technology and its applications. Also many
oft-cited acronyms in the superconducting magnet community are briefly described.
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Carnot cycle: A reversible thermodynamic cycle, composed of two adiabatic and two
isothermal processes, in which a working fluid operates between two thermal reservoirs to
produce work or refrigeration most efficiently. The French physicist and military engineer
N.L.S. Carnot (1796–1832) published the theory in 1824: “Reflexions sur la Puissance
Motrice du Feu” (“Reflections on the Motive Power of Fire”). See STIRLING CYCLE.

CEA (Commissariat à l’EnergieAtomique): A French government research organization
with centers throughout France; its superconducting magnet and cryogenics activities are
at Saclay (∼30 km southwest of Paris) and Cadarache (∼40 km north of Aix-en-Provence).

CERN (ConseilEuropéen pour laRechercheNucléaire): Located outside Geneva on the
Swiss/French border, an international center for high-energy physics research. See LHC.

CIC (Cable-In-Conduit) conductor: A cable of transposed MULTIFILAMENTARY CON-

DUCTORs (usually NbTi or Nb3Sn) encased in a high-strength conduit, through which
cooling fluid, generally SUPERCRITICAL HELIUM, is forced.

CMS (CompactMuonSolenoid): A superconducting detector magnet (together with
ATLAS and two others) for LHC; with overall dimensions of 15-mdiameter, 21.5-m long
and a mass of over 1.25×106 kg, it generates a center field of 4T.

Coercive force: The magnetic field required to demagnetize a magnetized material.

Coherence length: The distance over which the superconducting-normal transition
takes place; introduced by A.B. Pippard (Cambridge University) in the early 1950s.

Composite superconductor: A conductor with one or more strands or tapes of super-
conductor in a matrix of normal metal; may be a MULTIFILAMENTARY CONDUCTOR.

Cooper pair: The paired electrons responsible for superconductivity (BCS THEORY).

Copper-to-superconductor ratio: The volumetric ratio of copper to superconductor
in a COMPOSITE SUPERCONDUCTOR (like NbTi), or the ratio of copper to non-copper in
a composite superconductor (like Nb3Sn) which includes other metals.

Coupling loss: AC LOSS generated by field-induced currents between filaments and/or
strands in a MULTIFILAMENTARY SUPERCONDUCTOR or CIC CONDUCTOR.

Coupling time constant: The predominant decay time constant of field-induced cur-
rents in a MULTIFILAMENTARY SUPERCONDUCTOR or CIC CONDUCTOR.

Critical current, Ic: The maximum current a conductor can carry and still remain
superconducting at a given temperature and magnetic field.

Critical current density, Jc: One of the three material-specific parameters that defines
the critical surface for superconductivity. In a TYPE II SUPERCONDUCTOR, Jc is sensitive
to metallurgical processing.

Critical field, Hc: One of the three material-specific parameters that defines supercon-
ductivity; insensitive to metallurgical processing. In a TYPE II SUPERCONDUCTOR, there
are two critical fields: LOWER (Hc1) and UPPER (Hc2).

Critical state model: For magnetic behavior of a BEAN SLAB; in the critical state,
every part of the slab operates at its CRITICAL CURRENT DENSITY.

Critical temperature, Tc: The temperature that defines the transition from the super-
conducting to the normal state; distinguishes HTS from LTS.

Cryocirculator: A CRYOCOOLER equipped with two helium circulators that provide
high-pressure streams of helium gas, typically one at 80K and the other at 20K.

Cryocooled magnet: A magnet cooled by a CRYOCOOLER or CRYOGENERATOR.

Cryocooler: A low-temperature refrigerator consisting generally of two stages, the 1st

and 2nd, each stage providing cooling, respectively, typically in the range 50–70K and
4.2–20K; indispensable for a “DRY” (CRYOGEN-FREE) magnet, LTS or HTS.
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Cryogen: A liquid that boils at a CRYOGENIC TEMPERATURE; e.g., helium (4.22K at
1 atm), hydrogen (20.39K), neon (27.10K), nitrogen (77.36K), argon (87.28K).

Cryogen-free magnet: A magnet not immersed in a bath of a liquid CRYOGEN. See
CRYOCOOLED MAGNET and DRY MAGNET.

Cryogenic temperature: A temperature below ∼150–200K.

Cryopump: A pump utilizing low temperature to create and maintain a high vacuum.

Cryostable magnet: A magnet satisfying the STEKLY or “equal-area” criterion.

Cryostat: An enclosing container, made usually of metal, or for some AC applications, of
insulating material, to maintain a cryogenic environment. See DEWAR and STYROFOAM.

Current sharing temperature: The temperature at which the transport current (It)
in the conductor equals the superconductor CRITICAL CURRENT: It = Ic(Tcs).

Cyclotron magnet: A magnet used to produce energetic protons or electrons.

DAPAS (Development ofAdvancedPower SystembyAppliedSuperconductivity): Initi-
ated in 2001 by Korean government, a 10-year R&D project on YBCO tape and applica-
tions of HTS to electric power (cable, fault-current limiter, motor, transformer).

DESY (DeutschesElektronenSYnchrotron): A German government-run high-energy
physics research center, with principal facilities in Hamburg. See HERA.

Dewar: A vacuum vessel for holding a CRYOGEN. Named for its developer James Dewar.

Dilution refrigerator: A millikelvin-range refrigerator that makes use of the difference
in entropies of He

3 and He
4; typically provides a refrigeration of 100 μW at 50mK.

Dipole magnet: A magnet that generates a uniform field transverse to its axis over
most of its bore; deflects charged particles in particle accelerators and MHD systems.

Discharge voltage: The maximum voltage appearing across the terminals of a super-
conducting magnet during a DUMP. Also called dump voltage.

Double pancake (coil): See PANCAKE COIL.

Driven-mode: Normal operating mode for a superconducting magnet, energized with
a power source. For a magnet to maintain a “constant” field in driven mode, it requires
a highly stable current source. See PERSISTENT-MODE.

Dry magnet: 1) A magnet wound without epoxy or other filler material; 2) a magnet
not relying on liquid CRYOGEN for cooling.

Dump: A forced discharge of the current in a superconducting magnet in an emergency.
A dump often involves opening a switch connecting the power source and the magnet
and discharging most of the stored magnetic energy through a DUMP RESISTOR.

Dump resistor: A resistor through which the current in the superconducting magnet
is forced to flow during a DUMP; generally placed outside the magnet CRYOSTAT.

EAST (ExperimentalAdvancedSuperconductingTokamak): An R&D superconducting
TOKAMAK at the Institute of Plasma Physics in Hefei, China.

Eddy-current loss: A loss generated by eddy currents induced in conductive metal by
a time-varying magnetic field.

Energy margin: The maximum input pulse energy (or energy density) a small winding
region can tolerate and still remain superconducting; a stability parameter.

Engineering Current Density (Je): CRITICAL CURRENT of a superconductor divided
by the total cross section of the conductor.

Epoxy-impregnated magnet: An ADIABATIC MAGNET bonded with epoxy to mini-
mize conductor motion incidents that trigger PREMATURE QUENCHes in LTS magnets.
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Fault mode: A failure of a superconducting magnet system; magnet parameters gener-
ally specified on anticipated fault modes that result in the most extreme conditions.

FEA (FiniteElementAnalysis): A computer-based numerical analysis technique for
solving, for example, complex stress distributions in a magnet system.

Flux jumping: A thermal instability in a superconductor in which flux motion induces
heat generation, which cascades to cause additional magnetic flux motion.

Flux pinning: A mechanism that inhibits fluxoid motion. The flux pinning force is
thought to be supplied by the crystal structure; can be increased by material impurities
and inhomogeneities caused by cold working and heat treatment to produce large Jc.

Formvar: Trade name for polyvinylformal, a venerable (century old) insulator material
applicable to superconductors, despite the CRYOGENIC TEMPERATURE.

Fringing field: The magnetic field, usually a nuisance, outside a magnet system.

G-10: A laminated, thermosetting composite of epoxy and glass fabric, used in magnets
and CRYOSTATs as a high-strength material where metals are unsuitable.

Gas (or vapor)-cooled lead: A current lead connecting the magnet inside the CRYO-

STAT to the power source outside; the cold vapor of the boiling helium is funneled through
the lead, reducing the heat load (by conduction and Joule heating) to the magnet.

GLAG theory: A phenomenological theory developed in the 1950s by V. Ginzburg,
L. Landau, A. Abrikosov, and L. Gorkov that explains the magnetic behavior of a
TYPE II SUPERCONDUCTOR; describes the relationship between COHERENCE LENGTH

and PENETRATION DEPTH, as well as the MIXED STATE and UPPER CRITICAL FIELD.

G-M (Gifford-McMahon) cycle: A variant of the STIRLING CYCLE suitable for CRYO-

COOLERs; developed by W. Gifford and H. McMahon in the early 1960s.

Gradient coil: A coil that generates an axial H-field that varies linearly with position.

Hall probe: A sensor for measuring magnetic field. Based on the principle of the Hall
effect: its output voltage, for a given supply current, is proportional to field strength.

He I: Another name for the non-superfluid liquid of ordinary helium (He
4).

He II: Another name for SUPERFLUID HELIUM.

He3: A helium isotope with atomic weight 3; boils at 3.19K at 1 atm. Naturally, ∼1/106

as abundant as He
4. See DILUTION REFRIGERATOR.

He4: A natural isotope of helium with atomic weight 4; boils at 4.22K at 1 atm.

HERA (HadronElektronRingAnlage): A particle accelerator (1992-2007) at DESY.

High-performance magnet: A magnet having a high OVERALL CURRENT DENSITY,
usually an ADIABATIC MAGNET; most magnets are now high-performance.

Hot spot: The small region in the winding that attains the highest temperature after
a QUENCH; generally it is at a quench initiation point.

Hot-spot temperature: The highest temperature reached at the HOT SPOT immedi-
ately after a QUENCH; hot-spot temperatures below 200K are considered safe.

HT-7U: An R&D superconducting TOKAMAK, now called EAST.

HTS (High-Tc Superconductor): A class of TYPE II SUPERCONDUCTORs with Tc above
∼25K, considered the limit for LTS. All HTS discovered to date, except MgB2, are PER-

OVSKITE oxides, the first of which, La1.85Ba0.15CuO4 (Tc =35K), was discovered in 1986
by K.A. Müller and J.G. Bednorz of the IBM Zürich Research Laboratory.

Hybrid (magnet): A magnet comprised of both WATER-COOLED and superconducting
magnets to enhance the total magnetic field.
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Hybrid shielding: A MAGNETIC SHIELDING technique which combines both ACTIVE

SHIELDING and PASSIVE SHIELDING; used in some MRI and NMR magnets.

Hysteresis loss: An energy loss due to the hysteretic effect of a material property, e.g.,
magnetization of a TYPE II SUPERCONDUCTOR or ferromagnetic material.

Index number: The exponent n in the voltage (electric field) vs. current (current den-
sity) relationship for a superconductor; typically, n is between 10 and 100.

Induction heating: Heating generated in conductive metal by a time-varying magnetic
field—called induction heating when desired and EDDY-CURRENT LOSS when it is not.

Internal diffusion process: A modified BRONZE PROCESS for Nb3Sn developed in 1974
by Y. Hashimoto of the Mitsubishi Electric Corp.

Irreversible field: A magnetic field above which a superconductor carries insufficient
transport current to be useful for magnet operation.

Iseult: A French-German project at CEA Saclay to construct a 11.74-T (500-MHz)/900-
mm bore MRI superconducting magnet for cerebral imaging—all NbTi, operated at 1.8K
with a magnetic energy of ∼330MJ; in Germany, INUMAC (Isolde, initially).

ITER (InternationalThermonuclearExperimentalReactor): A multi-nation project to
construct a break-even TOKAMAK, in the CEA Cadarache facilities, France.

“Jelly-roll” process: A process for making NbTi, Nb3Sn, and other LTS, in which “foiled”
conductor ingredients are rolled to form the basic ingot. Developed in 1976 by W.K. Mc-
Donald of Teledyne Wah Chang; also used to manufacture some HTS.

Josephson effect: A quantum effect characterized by the tunnelling of superelectrons
through the insulator of a JOSEPHSON JUNCTION, and observable as current flow without
a driving potential; based on the theoretical work (1964) of B. Josephson.

Josephson junction: A device with two superconducting plates separated by an oxide
layer. Josephson junctions are used in SQUID and other micro-scale electronic devices.

J-T (Joule-Thomson)valve: A needle valve across which the working fluid expands
adiabatically and isenthalpically; the expansion process is irreversible.

Kaiser effect: A mechanical behavior observed in a structure under cyclic loading in
which events, e.g., conductor motion and epoxy fracture in a superconducting magnet,
appear only when the loading exceeds the maximum level achieved in the previous cycle.
Discovered by J. Kaiser in the early 1950s. See AE (ACOUSTIC EMISSION).

Kapitza resistance: The thermal boundary resistance which occurs at the interface
when heat flows from a solid to liquid helium; discovered by P. Kapitza in 1941.

Kapton: Trade name for a polyimide film; useful as an insulating material.

Kevlar: Trade name for a strong and lightweight para-aramid synthetic fiber. Of three
varieties of Kevlar, 29, 49, and 149, 49 is used in most cryogenic applications.

Kohler plot: A plot that combines the effects of magnetic field and temperature on the
electrical resistivity of a conductive metal at CRYOGENIC TEMPERATUREs.

KSTAR (KoreanSuperconductingTokAmakReactor): A superconducting TOKAMAK

for fusion science and technology R&D, at the Korea Basic Science Institute in Taejon.

Lambda point: The temperature below which ordinary liquid helium (He
4) becomes

SUPERFLUID HELIUM; it is 2.172K at a pressure of 38 torr (0.050 atm).

Laser cooling: A technique that uses photons, an “atom laser,” to remove heat from
atoms to cool them to a very low temperature—nanokelvins and picokelvins.

Layer winding: A technique to fabricate a solenoidal coil by winding conductor helically
around a mandrel, one layer at a time.
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LHC (LargeHadronCollider): The largest particle accelerator and collider built to date,
situated in CERN with a main ring (nearly circular) of 8.5-km diameter. See ATLAS and
CMS; SSC and TEVATRON.

LHD (LargeHelicalDevice): A superconducting STELLARATOR in operation at the Na-
tional Institute for Fusion Science, Toki-shi, Japan. See WENDELSTEIN7-X (W7-X).

Lorentz force: The most important force in a magnet, arising from the interaction of
magnetic field and current; named for the Dutch physicist H. Lorentz (1853–1928).

Lower critical field, Hc1 : The magnetic field at which a superconductor’s magnetic
behavior departs from perfect diamagnetism.

LTS (Low-Tc Superconductor): Mostly metallic superconductors with Tc < 25K, the
first LTS (mercury) discovered in 1911 by H. Kamerlingh Onnes. During the 1950s, B.T.
Matthias and others at the Bell Telephone Laboratories discovered many that are useful
for magnets, e.g., Nb3Sn; J.K. Hulm and R.D. Blaugher at the Westinghouse Research
Laboratories are credited with basic studies (1961) of alloys of NbTi.

Maglev (Magnetic levitation): Levitation by a magnetic force, attractive or repulsive.
A German-made “attractive” (with permanent magnets) Maglev, of 500-km/h top speed
(nominal: 430 km/h) and 30-km length, between the Pudong International Airport and
Shanghai downtown, has been in operation since 2004. A 500-km/h 370-km long “repul-
sive” (with superconducting magnets) Maglev line between Tokyo and Nagoya is sched-
uled for operation in 2025; called “Linear” in Japan because the vehicle propulsion is
based on the principle of a linear motor.

Magnet-grade superconductor: A superconductor meeting rigorous specifications of
a magnet and available commercially. See NbTi, Nb3Sn, Bi2212, Bi2223, MgB2, YBCO.

Magnetic confinement: A technique in fusion reactors to confine and stabilize a hot
plasma with magnetic field. See TOKAMAK and STELLARATOR.

Magnetic drag force: A drag force that arises from EDDY-CURRENT LOSS.

Magnetic pressure: A pressure equal to the magnetic energy density.

Magnetic refrigeration: Refrigeration based on ADIABATIC DEMAGNETIZATION.

Magnetic shielding: Shielding of persons or field-sensitive equipment from a FRINGING

FIELD. See ACTIVE SHIELDING and PASSIVE SHIELDING.

Meissner effect: The phenomenon of complete expulsion of magnetic flux from the
interior of a superconductor. Perfect diamagnetism is the most defining property of a
superconductor; discovered in 1933 by W. Meissner and R. Ochsenfeld.

“Melt” process: Short for the melt-powder-melt-growth (MPMG) process that yields
uniform high-quality YBCO; developed in 1991 by M. Murakami of the International
Superconductivity Technology Center (ISTEC), Tokyo.

MgB2 (Magnesium diboride): Currently the only nonoxide-HTS, a metalloid, dis-
covered in 2001 by a team led by J. Akimitsu of the Aoyama University, Tokyo, with
Tc =39K; produced as MULTIFILAMENTARY CONDUCTOR (wire and tape).

MHD (MagnetoHydroDynamic): The study of the motion of an electrically conducting
fluid in a magnetic field.

Mixed state: The presence of normal-state “islands” in a superconducting sea in a
TYPE II SUPERCONDUCTOR over most of its magnetic field range. See GLAG THEORY.

MPZ (MinimumPropagatingZone): The largest volume within a magnet winding that
can support Joule heating without growing.

MRI (MagneticResonance Imaging): Magnetic fields to create, through NMR, visual
images of the brain and other body parts for diagnostic purposes. See ISEULT.
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Multifilamentary conductor: A COMPOSITE SUPERCONDUCTOR consisting of many
superconducting filaments (each typically <100 μm diameter), imbedded in a matrix of
normal metal, with TRANSPOSITION or twisting to minimize AC LOSSes.

Mylar: Trade name for a polyester sheet (25–150 μm thickness); used as electrical or
thermal insulator. More brittle than KAPTON at CRYOGENIC TEMPERATUREs.

Nb3Sn: An intermetallic compound of niobium and tin. It and NbTi are the only LTS-
based MAGNET-GRADE SUPERCONDUCTORs.

NbTi: Alloys of niobium and titanium, typically ∼50wt.%Ti; the most widely used
MAGNET-GRADE SUPERCONDUCTOR (LTS or HTS).

NMR (NuclearMagneticResonance): A quantum effect characterized by the absorption
and reradiation of radio waves by nuclei in a magnetic field. NMR spectroscopy is used to
study, for example, the molecular structures of organic compounds, especially proteins.
Higher fields improve resolution and signal-to-noise ratio. The resonant frequency of
protons (1H), proportional to field, is 42.576MHz at 1T and 1GHz at 23.49T.

Nomex: Trade name for aramid; used as an insulating sheet between conductors.

NZP (NormalZonePropagation) velocity: The velocity of the normal-superconducting
boundary; NZP velocities are much greater in LTS than in HTS.

OFHC (Oxygen-Free-High-Conductivity) copper: A high-purity copper used widely
in normal-metal conductors, particularly for low-temperature applications.

Ohmic heating magnet: A PULSE MAGNET that heats and stabilizes the plasma.

Overall current density: Total ampere-turns divided by the winding cross section.

Pancake coil: A “pancake-like” flat coil in which the conductor spirals outward from
the center, each turn in the same plane. A DOUBLE-PANCAKE (COIL) is wound with a
conductor that spirals in from the outside of one pancake and then spirals back out in
the other; the helical transition turn at the inside diameter is continuous.

Paper magnet: A magnet that ends in design stage; useful for parametric study.

Passive shielding: MAGNETIC SHIELDING that generally uses ferromagnetic materials
such as steel; in a cryogenic environment, HTS cylinders may be used.

PCS (Persistent-CurrentSwitch): Shunting the terminals of a PERSISTENT-MODE su-
perconducting magnet, it is either closed (superconducting) or open (resistive).

Penetration depth: The depth within which a surface supercurrent flows to exclude
a magnetic field from the interior of a TYPE I SUPERCONDUCTOR. The concept was
introduced by the brothers F. London and H. London in the 1930s.

Permanent magnet: A magnet made of magnetized ferromagnetic material with a high
COERCIVE FORCE; it can provide magnetic fields up to ∼2T over a small volume.

Perovskite: The cubic structure of most HTS, ferroelectric, ferro- and antiferri-magnetic
materials. Named for the Russian minister Count L.A. von Perovski (1792–1856).

Persistent-mode: A mode for an energized superconducting magnet, decoupled from its
power source and shunted by a PCS, to maintain a “constant” field. See DRIVEN-MODE.

Phenolic: A thermosetting resin, usually reinforced with laminae of linen, cotton, or
even paper; weaker but easier to machine than G-10.

Piezoelectric effect: The coupling of mechanical and electric effects in which a strain
in some crystals, e.g., quartz, induces an electric potential and vice versa; an AE sensor
utilizes this effect. Discovered in 1880 by P. Curie (1859–1906).

Poloidal magnet: A PULSE MAGNET that generates a field in the axial (vertical) direc-
tion for plasma stabilization in a MAGNETIC CONFINEMENT-based fusion machine.
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ppm (partspermillion): A dimensionless number to express a trace quantity of a sub-
stance or a deviation from a norm, e.g., a small change in field strength.

Prandtl number: A dimensionless coefficient equal to the ratio of kinematic viscosity
to thermal diffusivity, a measure of the relative diffusion rates of momentum and heat in
convective heat transfer. Named for L. Prandtl (1875–1953).

Premature quench: A QUENCH of a superconducting magnet below the designed op-
erating current; still “occasionally” occurs in some LTS-based ADIABATIC MAGNETs.

Pulse magnet: A magnet that generates a field over a short duration, ranging from
microseconds to a fraction of a second.

Quadrupole magnet: A magnet that generates a linear gradient field transverse to its
axis over the central region of its bore; focuses particles in particle accelerators.

Quench: The superconducting-to-normal transition; specifically, the rapid irreversible
process in which a magnet or a part of a magnet is driven fully normal.

R3B-GLAD (ReactionswithRelativisticRadioactiveBeams of Exotic Nuclei-GSI Large
AcceptanceDipole): A CEA Saclay designed superconducting magnet system (six RACE-

TRACK MAGNETs), to be installed at GSI (Gesellschaft für Schwerionenforschung, Darm-
stadt, Germany), to study the structure of exotic nuclei or the reaction mechanisms.

Racetrack magnet: A magnet resembling a racetrack, wound in a plane, each turn
having two parallel sides, joined by a semi-circle at each end.

React-and-wind: A coil-winding technique used for a superconductor, e.g., Nb3Sn and
HTS, that has already been reacted; applicable only when winding-induced strains in the
superconductor can be kept below the superconductor’s strain tolerance limit.

Regenerator: A component in STIRLING and G-M CYCLEs, storing and releasing heat
during isochoric processes; for operation below ∼10K, rare-earth materials proven useful.

Reynolds number: The dimensionless ratio of inertial forces to viscous forces; charac-
terizes the viscous flow of fluids. Named for O. Reynolds (1842–1912).

RHIC (RelativisticHeavy IonCollider): A superconducting particle accelerator and col-
lider in operation since 2000 at the Brookhaven National Laboratory, Long Island, NY.

RRR (ResidualResistivityRatio): The ratio of a metal’s electrical resistivity at 273K
to that below ∼10K (often 4.2K); indicative of the metal’s purity.

Rutherford cable: A flat two-layer cable suitable for low AC LOSS applications, devel-
oped in the 1970s at the Rutherford Appleton Laboratory, England. Laid at an angle
to the conductor axis, MULTIFILAMENTARY CONDUCTOR strands in each layer alternate
on two sides of the cable, with a TWIST PITCH LENGTH defined by the tilt angle and the
cable width; some have a high-strength strip between the strand layers for reinforcement.

Saddle magnet: A magnet with windings that resemble a saddle; saddles may be
configured to produce the fields of a dipole (2); a quadrupole (4), a sextuple (6), . . .

Saturation magnetization: The maximum magnetization of a ferromagnetic material.

Search coil: A coil for measuring a magnetic field; requires a very stable integrator to
convert the search coil output voltage to a voltage proportional to the field strength.

Self-field loss: A hysteresis AC LOSS in a superconductor due to the magnetic field
generated by a transport current.

SFCL (SuperconductingFaultCurrentLimiter): A superconducting version of an FCL,
a device to limit the current surge during a fault in a utility power line.

Shim coils: A set of “corrective” coils, superconducting or copper (operated at room-
temperature) or both, added to the main field to make the resultant field meet spatial
field requirements. Sometimes ferromagnetic materials are used to achieve the same goal.
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Skin depth: The distance from a metal surface at which the amplitude of a sinusoidally
time-varying magnetic field, due to the SKIN EFFECT, is 0.37 (= 1/e) the surface field.

Skin effect: A phenomenon of an induced surface current in a metal shielding most of
the interior of the metal from a time-varying magnetic field. See SKIN DEPTH.

SMES (SuperconductingMagneticEnergyStorage): The magnetic storage of electrical
energy in a superconducting magnet for power conditioning by an electric utility.

SOR (SynchrotronOrbitalRadiation): A device to produce x-rays by means of acceler-
ating electrons in a magnetic field, generated usually by superconducting magnets.

SQUID (SuperconductingQUantum InterferenceDevice): A device using the JOSEPH-

SON EFFECT to measure the smallest possible change in magnetic flux.

SSC (SuperconductingSuperCollider): Terminated in 1993, would have been the largest
(larger than LHC) particle accelerator and collider for high-energy physics research.

Stekly criterion: A design criterion for a CRYOSTABLE MAGNET, in which the cooling
flux matches the conductor’s full normal-state Joule heating flux.

Stellarator: A toroidal plasma fusion MAGNETIC CONFINEMENT machine, invented by
Lyman Spitzer (1914-1997) of the Princeton University; the first Stellarator built in 1951
at the Princeton Plasma Physics Laboratory. See LHD and WENDELSTEIN7-X (W7-X).

Stirling cycle: A cycle incorporating a REGENERATOR. Invented, in the late 1810s, by
a Scottish minister, R. Stirling (1790–1878); has the same efficiency as CARNOT CYCLE.

Storage dewar: An insulated container of liquid CRYOGEN. See CRYOSTAT and DEWAR.

Stycast: Trade name for an epoxy resin. Stycast 2850 is used in cryogenic experiments
as a sealant and as a thermally conductive (among organic materials) adhesive.

Styrofoam: Trade name for polysterene foam; usable for a liquid-nitrogen CRYOSTAT.

Subcooled superfluid helium: SUPERFLUID HELIUM above its equilibrium pressure.

Submicron conductor: A MULTIFILAMENTARY CONDUCTOR having filaments of di-
ameter 0.1∼0.5 μm to reduce HYSTERESIS LOSS in 60-Hz applications.

SULTAN (Superconducting Test Facility, in German): An 11-T split-pair solenoid with
a 100-mm midplane gap for testing high-current superconducting cables in a field per-
pendicular to their axis, at PSI (Paul Scherrer Institute) in Villigen, Switzerland.

Superconducting generator/motor: A generator/motor with a superconducting rotor.

Superconducting power transmission: Transmission of electrical power, AC or DC,
using superconducting cables.

Supercritical helium: Helium above the critical point (2.26 atm and 5.20K).

Superfluid helium: A liquid helium state with extraordinary properties that exists
below 2.172K, the LAMBDA POINT. See He II, SUBCOOLED SUPERFLUID HELIUM.

Superinsulation: Aluminized MYLAR sheets used in the vacuum space, primarily in
the 80–300K range, of a CRYOSTAT to reduce radiation heat input.

Teflon: Trade name for polytetrafluoroethylene. Valued, both in bulk and as a coating,
for its low friction coefficient and retention of toughness at CRYOGENIC TEMPERATUREs.

Tevatron: The first superconducting particle accelerator, operated since the 1980s at
the Fermi National Laboratory, Batavia, IL; its size and performance surpassed by LHC.

Tokamak (Toroidal Chamber in Magnetic Coils, in English): A toroidal-shaped ther-
monuclear fusion machine that incorporates MAGNETIC CONFINEMENT to contain a hot
plasma; conceived in the 1950s by L.A. Artsimovich and A.D. Sakharov of the Kurchatov
Institute of Atomic Energy, Moscow. See EAST, ITER, KSTAR, TORE SUPRA.
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Tore Supra: A TOKAMAK with superconducting magnets in a bath of SUBCOOLED

SUPERFLUID HELIUM; in operation since 1988 at the CEA Cadarache.

Toroidal magnet: A magnet that generates a field in the toroidal (azimuthal) direction
to confine a hot plasma; the superconducting version is DC.

Training: Behavior of a HIGH-PERFORMANCE MAGNET whose successive PREMATURE

QUENCHes gradually approach the design operating current.

Transfer line: A double-walled vacuum insulated line for transferring liquid helium
from a STORAGE DEWAR to a CRYOSTAT.

Transposition: In a transposed cable, every strand occupies every radial location in the
cable’s overall diameter over its repeat length.

Triple point: The equilibrium state for solid, liquid, and vapor phases. Triple points of
hydrogen (13.8033K), neon (24.5561K), oxygen (54.3584K), argon (83.8058K), mercury
(234.3156K), and water (273.16K) are fixed points in the International Temperature
Scale of 1990 (ITS-90). Helium does not have a triple point.

Twist pitch length: The linear distance over which 1) a filament of a twisted MUL-

TIFILAMENTARY CONDUCTOR makes one complete spiral, or 2) a strand of transposed
cable completes its repeat pattern. See TRANSPOSITION.

Type I superconductor: A superconductor that exhibits the MEISSNER EFFECT up to
its critical field; called a “soft superconductor” because of its low mechanical strength.

Type II superconductor: A superconductor exhibiting the MIXED STATE; also called
a “hard superconductor;” an alloy of lead-bismuth was the first Type II superconductor,
discovered in 1930 by W. J. de Haas and J. Voogd of the Leiden University.

Upper critical field, Hc2 : The magnetic field at which a TYPE II SUPERCONDUCTOR

loses its superconductivity completely.

Vapor-cooled lead: See GAS (ORVAPOR)-COOLED LEAD.

von Mises stress: A measure of stress particularly appropriate for ductile materials.
A material with principal stresses, σ1, σ2, and σ3, will begin to yield when its von Mises
stress, given by

√
[(σ1−σ2)2+(σ2−σ3)2+(σ3−σ1)2]/2, exceeds the YIELD STRESS.

Water-cooled magnet: A magnet, usually made of copper or copper alloys, cooled by
water, generally forced through the winding or through tubes in a cooling plate.

Wendelstein 7-X (W7-X): An R&D superconducting STELLARATOR, to be installed
in Greifswald, Germany, for the Max Planck Institute for Plasma Physics; named for the
Wendelstein peak, south of Munich, bordering Austria. See LHD.

Wind-and-react: A coil preparation technique consisting of two stages: winding of a
coil with an “unreacted” superconductor, followed by heat treatment of the wound coil;
used for a conductor such as Nb3Sn when winding-induced strains likely would degrade
the superconductor. The process is more difficult than the REACT-AND-WIND process,
primarily because the high reaction temperature precludes the use of many materials,
e.g., organic insulators, in the winding before the heat treatment.

YBCO: An yttrium-based HTS (YBa2Cu3O7−δ) with Tc = 93K, discovered in 1987 by
groups, at the University of Alabama and the University of Houston, led by P.W. Chu.
Initially fabricated only in bulk; now also available as coated conductor (tape).

Yield stress: The stress at which a material begins to deform plastically, deviating from
the material’s initial elastic, i.e., linear, stress-strain behavior. See VON MISES STRESS.

Young’s modulus: The material’s stiffness, equal to the ratio of stress to strain in its
elastic stress-strain range. Known by various terms, including modulus of elasticity.
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QUOTATION SOURCES AND CHARACTER IDENTIFICATION

Jonathan Livingston (Preface, p. vii)

A seagull in Richard Bach’s Jonathan Livingston Seagull, A Story (Avon Books, 1970);
devotes his life perfecting, and teaching others, flying skills.

An old proverb (Preface, p. viii)

This and its variations are in many cultures. A Japanese version: “When we talk about
next year, Demon roars.”

Michael Faraday (p. 24)

P.E. Andrew, Michael Faraday (Wheaton & Co., 1937).

Victor F. Weisskopf (p. 36)

American J. Phys. 45, 422 (1977).

Donald Rumsfeld (p. 70)

at a Department of Defense news briefing (February, 2002).

Bob Dylan (p. 70)

from the album The Freewheelin’ Bob Dylan (released in 1963).

Mathias J. Leupold (p. 135)

Personal communication (1991).

Lady Bracknell (p. 147)

A guardian in Oscar Wilde’s trivial comedy for serious people The Importance of Being
Earnest (Avon Books, 1965).

Obi Wan Kenobi (p. 179)

A Jedi master, mentor to Luke Skywalker, and later an outlaw in the Tatooine mountains
in George Lucas’s Star Wars (A Del Rey Book, 1976).

Owen Warland (p. 224)

A youthful watchmaker in Nathaniel Hawthorne’s allegorical tale The Artist of the Beau-
tiful (A Fawcett Premier Book, 1966).

Henry D. Thoreau (p. 250)

Walden (A Signet Classic, 1960).

Heike Kamerlingh Onnes (p. 320)

K. Mendelssohn, The Quest for Absolute Zero, The Meaning of Low Temperature Physics
(World University Library, 1966). In the original Dutch: “Door meten tot weten.”

Immanuel Kant, Jean-Paul Sartre, Frank Sinatra (p. 328)

A 5-word epitome of each man’s philosophy.

Bertrand Russell (p. 361)

Great Essays in Science, edited by Martin Gardner (A Washington Square Press Book,
1957).
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Captain Nemo (p. 382)

The captain of the Nautilus in Jules Verne’s science fiction 20,000 Leagues Under the Sea
(Translated from the French by Anthony Bonner, A Bantam Pathfinder Edition, 1962).

Arthur C. Clarke (p. 382)

Profiles of the Future, An Inquiry into the Limits of the Possible (Popular Library, 1977).

Robert Jordan (p. 387)
A Montanan mercenary in the Spanish Civil War in Ernest Hemingway’s For Whom the
Bell Tolls (Penguin Books, 1966).

O’Hara (p. 414)

Played by Peter Lorre, a member of the sophisticated beachcombers headed by Billy
Dannreuther (Humphrey Bogart) in John Huston’s whimsical thriller Beat the Devil
(Santana-Romulus Production; released by United Artists, 1954).

Ada (p. 414)

Adelaida Durmanov Veen, the cousin of the protagonist in Vladimir Nabokov’s poetic,
antiworld novel Ada or Ardor: A Family Chronicle (A Fawcett Crest Book, 1969).

Ned Land (p. 453)

A Canadian harpooner on board the Abraham Lincoln and later a crew member of the
Nautilus in 20,000 Leagues Under the Sea, ibid.

Holly Golightly (p. 457)

A rural Texan turned New York’s amoral playgirl in Truman Capote’s Breakfast at
Tiffany’s (A Signet Book, 1959).

Medea (p. 496)

In Greek legend, an enchantress, daughter of King Æetes of Colchis, wife of Jason, whom
she helped in obtaining the Golden Fleece; a heroine in many poems (e.g., Pindar, Ovid),
plays (Euripides, Seneca, Glover), and operas (Mayr, Cherubini). The quotation is from
Euripides’ tragedy Medea (Translation by Philip Vellacott, Penguin Book, 1963).

Ambrose Bierce (p. 506)

The Devil’s Dictionary (Dover Publications, 1958).

Richard P. Feynman (p. 534)

Rogers Commission Report on the Space Shuttle Challenger Accident (1986).

C. Auguste Dupin (p. 537)

An eccentric genius in Edgar Allan Poe’s The Murders in the Rue Morgue (An Airmont
Classic, 1962).

Ben Franklin (p. 545)

Reputed response to the question “what good is it?” on Montgolfier’s hot air balloon
experiment. American Heritage Magazine 25 (1973).

Figaro (p. 589)

An original and witty liar, a valet in W.A. Mozart’s comic opera Le Nozze di Figaro
(Libretto by Lorenzo da Ponte). A rough translation: “The rest I need not say, . . .”
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in italics for data (plots, tables) or figures. Also italicized is a parenthesized note on
an entry. Generally only those entries (and names) in the GLOSSARY pertinent to the
subjects in the main text are indexed. Although the Passages are subject to indexing,
their footnotes, Quotations, or TRIVIA are not.

The following rules apply to a word that appears often: 1) if common generic of this
textbook, e.g., magnet(s), it is omitted as a primary entry but combined with other
primary entries, e.g., adiabatic; and 2) if, like Bean, it has many topics, its page numbers
are omitted, nearly or entirely, but its subtopics, e.g., slab, are entered, indented, beneath
it with their page numbers; the rules also apply to subtopics, e.g., AC losses, and sub-
subtopics, if any, e.g., hysteresis.

Generally for materials, e.g., copper, only page numbers listing their property values,
e.g., enthalpy, are entered; the rule conversely applies to property entries: thus, e.g.,
solid cryogens (SAr, SN2, SNe) under enthalpy.

Abrikosov, Alexei A. 5, 6, 23, 652
AC loss(es) 399–401, 587, 589, 649, 650,

655, 656
1.8-K cryostat 238
annulus magnet, HTS 585,
assisted NZP 492, 495, 537
CIC conductor 382, 446
coupling See Coupling loss(es)
dissipation density in adiabatic winding

392
disturbance 356, 358, 392, 394
eddy-current See Eddy-current (energy)

density
formulas 438
HTS 349, 446
hybrid magnet(s) 132, 449–450
hysteresis See Hysteresis (energy/dissi-

pation/loss) (density)
induction heating 58
magnetization 313
magnet(s) 219
SCH 557
techniques to measure 444, 446

calorimetric 444
setup 445

electric 444
magnetic 444

Type II superconductors 6, 7
whole magnet 444

AC response (of superconductor) 6
Accelerator(s) 2, 154, 159, 175, 391, 410
Accommodation coefficients 251
Acoustic emission (AE) 410, 413–414

AE/voltage technique 413
application to HTS magnets 413

Active protection 469, 481, 484, 496, 501–

506, 517
basic bridge circuit 505
detect-and-activate-the-heater 504
detect and dump 502
(of an) MgB2 magnet 525–529

Active shield coil 561–565
interaction force 563–564

Adiabatic demagnetization 265, 649, 654
Adiabatic heating (heated) 471–478, 495,

520, 528, 556,
constant current 472–473
constant-voltage 478–479
discharge mode 474–475
(with) shorted terminals 475

Adiabatic magnet(s)/winding(s) 649, 651
AC and other losses 399
bath-cooled 220
dissipation 392
disturbance spectra 356
“high-performance” 351, 652
hot(-)spot 467–468

temperature 469
MPZ 353, 391, 484

AC-losses-assisted 492
computer simulation 493

overheating criterion 522
premature quench 351, 410–412, 656
self-protecting 494
stability/energy/temperature margins

351, 357, 358
thermal conduction 354

Ag-Au alloys, electrical resistivity vs. tem-
perature plots 284

thermal conductivity vs. T plots 284
Air, arcing voltage data 481
Alnico (permanent magnet), BH|mx 55
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Aluminum 8, 17
electrical resistivity vs.T data 642

(normalized) vs. T 640
enthalpy vs. temperature plot 635
heat capacity vs. temperature plot 634
Kapitza resistance 235
mechanical properties 638
radiative heat flux 249
RRR vs. magnetic field plots 641
thermal conductivity vs. T plot 632
thermal expansion data 638
Y (T, 0) plot 479
Z(T, 0) plot 473

Ampere’s law 25, 26
Anishchenko, N.G. 480
Anisotropic superconductor

solenoid magnet wound with 129
Annealed ingot iron 49, 50
Annulus magnet, HTS 581–586

bulk vs. plate, current density require-
ment 582

field homogeneity 585
energizing technique 582–584

Apiezon N, thermal conductivity vs. tem-
perature plot 633

Arai, K. 414
Aramid, thermal conductivity vs. temper-

ature plot 633
Arcing environments 480
Argon (Ar), arching voltage data 481

liquid 8
boiling heat transfer parameters 222

(at) saturation 628
selected properties at 1 atm 622

additional properties at 1 atm 630
solid (SAr) 224

density and enthalpy data at 1 bar 623
heat capacity vs. T plot 223

Artsimovich, Lev A. 170, 657
As-cast steel 49, 50, 158, 565, 571
Asimov, Isaac 241, 244
Asimov’s Biographical Encyclopedia of Sci-

ence and Technology 241, 244
Associated Legendre functions 31, 34, 35–

36, 74
Cartesian coordinates 36

Au-Fe(0.07%)-chromel thermometer 267
signal level and sensitivity 266

Avogadro number (NA) 5, 43, 617
Axial force(s) 83

compressive 86, 188
end 86
fault-mode, in SCH 558–560
(in) HTS magnet 193, 194
long solenoid 86, 182, 186, 187, 196
(in) nested magnet 94

midplane 86, 89, 91, 93–96, 182, 188
restoring force 97, 194
(between) rings 83, 85–86
(within) thin-walled solenoid 86
(between) thin-walled solenoid& ring 87
(between) two coils in NMR magnet 537
(between) two thin-walled solenoids 88

Ballpark solution 13
Banks, Sir Joseph 286
Bardeen, John 5, 649
Bascuñán, Juan 249
Bath-cooled, adiabatic 220

cryostable 220, 358, 366, 369
BCS theory 2, 5, 649, 650
Bean, C.P. 313

assumption 315
critical state model 313, 320, 328, 402

criterion for flux jumping (jumps)
338, 342–343, 349

“filament” 329–330, 447
magnetization plot 316
phenomenological theory of magnetiza-

tion 313, 402
slab 321, 330, 333, 649

AC losses 400–403
coupling 406
hysteresis 402, 415, 419, 422,

424–432, 436, 439–442, 553
penetration field 314
wire twisting model 344

theory for Type II superconductor 313
Bednorz, Johannes G. 1, 652
BH|mx (of permanent magnets) 55
Bi2212 8, 10, 446, 644, 647, 649, 654
Bi2223(/Ag-Au) 8, 649

Je(B, T ) data 645
mechanical and thermal properties 646
NZP velocity 489, 490
thermal expansion data 471
upper limit of (hot-spot ) Tf 470

Bi2Sr2Can−1CunO2n+4, Tc & μ◦Hc2 8
Tc|mx 55

Biot-Savart, law of 71, 130, 163
Bitter, Francis 1

(electro)magnet(s) 1, 2, 71, 122–125,
132, 135, 445, 585

Selected passages from Magnets 80,
84, 93, 96, 106, 110, 121, 127, 145,
167, 187, 204, 214

plate 122
Bobrov, Emanuel S. 142
Boiling heat transfer parameters 221, 222
Bon Mardion, G. 234
BonMardion-Claudet-Seyfert plot 234,

239
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Bottura, Luca 358
Brass, electrical resistivity vs. T data 642

thermal conductivity
T -averaged/ultimate strength 307
vs. temperature plot 632

thermal expansion data 638
Y (T, 0) plots 479
Z(T, 0) plots 473

Brechna, H. 413
Brief History of Time,A 574
Bronze, electrical resistivity vs. T data 642

thermal conductivity vs. T plot 632
thermal expansion data 638

BSCCO 2, 10, 223, 224, 349, 589, 649
Bubble chamber (magnet) 2, 366, 649
Built-up conductor 367
Bulk HTS See Annulus magnet, HTS
Bush, Vannevar (Van) 145, 167, 187, 204,

214
Butt joint 408

Cable-in-conduit (CIC) conductor(s) 378–
382, 650

AC losses 446
bundling process 379
components 379
current density for 361
helium flow 550
joint 382
parameters 134, 380, 547
ramp-rate limitation 382
stability 381
THQB 492

Cailletet, Louis P. 244
Cambridge (University) 93, 106, 650
Capacitance thermometers 267
Carbon resistors 239, 265
Carnot, (cycle) refrigerator 225–227, 650

temperature vs. entropy plot 226
Carr, Jr., W.J. 407
Cernox (thermometer) 265, 267

signal level and sensitivity 266
Chemical Elements, The 286
ChromelA, electrical resistivity data 642
CIC conductor(s) See Cable-in-conduit

(CIC) conductor(s)
Circular loop(s) 67, 69
Circulating proton in accelerator 175–176
Claudet, G. 234, 239
Close-packed hexagonal winding 191, 199
Cockroft-Walton 175
Code(s) 13, 71, 108, 142, 179, 188, 190,

493, 537, 545, 568
Coherence length 5, 6, 650, 652
Cold-end heat input (current lead ) 269,

278, 288, 300, 302, 305

College Chemistry 267
Collins, Samuel C. 1

helium liquefiers 1, 2
Complete elliptic integral(s), (of) the first

and second kinds, K(k) and E(k)
definition 83
power series 84

(of) the third kind, Π(c2, k)
definition 89
power series 90

Composite superconductor(s) 360, 367,
650

14-T SCM (45-T hybrid) 134
circuit model 371–372
cross sectional area 359–360
current lead 240
dissipation density 392
internal voltage criterion 522
magnet-grade superconductors 342
matrix, current density 361

resistivity 407
Nb3Sn 205
NbTi 347
non-linear stress-strain curve 646
NZP (velocity) 487, 489
orthotropic 98
overheating criterion 522
protection 510
(cryo)stability 352, 357, 362–366
V vs. I traces 383
YBCO 374–375

Compressive force 86, 94, 188, 194
Computer simulation (quench) 493
Concise History of Mathematics, A 33, 90
Conductor (wire) motion 356, 408, 410–

413, 649, 651, 653
detectable by AE 413
frictional heating 399
remedy 411

Conductor volume 116, 117
minimum 116, 117

Constantan, electrical resistivity data 642
thermal conductivity 632

Contact resistance (electrical ) 331, 407,
409, 641

(between) filaments and matrix 407
vs. pressure data 641

Contact thermal resistance 490
Convective heat transfer by residual gas

251–252
heat conduction by residual gases, H2

and He 252
Conversion factors 25, 618
Conversion from Wt% to At% 289
Coolant fluid flow rate (in copper extension

of a vapor-cooled current lead ) 287
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Cooling (only cryogenic cooling listed)
(at and below) 4.2K 227, 239
absence of/neglected/zero 411, 471
channels 13, 387, 390, 450
CIC conductors 378
conduction 528
convective (current lead ) 273, 275, 280,

285
cooldown with liquid neon or liquid ni-

trogen 229
(by) cryocooler (cryocooling) 231, 242
(magnetic) “field-” 584–586
forced 378
heat transfer 222
(with/without) helium 307
Kapitza resistance 387
laser 265, 653
“local” 492
methods/modes (“wet” & “dry”) 219–

220, 229–230, 232
NZP 484, 489
power(s) 227–228, 231
SCH 554, 557
sources 221, 242, 243, 247, 254, 257
thermodynamic cycle 225
(by) vaporization 299

Cooper, Leon N. 5, 649
Copper (Cu)

electrical resistivity vs. T data 642
(normalized) vs. T plots 640

diffusivities, magnetic & thermal 337
enthalpy data 230, 637

vs. temperature plot 635
heat capacity data 354, 636

vs. temperature plot 634
mechanical property data 638
melting temperature (1356K) 467
RRR vs. magnetic field plots 641
thermal conductivity data 355

T -averaged/ultimate strength 307
vs. temperature plot 632

thermal diffusivity & thermal time scale
data 255

thermal expansion data 471, 638
-to-superconductor ratio 389, 452, 650
Y (T, 0) plot 479
Z(T, 0) plots 473

Correction coils 82, 525
Coupling coefficient (mutual inductance)

111, 496
Coupling loss(es) 406, 446, 650

AC-losses-assisted NZP 492
additional heating source 537
critical (twist pitch) length 345–346,

406
energy density—wire of outermost diam-

eter Dmf (table) 443
(in) multifilamentary composite 406–

407
(in) SCH 555
time constant 406

Criterion for flux jumping 336, 338
Criterion, voltage (index, n ) Vc 370
Critical/superconducting current density

360, 650
(data for) Bi2223, MgB2, Nb3Sn, NbTi,

YBCO 645
engineering (or conductor) 360
flux jumping 338
Jc(B, T, ε) equation 553
Kim model 9
London theory 5, 43
(from) magnetization plot 447
requirement—bulk vs. plate (annulus

magnet, HTS ) 582
scaling laws for Nb3Sn, NbTi 645
temperature dependence (linear approx-

imation) 363
temperature effect 12, 236, 338

Critical, length (to decouple filaments) 345,
346

resistivity (induction heating) 62
size, for flux jumping 341, 448

MPZ (Rmz) 353, 391
Critical state magnetization, field perpen-

dicular to the filament’s axis 330
Critical surface of superconductor 9
Critical temperature(s) 650

selected superconductors 8, 17
Tc vs. year data 8

Cross-sectional areas of composite super-
conductors 359, 360

“Cryocirculator” 220, 247
Cryocooled 220

magnet 650
dissipation density 392
HTS 231

solid cryogen/magnet 254–256
Cryocooler 650

-based “mini” liquefier 241–245
cooling power vs. temperature plot 231
cooling sources 221
(for) dry magnets 219
performance data 228
vs. “cryocirculator” 247
Wcp/Q vs. Top plots 227

“Cryocooling” HTS magnet 231–232
Cryogen(s) 221

liquid (Ar, H2, He, N2, Ne, O2) 221
boiling temperatures of 8
(to) cool a 1000-kg copper block 230
selected properties at 1 atm 622, 630
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solid (SAr, SN2, SNe) 224
density and enthalpy data 623
enthalpy vs. T plots (SN2, SNe) 635
heat capacity data (SN2, SNe) 654

vs. T plots 223
thermal conductivity data (SN2, SNe)

355
vs. temperature plots 633

thermal expansion 263
T rise vs. field homogeneity 263

Cryogen(-)free (superconducting) magnets
219, 247, 651 See also Dry magnet(s)

Cryogenics, issues—cooling; heating; mea-
surement 221

thermometers 265–267
Cryostability See Stability
Cryostat(s) 219, 229, 651

45-T hybrid 133, 134, 204
annulus magnet, HTS 583, 584
cryocooler vs. cryocirculator 247
dry 132
heat sources 221, 248, 251, 307
liquid nitrogen 579, 657
measurement of AC losses 445, 446
persistent-mode operation 456, 457
protection 496, 502, 503, 526
quench voltage detection 516
slow-MAS magnet 242
subcooled 1.8-K 236–240, 333

burst disk and diffuser 450
vacuum (gauges) 253, 507
voltage 511

Paschen test 481
Cu-Ag alloy 585
Cu-Ni alloy 346

electrical resistivity data 642
(for) NbTi PCS 456

Cupron, electrical resistivity data 642
Current density(ies) 359, 367

Bitter magnet 123
CIC conductor 361
composite superconductor 366
critical/superconducting See Critical/

superconducting current density
heater 528
ideal solenoid 81
index 370, 457
isotropic solenoid 86
Lorenz force 72
matrix (metal) 361, 473, 475, 477

computer simulation 493
NZP velocity 486, 487
protection 502, 503, 511

Bi2223 tape 524
overheating criterion 522

THQB 492

voltage criterion 483
overall/winding pack (operating) 115,

361, 359, 360, 655
annulus magnet, HTS 582

requirement—bulk vs. plate 582
SCH 548

scaling a solenoidal magnet 173
superconductors (Bi2223, Nb3Sn, NbTi,

MgB2, YBCO) 644
surface 26

ideal dipole 156, 210
ideal quadrupole 160
perfect-conductor sphere 44
superconducting rod 41-43
thin-walled solenoid 86–90, 120

thin-walled solenoid 72
Current distribution (in)

“Bean filament” 330
Bean slab 316, 317
Bitter magnet 123
Gaume, Kelvin, polyhelix 125

Current lead(s) 587, 588, 652
(between) 4.2K reservoir and 1.8K ves-

sel 236, 238, 240
Bi2223 tape, protection of 523–524
disconnectable 455, 456
dry, normal metal (brass, copper) 274

HTS extension 274
heat source 221
high voltage 480, 481
vapor-cooled

brass 300–305
overcurrent mode 302

experimental results 305, 306
copper 268–273

cold-end heat input & boil-off rate
269

heating upon flow stoppage 269
optimal lead parameters 270
standing heat input 271
voltage drop across an optimal lead

272
HTS 275

6-kA (CSV & FSV) 290, 292, 293
copper section 297
“optimal” CSV 296

copper extension 287–289
CSV 278–283

advantage 278
FSV 275–277
protection 285–286, 510

Cyclotron 175, 651
Cylinder(ical) shell 51

induction heating 58–64, 546
magnetic field shielding 561, 565, 566
quasi-static field 56, 57
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Davis, Helen 286
dB/dt (-induced) heating 492, 512
DC response (of superconductors) 6
Decay rate 455, 492, 502, 520
Delay time 510, 554

constant 406, 455, 552, 556
Detect-and-activate-the-heater 469, 504,

525, 526, 528
Detect-and-dump 502, 510–512, 526
Detection of mechanical events 413

AE/voltage technique 413
Detector (superconducting) magnet 176,

649, 650
Dewar, Sir James 244

flask/storage 244, 651, 657, 658
Diamagnet(s; ic; ism) 3, 7, 27, 39, 291, 314,

320, 654
Diamond 490

thermal conductivity vs. T plot 632
Dielectric breakdown of cryogens 480
Differential, μ/μ◦ 49, 50

annealed ingot iron, as-cast steel, va-
nadium permendur 50

resistance 371, 372
thermal expansion 12, 526

Diffusion equations, magnetic and thermal
336

Diffusion pump/cold trap 252
Diffusivities, magnetic & thermal, of stain-

less steel and copper at 4K and 80K
337

thermal (4–60K ) of Cu, SN2, SNe 255
Digital flux injector 458
Diode(s) 455–457, 495, 496, 519, 520, 531,

547, 549
thermometers 264, 266, 267

Dipole(s) 71, 160, 171, 208, 410, 413, 588,
655

field 31, 32, 44, 52, 54, 200
far from cluster 52–53
(inside) sphere 32
(outside) sphere 32
spherical 52

iron magnet 54
(“ideal”) magnet(s)/winding(s) 42, 109,

154–158, 162, 175, 176, 567, 651
(in) atom smashers 42
cumulative force 157
field and force vectors 156
force density 157
inductance 158
(with) iron yoke 155
magnetic energy 157
surface current density 156

moment 54, 562, 565–566
shell (main coil) 565

Discharge 249, 286, 449, 450, 453, 475,
504–505, 511, 520, 549, 553, 584

power 475
“slow” 519–520

low-resistance resistor 519
series of diodes 520

time constant 476, 477, 510, 513
effective 476

voltage(s) 475,480, 481,502–503,511,
649, 651

voltages across current leads 480
Disconnectable leads See Current lead(s)
Discovery of superconductivity 1
Dislocations (to create pinning centers ) 9
Displacements and strains 99
Dissipation density in adiabatic winding

392
dissipation-density limit vs. α 394

Disturbance(s) 14, 58, 256, 258, 353–358,
390, 391, 399, 408, 410–412, 471, 484,
586 See also Mechanical disturbance

spectra 356, 399
Dittus-Boelter-Giarratano-Yaskin correla-

tion (heat transfer) 379
Double-pancake (coils/magnets) 129, 134,

136–137, 150, 651, 655
dissipation (vs. He II cooling) 452
HTS magnet 193
stability analysis 386
vs. layer-wound 136–137

advantages & disadvantages 137
Dresner, L. 381
Driven-mode magnet 21
Dry (current) lead(s) See Current lead(s)
Dry (cryogen-free) magnet(s) 1, 2, 219,

220, 224, 247, 651
Dual-stability regime (CIC conductors)

381
Dump(ed) 449, 484, 502, 551–552, 651

initiation delay 557
resistor 474, 502, 503, 510, 511, 513,

526, 547, 552, 651
design of 517–518
(for) Hybrid III 518

voltage 474
Dunk mode of cooling 229, 230
Dynamic stability 337, 352, 353 See also

Stability

E(k) See Complete elliptic integral(s)
Earth field 22, 80, 242
EAST 587, 651, 652, 657
Eddy-current (energy) density

loss 58, 65, 66, 407, 446, 649, 651, 653,
654

wire and tape (table) 443
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Effect of transport current on magnetiza-
tion 316, 317

Effective matrix resistivity 406, 407, 446
Efficiency

generation of magnetic field
Bitter, Gaume, Kelvin, polyhelix,

uniform-current-density 125, 137
refrigeration

Carnot 225
cryogenic 589, 650, 655
liquid production 241
(superconducting magnet) 366, 399

Electric, energy 29, 521
field 25, 26, 28–32, 56, 57, 59, 65, 175,

331, 338, 339, 345, 370, 457, 653
generators 2, 154
permittivity, free space 25

Electrical resistivity(ies)
Ag-Au alloys, vs. T plots 284
copper and stainless steel 337, 355
dump resistor 517
selected heater metals 642
selected metals 642
solder alloys 410
(normalized) vs. T plots (Ag, Al, Cu,

stainless steel) 640
Electromagnet(s) 7, 80, 84, 132, 561, 585

Bitter 1, 2, 122
iron, field limit 54

pole shape 54, 55
Electromagnetic quantities (SI units) 25
Elliptic integral(s), complete See Complete

elliptic integral(s)
Embossed radiation shields 247
Emissivity 248

practical considerations 250
Enabling technology 587
End field of solenoid See Field(s)
End user (of electric power) 587, 588
Energy margin 357, 381, 586, 651 See also

Stability
selected values for LTS and HTS 358

Engineering critical current density 360
Enthalpy

helium at 1, 6, 10 atm 625
Joule-Thomson process 241
neon at 1, 10, 20 atm 629
nitrogen at 1, 15, 20 atm 627
(at) saturation, argon 628

helium 624
(normal) hydrogen 628
neon 628
nitrogen 626

selected materials—Cu, epoxy, Kapton,
Ni, Teflon, W 230 (only Cu ), 637

solid cryogens (SAr, SN2, SNe) 623

vs. magnetic energy density 411, 467
vs. temperature plots (Ag, Al, Cu, SN2,

SNe, stainless steel) 635
Epoxy (resin)

(as bonding agent) 386
enthalpy data 637
filling material (filler) 360, 500
fracture (cracking)

detection by AE 411, 413, 649
(source of dissipation) 391, 399, 413

heat capacity data 354, 636
-impregnated (impregnation)

solenoid/winding 191, 392, 408, 411,
491, 493, 651

NMR magnet 530
mechanical properties 638
(against) positive radial stress 105
(compared with) solid nitrogen 224
thermal conductivity data 355 See also

Stycast, vs. temperature plot
thermal expansion data 471, 638

Equal-area criterion 353, 369 See also
Stability

Er3Ni 224
Essmann, U. 5
Ethane (C2H6) 8
Evanohm, electrical resistivity data 642

Fahrenheit, Gabriel Daniel 267
Faraday’s law 25, 26, 28
Fault current limiter(s) 492, 587, 588
Fault forces 136, 204
Fault-mode axial forces 558–560
Feynman, Richard P. 534, 660
Field(s) (chiefly magnetic)

analysis 14, 34, 71, 73
Maxwell’s equations (0th and 1st or-

der) 28
solenoidal coil 74

error coefficients 150, 619–620
nested-coil magnet 77
pancake-coil magnet 150–153
simple coils 78

superposition technique 130
end 130, 131
off-center axial 130, 131

-cooling (annulus magnet, HTS) 584
decay rate, in NMR & MRI magnets 455
expansion in Cartesian coordinates 145
factor, F (α, β) 76, 116, 559

Bitter magnet, FB(α, β) 123
derivation of 116

far from four dipoles 52–53
homogeneity 22, 74, 78, 124, 139, 142,

173, 258, 263, 530, 585
line(s) 40, 45, 50, 74, 156, 160, 322, 583
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Field(s) (continuation)
(and) power (Bitter magnet ) 124
quasi-static 28
saturation 39
-shielding of annulus magnet, HTS 584
solutions from scalar potentials 30
upper limit, (iron magnet) 54

(“water” magnet) 135
vs. power 118

Filament, decoupling 344
fatigue (hot-cathode vacuum gauge) 253

Film boiling 222, 358, 359, 367, 368, 377
Floating winding 412
Florida-Bitter plate 122
Florida State University 132
Flux (Type II superconductor), bundles 6

flow 6, 48, 355
quanta 328

Flux jump(s)/jumping 2, 313, 332, 342,
344, 347, 352, 353, 356, 358, 448, 652

criterion 336, 338
(in) HTS 349

Fluxoids 6
Flywheel 587, 588
Force(s)/density 71 See also Axial force

axial See Axial force
body force 105, 191
hybrid magnet 204, 558–560

active shield coil 563–564
fault/misalignment 204

interaction force 134, 136
Lorentz/magnetic 9, 59, 71, 72–73, 98,

366, 399, 545, 654
annulus magnet, HTS 583, 585
circulating proton 175, 176
(on) current leads 503
dipole 154, 155, 156, 157
entire winding body 412, 413
friction(al) 411
levitation 574–576, 580

lateral force 577–578
quadrupole 159, 160, 161
toroidal magnet 168, 169
two-coil magnet 180

radial 203
two-“racetrack” coil magnet 166–167

interaction forces 167
midplane See Axial force
(on) sphere, iron 200–202

magnetic 37
vs. mutual inductance 112, 114, 213

Force/forced (flow of fluid ) 122, 220, 378,
492, 658

-cooled 220, 221, 254
supercritical helium 358, 359, 378–380,

650

Fracture 411–413, 649, 653 See also Epoxy
fracture (cracking)

(of) filler material and remedy 412
(of) impregnated filling material 410

Francis Bitter (National) Magnet Labora-
tory/FB(N)ML 124, 191, 254, 387,
390, 493, 515, 530, 537

Freon-14 (CF4) 8
Friction and Wear of Materials 412
Fringing field 171, 172, 253, 449, 450, 649,

650, 654
(of) magnet 37, 45

Fujishiro, Hiroyuki 410
Fusion (machine/project/reactor) 70, 170,

265, 447, 587, 588, 653–655, 657
magnets 2, 13, 381, 399, 587

CIC conductors 378, 379
protection 511

G-10 652
mechanical properties 638
thermal conductivity

T -averaged/ultimate strength 307
vs. temperature plots 633

thermal contraction data 638
GaA1As (thermometer) 264

signal level & sensitivity 267
GANDALF (code) 13, 553, 557
Garrett, M.W. 83, 88
Gaume coil 125
Gauss, Karl Friedrich 33, 80

law 25, 26
Gavrilin, Andrey V. 553, 557
Generation & storage (electric power ) 587,

588
Generator(s) 2, 154, 162, 214, 587, 588,

657
Gerhold, J. 480
Ginzburg, Vitaly L. 6, 652
GLAG theory 2, 6, 652
Goodman, B.B. 5
Gorkov, Peter L. 6, 652
Gradient 22, 30, 587

coil (magnet) 22, 138, 529, 652
field 138, 139, 144, 656
slew rate (MRI ) 22
temperature (thermal) 233, 272, 337,

471
Grenoble Magnet Laboratory 132

Hand-shake lap splice 408
Harmonic errors 81
Hastelloy, electrical resistivity vs. temper-

ature data 642
thermal conductivity vs. T plot 632

Heller, R. 480
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Hawking, Stephen 574
He II (superfluid helium ) 233, 652

Bon Mardion-Claudet-Seyfert plot 234
Kapitza resistance 235
thermal conductivities (also He I ) 234

Heat capacity
selected materials—Cu, epoxy, Kapton,

Ni, Teflon, W 636
substances in superconducting magnets

354
superconductors 646, 647
vs. temperature plots for

Ag, Al, Cu, stainless steel 634
Ag, Cu, Pb, SAr, SN2, SNe 223

Heat conduction 233, 240, 498, 566
Heat leak(age) 229, 356

through hydraulic communication 239
Heat transfer

boiling
nucleate 222, 359, 367, 373, 376, 377
parameters 221, 222

coefficient (helium) 359, 379, 383, 551
forced flow (CIC ) 378–379

convective 251, 352, 656
cooling methods for superconducting

magnets 220
flux vs. T for LN2 at 77.3K 377
Kapitza resistance 235
radiative 248, 249, 250

Heat treatment 9, 380, 652, 658
Heated channel (He II heat flux) 235
Heater

1.8-K cryostat 239
calibration (calorimeter setup) 445, 446
cryocooler 228
metals, electrical resistivity data 642
PCS 455, 456
“protection” 469, 504, 526, 527–528

current 445, 528
resistance & power supply 527, 528
wire & placement 527

pulse (NZP measurements) 488, 491
Helium (He)

arcing voltage data 481
density and enthalpy data at 1, 6, and

10 atm (include liquid ) 625
heat capacity data (@3 atm) 354
heat transfer 359
liquid (LHe) 8

boiling heat transfer parameters 222
(to) cool a 1000-kg copper block 230
heat transfer coefficients 359, 551

phase diagram 233
(at) saturation 624
selected properties at 1 atm 622

additional properties at 1 atm 630

supercritical 378, 379, 380, 547, 550
superfluid See He II
thermal conductivity data (@3 atm) 355

vs. temperature plot 633
Helmholtz coil (type) 71, 82, 138, 139

analysis of, another method 140
HGMS See High-gradient magnetic separa-

tion
(Hg,Pb)Sr2Ca2Cu3Ox (HTS ), Tc 55
High(-)energy physics 391, 410, 588, 650,

651, 657
High Field Laboratory, Tohoku University,

Sendai 132
High Field Magnet Laboratory, Radboud

University, Nijmegen 132
High-field (DC) solenoid(s)/magnet(s)

122, 361, 378, 546, 565, 583, 588
High-gradient magnetic separation 587,

588
High(-)performance magnet(s)/coil(s) 1,

652, 658 See also Adiabatic magnet(s)
LTS 497

mechanical events 413
MPZ concept 537
premature quench 351
protection 391

NZP 484
overheating 501, 522

Hoenig, M.O. 378
Homogeneity coefficients, En(α, β) 76,

619–620
Hooke’s law 98
Hoop stress(es) 98

medium-walled coil 103
thick coil 104
thin coil 102
vs. radius plot (Hybrid III ) 390

Hot(-)spot 467–468, 652
persistent-mode MgB2 magnet 526–527

size 468, 528
SCH 556–557
size (volume) 467, 468
temperature(s)468, 469, 502, 528, 652

Hybrid III SCM 512–513
persistent-mode MgB2 magnet 528

HTS (and LTS), major areas of application
587–588

HTS magnets, outlook on 589
Hybrid II 515

quench-voltage detection 515–516
Hybrid III magnet (&SCM) 232, 236,239–

240, 248, 251, 253, 444,
AC losses in 449–450
burst disk and diffuser 450
“cryocirculator” 247
cryostable vs. quasi-adiabatic 390
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Hybrid III magnet (&SCM) (continuation)
design of a dump resistor 517–518
hot-spot temperatures 512–513
NbTi conductor specifications 332
SCM conductor parameters 449, 512
splice dissipation 454
stability analysis of SCM 386–388
winding details (NbTi pancakes) 386

Hybrid [magnet(s)] 71, 132–136, 351, 387,
450, 506, 515, 545, 588, 652

30T 2, 132
35T 132, 134
40T 132
45T 2, 132, 133, 134, 200, 202, 366

CIC conductor 379, 389
conduit 380
mechanical support 204
subcooled superfluid 379

configuration & unique features 135
engineering challenges 134
(selected) facilities 132
series-connected See SCH

Hydrogen (H2)
arcing voltage data 481
liquid (liquefied) 8, 244

boiling heat transfer parameters 222
normal (n-H2) 621

(at) saturation 628
selected properties (n-H2) 622

additional properties at 1 atm 630
triple point 265, 658
solid 223

Hysteresis (energy/dissipation/loss)(densi-
ty) 402, 649, 653, 656, 657

60-Hz application 345
AC losses 399–400
adiabatic winding 394
Bean slab 402–403

(with) DC transport current 430–432
self-field 436, 438, 440
tables 439, 440
“Virgin” 415, 419, 422, 424–428

CIC conductors 446
HTS 446
Hybrid III SCM 450–452
Nb3Sn filament 447
SCH 553–555
techniques to measure 444
wire & tape (table) 441

Ideal, Carnot refrigerator 225
compressor 246
diode(s) 520, 547
dipole 208, 209, 567 See also Dipole(s)
ferromagnetic material 567
Helmholtz coil See Helmholtz coil

liquefier 246
quadrupole 31, 208, 210, 211, See also

Quadrupole(s)
“racetrack” See Two-“racetrack” coil

magnet
requirement on the magnet’s radial build

494
Rs vs. I (of superconductor) plot 362
solenoid (coil) 34, 75, 81, 99, 548
steel (plate) 570–571, 580
superconductor 270
toroid(s) 110, 208, 211, 212, See also

Toroidal magnet
voltage source 371
working machine 226
μ/μ◦ =∞ (μ=∞), (μ/μ)dif =∞ 39, 45,

48, 565, 570, 580
Ill-cooled regime (CIC conductors) 381
Image 22, 315, 431, 654

coil(s) 570, 571
(to model) steel plate 580

Impregnant(s) 399, 412
(filling) material(s) 244, 410

Impregnated coil/magnet/solenoid/wind-
ing(s) 191, 392, 408, 412, 530, 578,
586, 651

Incoloy 380
“Index” (of superconductor) 370, 414, 455

–458, 489, 653
experimental determination 458
(-induced) voltage 457
loss 457

Indium (In) 8, 17, 410, 469, 470
thermal conductivity vs. T plot 632

Inductance(s) (self & mutual) 106, 111
coupling loss time constant 406
decay rate 455, 457
inequality (ramp-rate limitation) 382
internal voltage distribution 481
magnetic energy 106, 111
matrix (of an NMR magnet) 531
mutual (M) 111

force 85, 97, 114, 136, 213–214
Rogowski coil 213
selected analytic expressions 112–114
two-coil magnet 179

protection of Bi2223 tape current lead (to
prevent induced high voltages) 524

self (L) 106
circular loop 106
formulas 108–109
ideal dipole 109, 155, 158, 208–210
ideal quadrupole 109, 208, 210–211
ideal toroids 110, 208, 211–212
parameterL(α, β) (solenoid ) 109
review 568
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scaling 174
SCH 548
superconducting coil with no steel disk

569
superconducting loop 20
very long and thin 208
wire interior 108, 208, 209

Induction heating 58–59, 62, 64, 65, 653
maximum 64
power dissipation 62

Infinitely long, (magnets) 154, 159
(stand-alone) coil 100, 102
cylinder 574
lead (Pb) rod 41
(“thin-walled”) solenoid 72–73, 392
superconducting filament 329, 330

Ingot iron 49, 50
Interaction force 114, 134, 197, 203

active shield coil 563–564
axial 87
(between) coils 177
hybrid magnet 136
(vs.) mutual inductance 114
(within) racetrack 167
(between) racetracks 167

Internal pressure rise (CIC conductors) 492
Internal voltage 467, 483, 536

distribution 481, 482
matrix current density criterion 522
(in) quenching magnet 481

International Thermonuclear Experimental
Reactor 170, 653 See also ITER

Ionization gauge, cold-cathode 253
hot-cathode 253

Iron electromagnet(s) 54, 80
pole shape 54, 55

Iron sphere See Sphere
Isentropic pump 238
Ishigohka, T. 515
ITER 2, 13, 170, 379, 587, 645, 653, 657

magnets 381

James, G.B. 369, 502
Jc, Jc(B), Jc(B, T ), and/or Je 644, 645

from magnetization 331
Josephson effect 328, 653, 657
Joshi, C. 487
Joule heating 355

cryostability 353, 364, 365, 408
power density equation 352

current lead 268, 510, 652
meltdown time 524

disturbance spectra 356
hot-spot temperature 556
low-resistance resistor 520
MPZ concept 391, 654

NMR magnet 534, 536
NZP 489
water-cooled magnet 399

Joule, James Prescott 241
Joule-Thomson (J-T), effect 244

process 237, 241

K(k) See Complete elliptical integral(s)
Kaiser effect 411, 649, 653
Kamerlingh Onnes, Heike 1, 5, 7, 244, 296,

654, 659
Kapitza, Peter 93, 96, 106, 358

helium heat transfer coefficient 359
(pulse) magnets 93, 96, 106, 122
resistance 235, 358, 387, 653

Kapton 653, 655
enthalpy data 637
heat capacity data 636
thermal conductivity vs. T plot 633

Kelvin, Lord 241, 244, 483 See also Thom-
son, William

coil 125
(temperature ) scale 264

Kevlar, thermal conductivity vs. T plot 633
Kim, Y.B. 9
Klein, Felix 33
KSTAR 587, 653, 657
Kunzler, J.E. 1, 3
Kurchatov Institute of Atomic Energy 170,

657
Kyoto University 255, 256

Lamina model 5
Lamination 66, 193
Landau, Lev D. 6, 652
Lap splice (joint) See Splice (joint)
Large Hadron Collider (LHC) 2, 175–176,

649, 650, 654, 657
Large Helical Device (LHD) 587, 654,

657, 658
Larmor frequency of hydrogen 22
Laser cooling 265, 653
Lateral stability (of levitation) 577–578
Lawrence, Ernest O. 175
Lead (Pb) 8, 17, 41, 43, 257, 259

-alloy solder data 410, 411
heat capacity vs. temperature plot 223

Legendre, Adrien Marie 33, 85
associated functions See Associated Leg-

endre functions
functions 31, 34, 35, 75

Cartesian coordinates 34, 36, 82
multiple-angle and normal forms 35
polynomials 14, 34, 74
recurrence formulas 34

Leiden University 296, 658
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Levitation 587, 654
(of a) flat HTS plate 572–580
force 574, 575, 576, 580
height 574, 575
resonant frequency 576

LHD See Large Helical Device
Linear thermal expansion 263, 470

data for selected materials 471, 638
Line pressure drop (1.8-K cryostat) 239
Liquefaction 241, 243, 244
Liquefiers (helium) 1, 2, 241

“ideal” 246
“mini” 242–244, 246

Liquid cryogens for wet magnets 221, 222
argon See Argon (Ar)
helium (LHe) See Helium (He)
hydrogen See Hydrogen (H2)
neon See Neon (Ne)
nitrogen See Nitrogen (N2)

Liquidus temperatures See Solidus and liq-
uidus temperatures

Load lines 14, 71, 128–129
London, Fritz and Heinz (brothers) 5, 655

penetration depth 6, 655
theory of superconductivity 5, 41, 43

Long solenoid(s)
axial force See Axial force(s)
central field 118, 120
dissipation density 392
Lorentz force & magnetic pressure 73
magnetic force 99
midplane force 95

Lorentz force(s) 9, 71, 98, 155, 157, 161,
166, 168, 175–176, 180, 399, 411,
412, 574, 585, 654

density 9, 72, 73, 154, 159, 411
(and) magnetic pressure 72, 73

Loss(es) (dissipation)
AC See AC losses
index 457
other 399, 408
splice See Splice (joint)

Lower critical field, Hc1 3, 7
Low-resistance resistor 519–521

design of 520–521
Low-temperature thermometers 264–267
LTS and HTS, areas of application 588
Lue, J.W. 381
Luongo, C.A. 492

Maddock, B.J. 369, 502
Maeda, H. 412
Magic angle 55

spinning (MAS) NMR 242
Maglev (MAGLEV) 2, 45, 162, 587, 588,

654

Magnet-grade superconductor(s) 1, 2, 5, 7,
9–10, 342, 349, 360, 367, 370, 457,
643, 646, 654, 655

Magnet Laboratory, National Research In-
stitute of Materials Science, Tsukuba
132

Magnetic, behavior of (superconductors) 7,
402, 403 650, 652, 654

center 204, 546
confinement 170, 654, 655, 657
coupling 136, 515, 529
diffusion/diffusivity 336, 353, 355

time constant 346
dipole(s) 31, 54
energy (density) 106, 111, 174, 209,

210
45-T hybrid 204
annulus magnet, HTS 586
converted to heat 258, 338, 340,

467–468, 469
flux jumping 338, 340, 342, 343, 349
heat absorption/heating19,468–469,

471, 475–477, 494, 517, 526
hot-spot temperature 467–468, 469,

512
hysteresis 418
ideal dipole 155, 157–158
magnetic force 200–201
magnetic pressure 73, 654
overheating 501
passive protection 496–497
permanent magnet 55
Poynting vector 29, 402
scaling 173
SCH 548, 549, 552
two-coil magnet 179, 181
vs.mutual inductance 114, 213–214
vs. thermal energy 467

force(s)See also Axial force(s), Force(s)/
density, Midplane (axial) force on
solenoid(s)

annulus magnet, HTS 582
body 105
ideal dipole 155, 157
ideal quadrupole 159, 161
ideal toroidal magnet 168, 169–170
interaction 114, 213–214
(on an) iron sphere 200–202
“large” magnets 366
Lorentz See Lorentz force(s)
magnet design 11
mechanical events 413
solenoid 98
two-coil 203
two-“racetrack” coil 166–167

heating 337



CASE STUDIES IN SUPERCONDUCTING MAGNETS 673

Magnetic (continuation)
levitation 587, 654 See also MAGLEV
loss(es) See AC loss(es)
material(s) 39, 71, 106, 108, 111, 319
moment 32, 54, 85, 87, 330, 562
permeability 25, 115
potential 38
pressure 1, 72–72, 654

axial force 86
DC applications 399
nuclear fusion 170
persistent-mode magnets 254, 455
scaling a solenoidal magnet 173

resistance (passive shield shell ) 565
resonance imaging (MRI) 2, 14, 22, 588,

654
AC-losses-assisted NZP 492
axial forces in nested-coil magnet 94
double-pancake 137
(spatial-)field(-)homogeneity 74

(effects of ) temperature rise 263
Helmholtz coil 139
magnetic shielding 45, 561, 649, 653
mechanical disturbances 410
MPZ concept 391
notched solenoid 148
permanent magnets 55
protection 495, 496

persistent-mode magnets 526
saturation 84
separation 587, 588
shielding 45, 49, 561, 653, 654, 655
spring constant 159, 161
stress(es) 11, 98, 135

Magnetization 27, 649, 653
Bean model 315–335, 342–349

(in) “Bean filament” 329–330
effect of transport current 316
Jc, from 331
(with) transport current 321–327,

328
hysteresis energy 403, 417, 421, 422, 447,

448
iron/steel 158, 200, 565, 571, 584
measurement 332–333

technique 318
SQUID 328

plot(s)
Bean slab 316, 415, 419, 422, 424
MgB2 320
Nb3Sn composite 447
NbTi composite 347
Nb-Zr monofilament 342
Type I and Type II superconductors 7

saturated/saturation 155, 200, 656
Type I and Type II superconductors 7

Manganin, electrical resistivity data 642
MathCad (to evaluate elliptic integrals) 89
Matrix metal(s) 379, 399, 489, 655

AC losses 399
CIC conductor 379, 446

adiabatic heating 472
current 474

Ag-Au 290
HTS current lead 276, 278, 290

aluminum 503
circuit model 362, 371, 373, 375, 376
composite superconductor(s) 352, 487,

650
LTS (Nb3Sn, NbTi) 207, 223
YBCO 374, 375

copper 223, 362, 364, 387, 503, 522, 528,
556, 646

eddy-current loss 65
cross section(al area) 359, 383, 389, 487,

489, 507, 511
HTS lead 510

Cu-Ni alloy(s) 346
PCS 456

current (density) 361, 367, 383, 524,
528

protection, active 502, 503
adiabatic heating 475, 476, 477,

483, 522
computer simulation 493
cryostable NbTi magnet 511
THQB 492

(incorporating) Z(Tf , Ti) 473
(electrical) resistance(s)/resistivity 345,

362, 371, 383, 406, 476, 487, 524
adiabatic heating 471, 476
conductive 354, 446, 489
effective 407, 446
MPZ 391

enthalpy 472
iron 489
Joule heating 355, 364, 510
magnet-grade-superconductor 10
mass 509
non- 359, 360, 489, 547, 556
NZP 486, 487, 489, 490
silver 10, 223, 503
stability 352, 353, 354, 362, 387, 389

current sharing 357, 364
thermal conductivity 276, 487, 523

conductive 446, 490
-to-nonmatrix ratio 366
-to-superconductor ratio 366, 511
voltage 376
wire twisting 344, 345, 346

Maximum field in, short coil 126–127
solenoidal coil 126–127
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Maximum field in (continuation)
thin and long coil 126–127
thin coil 126–127

Maxwell James Clark 106
coil 138
equations 25, 59, 336

Mechanical, -contact switch 410
disturbances 410–411
equivalent of heat 241
properties of selected materials 638, 646
support in 45-T hybrid 204

Medical MRI 588
Meissner, Walther 3

effect 3, 654
Mendelssohn, Kurt 296, 659
Mercury (Hg) 8, 17
Metalloid superconductor, discovery of

MgB2 2
Methane (CH4) 8
MgB2 2, 654

magnetization plot 320
Je data 645

MHD magnets 2
Microslips (conductor motion) 411
Midplane (axial) force on solenoid(s) 89,

90, 94–97, 182–187, 194
both solenoids long 95, 96
nested 2-coil 188–190
thick-walled 93

long 95
thin-walled (& long) 86

Miller, John R. 204, 381
Minimum (conductor) volume (magnet)

71, 116, 117
Misaligned (nested-) coils, axially 81–82

radially 82
M.I.T. 122, 134, 145, 204
Mixed(-)state See Superconductors
Mixture(-)rule 192, 193, 646
Monel, thermal conductivity vs. T plot 632
Monolith 367, 411
Montgomery, D. Bruce 132
Morpurgo, M. 378
Motor 587, 588
MPZ 352, 353, 391
MRI See Magnetic resonance imaging
Müller, Karl Alex 1, 652
Multifilamentary (super)conductor(s)/

composite/wire 66, 191, 319, 345,
394, 400, 649, 650, 654, 655–658

coupling energy (loss) 406, 438, 450,
492, 650

effective resistivity 407
Nb3Sn and NbTi superconductors 2
NZP velocity 489

twisting/twisted 344–348, 492

Mutual inductance(s) See Inductance(s)
Mylar, thermal conductivity vs. tempera-

ture plot 633

National High Magnetic Field Laboratory
122, 132, 546 See also NHMFL

National Magnet Laboratory (NML) 2,
132 See also Francis Bitter (National)
Magnet Laboratory [FB(N)ML]

National Research Institute of Material
Science, Tsukuba 132

Nb3Al 8
Nb3Ge 8
Nb3Sn 8

critical current density 644
matrix resistivity 407
non-copper Jc data 645
scaling laws 644
strain effects on Jc (references) 647–648
Tc|mx 55
thermal expansion data 471, 638

NbN 8
NbTi 8

critical current density 644
critical diameter (flux jumping) 341
electrical resistivity data 642
Jc data 645
matrix resistivity 407
scaling laws 644
strain effects on Jc (references) 647–648
thermal expansion data 471, 638

Nb-Zr wire 342
Nd2Fe14B (permanent magnet), BH|mx 55
Neon (Ne)

density and enthalpy data at 1, 10, and
20 atm (include liquid ) 629

liquid 8
boiling heat transfer parameters 222
(to) cool a 1000-kg copper block 230

(at) saturation 628
selected properties at 1 atm 622

additional properties at 1 atm 630
solid (SNe) 224

density and enthalpy data at 1 bar 623
enthalpy vs. temperature plot 635
heat capacity data 354

vs. temperature plot 223
thermal conductivity data 355

vs. temperature plot 633
thermal diffusivity & thermal time

scale data 255
Nested[(-coil) magnet (solenoid)] 71, 351,

496, 572
45-T hybrid magnet 133
axial forces 94, 188
coupling coefficient 111
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current density distribution 125
field analysis 77, 145
Florida-Bitter plates 122
fringing field 171
harmonic errors (misaligned coils) 81–82
HTS insert 194
maximum field 126
protection 505, 530
radial force 203
stress and strain equations 100

NHMFL 122, 132–134, 379 See also Na-
tional HighMagnetic Field Laboratory

Nickel (Ni), enthalpy data 637
heat capacity data 636
mechanical properties 638
thermal expansion data 471, 638

Nitrogen (N2)
arcing voltage data 481
density and enthalpy data at 1, 15, and

20 atm 627
liquid 8

boiling heat transfer parameters 222
(to) cool a 1000-kg copper block 230

(at) saturation 626
selected properties at 1 atm 622

additional properties at 1 atm 630
solid (SN2) 224

density and enthalpy data at 1 atm
623

enthalpy vs. temperature plot 635
heat capacity data 354

vs. temperature plot 223
solid-to-solid phase transition 223,

263, 623
thermal conductivity data 355

vs. temperature plot 633
thermal diffusivity & thermal time

scale data 255
Niobium (Nb) 8
NML See National Magnet Laboratory
NMR coil(s)/magnet(s) 2, 74, 100, 221,

588
AC-losses-assisted NZP 492
annulus magnet, HTS 581, 582, 585, 586
DC applications 399
double-pancake 137, 150
field shielding 561, 649, 653,
harmonic errors/homogeneity 82, 263
mechanical disturbances 410, 411
MPZ concept 391
notched 148
persistent-mode 254, 255, 455, 458, 522
protection 495, 496, 505, 526, 530–534
slow MAS (magic angle spinning) 242
stress and strain 99, 100, 191, 193

Normal(-)zone propagation (NZP) 352,

484, 498, 655
AC-losses-assisted 492, 495
active protection 501, 526

hot-spot size 528
adiabatic condition, under 484–486
(in) cooled condition 489
composite superconductor 487
computer simulation 493
longitudinal (axial) velocity 484

(under) adiabatic condition 484
experimental determination 487–488

selected measured U� data 489
self-protecting magnets 494
transverse (turn-to-turn) velocity 490

contact thermal resistance 490
experimental results 491

Norris, W.T. 369
Notched solenoid 148, 149
Nuclear fusion and magnetic confinement

170See also Fusion (machine/project/
reactor)

Nuclei (detectable by MRI ) 22
Numerical(-)analysis/solution(s) 13, 14,

71, 545, 652
AC losses 444
stress 105

ballpark (estimates/figures/solutions)
13, 333, 545

AC losses 400, 401, 444
field shielding 563, 566
first-cut design 621
forces 558

(computer) code solutions 13, 545
AC losses 400, 401
field 71, 126, 129

spatial homogeneity 142, 144
force 71, 83, 93

axial 179, 181–185, 188–190, 194–
197, 199, 558, 560, 564

inductance 108, 111, 568
quench simulation 493, 537
stresses and strains 194–196

Nylon, thermal conductivity vs. T plot 633
NZP See Normal(-)zone propagation

Ochsenfeld, Robert 3, 654
Off-center axial fields 130
Operating temperature (effects) 12
Orthotropic material 98, 193, 391
Overall current density of coil/magnet/

solenoid 74, 115, 142, 148, 179, 353,
359, 525, 548, 644, 655

adiabatic (high-performance) 351, 652
annulus magnet, HTS 582

bulk vs. plate 585
bath-cooled 220
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Overall current density (continuation)
cryostable 366
scaling 173
winding pack 361

Overcurrent mode, brass current lead 300–
305

Overheating See also Hot(-)spot
active protection 501

matrix metal current density 503
adiabatic heating 471
annulus magnet, HTS 586
Bi2223 tape current lead 523
detection by AE signals 414
matrix current density criterion 477,

522
safe, risky, and very risky ranges of Tf

(hot-spot temperature) 470
self-protecting magnet 494
temperature-induced strains 470

Overpressure in Hybrid III cryostat 239,
450

Overstraining 467
current-induced 501
heating, by 471, 494, 511

Oxide (superconductors) 7, 8, 652

Pancake(-)(coils/magnets) 137, 655 See
also Double-pancake (coils/magnets)

Bi2223/(YBCO) 129, 414
maximum operating current 129
transverse NZP velocity 490

field (analysis) 78, 118, 120, 126, 150–
153

inductance 109
splice 454
stresses and strain in midplane 194
temperature-induced strains 470

Paraffin (wax) 411, 470
Parallel-plate configuration (radiative heat

transfer) 248
Particle accelerators 154, 159, 175, 410,

651, 652, 656
LHC 175, 176, 649, 650, 654, 657

Paschen, pressure 480
voltage test 481

Passive (protection)
activate-the-heater 504–505
isolated (two-coil) magnet 496, 498
NMR magnet 530–534
persistent-mode magnet 526

Passive magnetic shielding 45, 653, 654,
655

SCH 561, 565–566
Pauling, Linus 267
PCS 21, 410, 455, 655

design & operation 456

normal-state resistance 456
stability and protection 457
thermal insulation 457

passive activate-the-heater 504–505
persistent-mode magnet 496, 525, 582

quench detection 529
Peak internal voltage 481

matrix current density criterion 483
Penetration depth 5, 6, 41, 43, 652, 655
Perfect cooldown mode 229
Permanent magnet(s) 55, 455, 654, 655
Permeability 27, 37, 106, 158

air 115
free space 5, 25, 617
infinite 39, 45, 48, 565, 570, 580

Persistent(-)current 20
(-)switch See PCS

Persistent-mode (superconducting) mag-
net(s) 21, 242, 655

annulus magnet, HTS 582, 583
circuit 455, 496
cryocooled 254

energizing technique 582–584
operation & “index” 455–458
protection 496

detect-and-activate-the-heater 526
passive 526

activate-the-heater 504–505
quench detection 529
splice resistance 408

Perturbation approach (magnetic shield-
ing) 45, 47

Philips (or Penning) gauge 253
Physical constants 617
Pippard, A.B. 6, 650
Platinum (Pt) thermometer 267

signal level & sensitivity 266
Poisson’s ratio 98, 193
Pole shape of iron electromagnet 54
Polyhelix (water-cooled magnet) 125
Poppet valve (1.8-K cryostat) 239
Power supplies 509
Poynting energy/power (density/flux)

flow 62
flux jumping 338, 340, 343
induction heating 58

hysteresis loss 402, 417, 420–421
vector 29, 63

Pretensioning of conductor 412
Protect or not protect an HTS magnet 538
Protection 11, 12, 14, 467, 545, 587, 589

active 469, 481, 501, 517
detect-and-dump 502–504, 551
hot-spot temperature 469
MgB2 magnet 525–529

quench detection 528
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Protection (continued)
passive activate-the-heater 504–505
quench-voltage detection technique

505
adiabatic heating 474
AE signals for HTS magnets 414
annulus magnet, HTS 586
Bi2223 current lead 523, 524
cryostable NbTi magnet 511
current lead (HTS) 274, 285–286, 296,

510, 523–524
heater 527, 529

location & power requirement 527
high voltage 480
Hybrid III SCM 512
matrix current density 361
NZP 484, 489, 491, 492
passive 496, 526

NMR magnet 530–534
PCS 456
persistent-mode magnet 456, 457, 526
(from) power density equation 352
size limit in magnet 495
THQB 492
twist pitch 492, 537

Pulse gradient magnet (MRI ) 22, 529

Quadrupole (coil/magnet) 2, 71, 159–161,
176, 588, 656

field(s): 159, 160
(from) potentials 31

force(s) 159, 160, 161
inductance 109, 208, 210–211
mechanical disturbances 410
spring constant(s) 159, 161
surface current density 159, 160

Quasi-static analysis (Maxwell’s equations)
28

field in cylinder(ical shell) 56, 59, 61
Quench (of magnet) 11, 656

annulus, HTS 586
codes/computer simulation 13, 493, 537
current (time trace) 499, 533, 534
detection 505, 538

techniques 529
AE 413–414
voltage 503, 505, 515–516

time 528
high voltage 480–481
hot-spot (temperature) 467–468, 469,

512, 526, 529, 556, 652
-induced damage 538
persistent-mode 455–457
premature 351, 531–532, 537, 656

by disturbance(s) 358, 410–412
protection 504–505, 527, 538

voltage (spatial distribution/time trace)
482, 499, 532

Quest for Absolute Zero, The 296

Rabinowicz, Ernest 412
Racetrack(s) (coils/magnets) 71, 162, 656

central field 163–164
field near the center 164–165
interaction forces 167

Radboud University 132
Radial, build of close-packed hexagonal

winding 199
force in two-coil magnet 203
stress(es) 98

medium-walled coil 103
thick-walled coil 104
thin-walled coil 102–103
winding tension to reduce 105

Radiation/radiative heat 221, 238, 250
flux 249
shield(s) 231, 247, 248, 250, 251, 515,

516
transfer 248–250

Ramp-rate limitation (CIC conductors)
382

Ramsay, Sir William 244
Recovery current (from normal to super-

conductivity) 385, 489
Refrigeration 225

power (capacity) 227, 454
(pumping at) 1.8-K 237–238
cryocooler 227, 231, 244, 245

Replacing technology 587
Research magnets 588
Residual resistivity ratio See RRR
Residual strains/stresses in composite at

4.2K 205, 206
bronze, copper, and Nb3Sn 205

Resin (Epitoke 828), thermal conductivity
vs. temperature plot 633

Resistance thermometers 265
signal levels and sensitivities (Cernox,

Pt) 266
Resonant/natural frequency of levitation

576, 578
Restoring force See Axial force(s)
Rogowski coil 67–70

flux linked to 68
mutual inductance (vs. current ) 213
non-concentricity (vs. current ) 70

RRR (residual resistivity ratio)
vs. magnetic field plots (Ag, Al, Cu) 641

Russell, Bertrand 574
Rutherford (Appleton) Laboratory 344

Sakharov, Andrei D. 170
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Sapphire, thermal conductivity vs. temper-
ature plot 632

Saturation flux density 45
Saturation magnetization (iron alloys ) 50
Sawa, K. 410
Scalar potentials 38
Scaling a solenoidal magnet 173, 174

axial force 173
center field vs. current density 173
conductor length, current & ampere-

meter 174
conductor size & operating current 173
inductance 174
magnetic energy 174
number of turns 173, 174
spatial homogeneity 173

Scaling laws for Nb3Sn and NbTi 644
SCH (series connected hybrid magnet)

546–566 (below: selected topics)
attractive force, between subcoils 564
central field 548

midplane radial field 548
overall current density 548

charging voltage 549
charging time (16 kA→20 kA) 550
instantaneous power 549

CIC-cryostability 551
Stekly current 551

CIC-(supercritical ) helium flow 550
coupling loss 555
diodes (functions of ) 549
dump initiation delay 557

hot-spot temperature 556, 557
pressure vs. time plot 557

fault-mode axial forces 558–560
helium (cooling power) 554
hysteresis energy 554
inductance 548

stored magnet energy 548
magnetic shielding 561

active 562–564
passive 565–566

Schrieffer, J. Robert 5, 649
Schultz, J.H. 480
Search coil(s) 318, 334, 335
Self-field hysteresis energy density See

Hysteresis (energy/dissipation/loss)
(density)

Self inductance See Inductance(s)
Self-protecting (magnets) 484, 494–495

overheating 501
size limit 494–495

Series-Connected-Hybrid magnet See SCH
Seyfert, P. 234
Shear modulus and stresses 98
Shielding See Magnetic shielding

Shim coils 82, 191, 656
persistent-mode operation 457, 505, 530,

531, 535, 537
Shunt resistors 456, 496

energy transfer to 497
Silicon bronze, thermal conductivity vs. T

plot 632
Silicon thermometer 266
Silicon wafer processing 588
Silver (Ag)

(normalized) electrical resistivity vs.
temperature plot 640

enthalpy vs. temperature plot 635
heat capacity vs. T plots 223, 634
mechanical properties 638
RRR vs.magnetic field plots 641
thermal expansion data 471, 638
Y (T, 0) plot 479
Z(T, 0) plots 473

Size limit for self-protecting magnets 494
constant current 494
shorted terminals 495

Skin depth frequency 59, 61
Slew rate (MRI ) 22
Slow-discharge modes 519

circuits 519
SmCo5 (permanent magnet), BH|mx 55
Sm(CoCuFeZr) (permanent magnet),

BH|mx 55
SMES/flywheel 587, 588
Solder alloys, electrical resistivity data 410

contact resistances 409
thermal expansion data 471, 638

Solenoid (coil)
(with) anisotropic superconductor 129
field (axial )

end 130
long 118, 120
off-center 130
pancake 118, 120
ring coil 118, 119
superposition technique 130
thin-walled coil 118, 120
vs. power (resistive solenoid ) 118

ideal See Ideal, solenoid
inductance(s) See Inductance(s)
infinitely long 73
(with) isotropic superconductor 128

Solid cryogen(s)
argon (SAr) See Argon (Ar)
cooled magnet 257, 258, 263

(for) dry magnets 223, 224
(with) slow heating 255
(with) transient heating 255

hydrogen See Hydrogen (H2)
neon (SNe) See Neon (Ne)
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nitrogen (SN2) See Nitrogen (N2)
(SAr)-liquid nitrogen mixture 256
(SN2)-liquid neon mixture 256
(SN2) to stabilize HTS winding 258

Solidus and liquidus temperatures 410
solder alloys 410

Space factor (of winding), λ 115, 173
Spatially homogeneous magnet 142, 150
Sphere

iron, magnetic force on 200
saturated 201
unsaturated 201

perfect conductor (Pc) 3
H-T phase diagram 4
(in) uniform field 44

superconductor (Sc) 3
H-T phase diagram 4
magnetized (in uniform field) 37, 39

field lines 40
Spherical dipole field

far from four cylindrical dipoles 52
fringing 171

Spherical shell (field lines) 50
magnetic shielding with 45–50

Splice (joint)
annulus magnet, HTS 581
dissipation/loss(es) 238, 399, 408

Hybrid III 454
resistance 454

resistance 408
double-pancake vs. layer-wound 137
lap 408–409
superconducting 20, 525

SQUID 328, 653, 657
Stability (thermal ) 351, 545, 585

adiabatic 492
against flux jumping 338, 341, 346
CIC conductors 378, 381
cryostability (cryostable) 2, 352, 353

CIC 551
circuit model 362
equal area 352, 353, 369
magnet(s) 1

HTS/LTS 365
vs. quasi-adiabatic 390

nonlinear cooling curves 367–368
protection 475
Stekly criterion 365–366

mechanical disturbances 410
parameter 365
protection 511

temperature dependence 363
dynamic stability 337, 352, 353
effects of operating temperature 12,

354, 467
force-cooled quasi-stable 220

magnet(s)
annulus, HTS 585, 586
Hybrid III SCM 386–386

margin(s) 351, 357
energy 357, 651, 381

annulus magnet, HTS 586
LTS 358

LTS vs.HTS 351, 358
multivalued (CIC conductors ) 381
temperature 254, 357, 394, 444, 457

AC-losses-assisted NZP 492
matrix current density 361
MPZ 353
tenet (of LTS magnet) 247

Stainless steel
electrical resistivity data 355

(normalized) vs. temperature plot 634
enthalpy vs. temperature plot 635
diffusivities (magnetic, thermal ) at 4K

and 80K 337
heat capacity data 354

vs. temperature plot 634
mechanical properties 638
thermal conductivity data 355

T -averaged/ultimate strength 307
vs. temperature plot 632

thermal expansion data 471, 638
Stanford Linear Accelerator 175
Steel, as-cast

electrical resistivity 517
heat capacity vs. temperature plot 517
magnetic properties 50

Steel disk and superconducting coil 567–
572

field below 570
field enhancement (by disk ) 570
levitation force (by disk ) 580

Steel shell for passive shielding 561
Stefan-Boltzmann, constant 248

equation 248
Stekly, Z.J.J. 1, 352, 366, 369

(cryo)stability (theory) See Stability
Strain(s) 98, 100, 193

differential, thermal 469
risky (overheating) 470

effects on Jc of Nb3Sn and NbTi (refer-
ences only) 647–648

Stress(es)
axial 98
axial force See Axial force(s)
(in) bronze and copper 207
(in) composite Nb3Sn conductor 205–

207
(in) epoxy-impregnated solenoid 191–

192
hoop See Hoop stresses
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Stress(es) (continuation)
maximum during quenching 497
radial See Radial stresses
shear 98–99
strain equations 98–99, 193

composite 206
isotropic solenoid 100–104

strains (solenoid) 98–105
midplane pancake 194

“Structural data” for brass, copper, G-10,
stainless steel (cryogenics) 307

Struik, Dirk J. 33
Stycast, thermal conductivity vs. tempera-

ture plot 633
Styrofoam, thermal conductivity vs. temp-

erature plot 633
Submicron, (super)conductors 2, 345, 657

multifilamentary conductor 345
strands 345

Superconducting, accelerators 2
dipoles and quadrupoles for accelerators

2
electric generators 2

Superconductor(s) See also specific super-
conductors, e.g., Bi2223, NbTi

Type I 658
critical temperatures and fields 8, 17
London’s theory 5
Meissner effect 3
rod in uniform field 41–43
thermodynamics 15

Type II 658
AC losses 399
annulus magnet, HTS 583, 586
critical surface 9
flux jumping 338, 349
Joule heating 355
magnetic and thermal diffusion 336–

337
magnetization 313, 320

Bean’s theory 313–315
mixed state 5–6
stability margin 357

Type I and Type II 2, 5
AC and DC responses 5
critical temperatures and fields 7
magnetic behavior 7

Superfluidity 233–235
Superinsulation 249

layers (effect of ) 250
Superposition technique 130–131
Support rods, vapor-cooled 307
Susceptibility 27

Technology, enabling 587
replacing 587

Teflon (TFE), enthalpy data 637
heat capacity data 636
thermal expansion data 638

THEA (code) 13
Thermal

contraction in composite Nb3Sn conduc-
tor 205, 207

diffusion 336
in solid 254

diffusivities of Cu, SN2, SNe 255
dry-out 256
energy (stability ) 354 See also Stability

margin(s)
energy density to melt copper 467
expansion data 471, 638
properties (superconductors ) 646
runaway 479
time constant (vapor-cooled copper cur-

rent lead) 273
vs.magnetic energy density 467

Thermal conductivity(ties)
Ag-Au alloys, vs. T plots 284
Bi2223, MgB2, Nb3Sn, NbTi, YBCO 646
Ar, He, N2, Ne, n-H2 630
substances in superconducting magnets

355
T -averaged/ultimate strength 307
(and) viscosity data 234
vs. T plots (conductive materials) 632
vs. T plots (nonconductive materials) 633

Thermal-hydraulic quenchback (THQB)
492

Thermometer(s) 241, 264–267
capacitance 267
diode 264, 266

GaAlAs 266, 267
silicon 266

magnetic field effects 266
resistance 265

Cernox 265, 266, 267
platinum 266, 267

thermocouples 266
AuFe(0.07%)-chromel 266, 267
Type E 266, 267

values of signal level & sensitivity 266
Thermonuclear fusion See Fusion (ma-

chine/project/reactor)
Thomson, William 241 See also Kelvin,

Lord
THQB See Thermal-hydraulic quenchback
Tin (Sn) 8, 17
Titanium (Ti) 8, 17
Tohoku University 132
Tokamak 168, 170, 657
Tophet A, electrical resistivity data 642
Toroidal magnet 168–170
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Training (performance improvement) 411
Transformer (HTS ) 587, 588
Transient nucleate boiling of liquid helium

358
Transition temperature See Critical tem-

perature
Transmission (HTS ) 587, 588
Transposed strands 348
Transposition of filaments 344
Träuble, H. 5
Tungsten (W)

enthalpy data 637
heat capacity data 636

Turbomolecular pump 252
Turowski, P. 413
Twist pitch, critical 348

length 406
(intentionally) long for protection 537
purposely long (for protection) 492

Twisting, to decoupling filaments 348
Two-coil magnet 177–181

central field 180
conductor length 180
current density 180
inductance 180
interaction force 181
magnetic energy 181

Two-filament model of multifilamentary
composite 406

“Two-fluid” model of helium 233
Two-pancake magnet (field analysis of a

pancake-coil magnet) 151
Two-“racetrack” coil magnet 162–167

central field 163
(from) four current elements 165

field near the center 164
forces on current elements 166
internal forces 167

Type I superconductor(s) See Supercon-
ductor(s)

Type II superconductor(s) See Supercon-
ductor(s)

Ultimate strengths, at 295 and 77K (of se-
lected materials) 638

“structural data” (at 295K ) 307
Uniform-current-density

solenoids 115–117
(field generation) efficiency125
field error coefficients 619–620

Uniform field, from scalar potential 31
Uppsala University 54

Vacuum 253
gauges 253
pumping system 252, 253

Van See Vannevar Bush
Van de Graaff, Robert J. 175
van der Waals, Johannes D. 296
Vanadium (V) 8, 17

permendur 50
Vapor-cooled current lead See Current

lead(s)
Vapor-cooled support rods 307
“Virgin” Bean slab (hysteresis energy den-

sity) See Hysteresis (energy/dissipa-
tion/loss) (density)

Viscosities of Ar, H2, He, N2 630
Voccio, J.P. 129
Void fraction (CIC conductors) 380
Volta, Alessandro 286
Voltage(s)

criterion for matrix current density 483
dangerous level (1 kV) 480
distribution, internal 481–483
drop across an optimal lead 272
(from) Hybrid II insert trip 516
traces following a quench 532

Volume (solenoid winding), minimum for
given F (α, β) 116–117

Volumetric fraction of filaments, λf 407
Vortex model 5
Vortices 6
Vysotsky, V.S. 492

W7-X See Wendelstein 7-X
Warming up a large superconducting mag-

net 507–509
Water-cooled, coils at M.I.T. 145

10-T electromagnets 1
electromagnet 122

Weggel, Robert J. 122, 619
Well-cooled regime (CIC conductors) 381
Wendelstein 7-X (W7-X) 587, 658
Wet & dry magnets 219
“Wet” LTS magnets vs. “dry” HTS mag-

nets 223
Wet wound coil, tolerable radial tension in

105
Williams, J.E.C. 493
Wilson, Martin N. 344, 353, 369, 493
Winding, cross sectional area 359

element 73
pack 359
tension (to reduce radial stresses) 105
volume 121

Wire motion (transitory & local ) 356
Wire twisting 344–346
Woźny, L. 414
Wt% to At% conversion 289

Y (Tf , Ti) function 478
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Y (T, 0) plots for Ag, Al, brass, Cu 479
YBa2Cu3O7−x (YBCO) 8

coated conductor 2
critical tape width 341
Jc or Je data 645
plate 575
thermal expansion data 471

Young’s moduli at 295 and 77K (of selected
materials) 638

Z(Tf , Ti) function 472
Z(T, 0) plots for Ag, Al, brass, Cu 473
Zinc (Zn) 8, 17
Zirconium (Zr) 8, 17

Selected symbols defining, with one excep-
tion, dimensionless parameters all unique
to this textbook.

L(α, β) (solenoid inductance) 107

[α]fs (vapor-cooled current lead ) 276
[α]nfs (vapor-cooled current lead ) 285
[α�]cs (vapor-cooled current lead ) 279
[α�]

n
cs (vapor-cooled current lead ) 285

αcu (vapor-cooled current lead) 287
α′

cu (vapor-cooled current lead) 289
αsk (Stekly stability ) 384

βcs (vapor-cooled current lead ) 279
βn

cs (vapor-cooled current lead ) 286
βcu (vapor-cooled current lead ) 287
β′

cu (vapor-cooled current lead ) 289

λf (volumetric fraction to compute effective

matrix resistivity ) 115

ζr (stress ratio, radial ) 102
ζθ (stress ratio, hoop) 102

Γ (coupling loss) 443
Γ (winding tension, in newton ) 105
γm/s (volumetric matrix metal to supercon-

ductor ratio) 366
γdc (dissipation density coefficient ) 392

κ (magnetic field ratio for computation of
stresses) 102

ρ (radius distance normalized to winding
radius, a1) 100, 102, 392

Υ(c2, k) (combines the complete elliptic in-
tegrals of the first and third kinds) 89

χ (magnet size scaling) 173

Mathematical operators.

∇× (curl), Cartesian coordinates 32
cylindrical coordinates 32
spherical coordinates 33

∇· (div), Cartesian coordinates 32
cylindrical coordinates 32
spherical coordinates 33

∇2 (div grad), Cartesian coordinates 32
cylindrical coordinates 32
spherical coordinates 33

∇ (grad), Cartesian coordinates 32
cylindrical coordinates 32
spherical coordinates 33

“Time always plays an asymmetric game: looking into the future, a
decade or a generation seems so long that almost anything is achievable,
yet looking back to the past, even a generation seems only yesterday.”
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